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Abstract. Many theories of intuitionistic mathematics are formulated in Heyting’s predicate
logic. This paper proves the undecidability of certain versions of linear order, linearly ordered
abelian groups and of algebraically closed fields formulated in Heyting’s predicate logic in a language
with the apartness relation. The method is to obtain a faithful interpretation of the classically
undecidable theory of a reflexive and symmetric relation into those intuitionistic theories.

0. Introduction. In [1], [2], [3] we dealt with the decision problem of several
intuitionistic theories formulated in a language with possibly a symbol = for
equality but without the apartness relation #. In this note we extend our methods
to obtain undecidability results for several intuitionistic theories formulated with .

In Szction 1 we treat a version of linearly ordered abelian groups. This is the
first time any version of this theory (with or without #) is dealt with. In Section 2
we turn to versions of algebraically closed fields. Other versions of algebraically
and real closed fields (without #) were treated in [2]. In Section 3 we treat some
theories of linear order. Some of the undecidability results obtained here (i.e., for
the pure theory of 4 and a version of dense linear order) were obtained in Smo-
ryfiski [6] by a related but different method. Further discussion and comparisons
are given in each section. ‘

‘We assume no previous knowledge of [1]-[3] and [6], but we do assume knowl-
edge of the Kripke semantics for Heyting’s predicate caleulus (HPC). See [5]. The
Kripke structures are denoted by (S, R, o, D) where S is the set of possible worlds,
R is the accessibility relation o & S is the actual world, and for each z€ S, D, is the
classical model associated with z. We denote the truth value of a formula 4 at
a world ¢ by [4],.

1. Linearly ordered abelian groups. In this section we prove that the intuition-
istic version T of linearly ordered abelian groups formulated below is not decid-
able. (We also look at other versions.) We prove undecidability by showing that
the classically undecidable theory of a reflexive and symmetric relation is faithfully
interpretable in T;. No version of linearly ordered abelian groups (with or without )
was ever treated before.
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The language of T contains 0, +, #, =, and < (actually it will follow from
the axioms that = can be defined from # by (x =y < ~1x % ). T has the follow-
ing axioms:

Group E. Axioms for quality.

El: x=x,-

B2:x=p »>y=ux

B3:x=p 2> (y=z-x=2),

E4: x =y —» (A(x)~A4(3)), 4 is any formula of the language.

Group S. Axioms for apartness.

S1: ~1(x4kx),

S2: x4y — y#x,

S3: U(x#y) = x=y,

S4: x4y — xH#zvydz,

85: (x4 v 11 (x ).

Group A. Axioms for addition,

Al: x+y =y+x,

A2 x+(y+2) = (x+))+z

A3: x+o0=ux,

A4 VxTy(x+y = o),

AS: xdy — x+zHy+z.

Group O. Axioms for order.

Ol: x<yAy<z — x<z,

02: x=yvx<yvy<x,

03: T1(x<x),

04: x<y - x+z<yp+z.

From the above axioms it follows that

OS5: x4y —» x<yvy<yx,

E5: x =y o T1(x#y),

The following does not follow from the axioms:

S6: x<y — xdy.

In fact, if we let T be the theory with the axioms below, then we do not know
whether T is decidable. (In. T, x#y is x<yvy<x).

‘Axioms for Ty: E1-E4; S1-84; Al-A5; O1, O3, 04, 05, S6 and 06, where:
06: x<y —» x<zvz<y.

THEOREM A. The theory T, of linearly ordered abelian groups is undecidable.

Towards the proof of Theorem A we need some constructions.

Let (M, P) be countably infinite classical model of a reflexive and symmetrical
relation P, We can assume that M is the set of natural numbers. We now construet

a Kripke model (S, R, o, D)), called the Kripke model assoclated with (M, P).
Let I be the linearly ordered abelian group of the integers. Let

68 = {M}u {{m,n} M| mPn} L {c0},

©

@
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@ R={M}xSu{(s, 9 seS}tuSx{o},
@) o={M}.
To define D,, €S, let the domain of D, be ™.
(4) Define = on the domain as identity.
(5) Define + on the domain pointwise, and let & be (o ... 0).

6) Forf,ge I, let k(f, g) be the first coordinate k, in the ordering of M (= set
of natural numbers) such that f(k) # g(k). Then define f<g iff f(k)< g(k),
where k = k(f, g). This means that < is the lexicographic ordering on ™

(7) Define # on D, as follows (this is the first time that the definition depends
on 1): -

(73) [f#glo = o, for all f, g,

(76) [f#glimm = 1 iff for some k¢ {m,n}, f(k) # g(k),

(7c) [f#gle =1iff f=g.
'We have thus defined a Kripke model for the language of T7.
LevMA 8. All axioms of Ty hold in the above miodel.

Proof. We check each group of axioms.

Group E. Equality was defined as identity.

Group S. S1-S3 are clear, S3 follows from (7c) and the definition of R.
84 follows from (7) and S5 from the definition of R.

Group A. + was defined pointwise, A5 follows from (6).

Group O. Follows from (6).

We now turn to give some more definitions.

(8) Let E be defined as: E = Ix(x#0).
(9) Let B(x) be: x # 6AE — x#0. :
(10) Let D(x) be Vy(B()vI(y#0 — x40) — (x#0 - y¥#0)vE)]) = EvB(x).
(11) Let x =y be (x30 <> y#0).
(12) Let xPy be E — x40vydo.
LEMMA 13. In the Kripke model defined we have that
(4 [El,=1ift#o.

(15)  [B(®))o = O iff x # & and for some m,ne M we have that x(k) = 9, for
all k¢ {m,n}.

16) [P = 0 iff x 6 and for some me M we have that for all k, x(k) # o .
iff k=m.

(17)  Forx,y such that [x = ylo = 1 and [D(x) v D()lo = o we have thatx(k) 95 0
iff y(k) # o for all ke M. .
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For x,y such that [D(x)v D], = o we have that [xPylo =10 if M
E a(x)Pa(y), where a(x) is defined as the m & M such that for all k (x(k) # o
iff k = m). (See (16).)
Proof. (14) Follows from the definition of # in (7a).
(15) TIs clear from the fact that x = yvx # y holds, and from (14).
(16) Assume that for some m we have that x(k) = o iff k # m; for all k. We
want to show that [D(x)], = o. .
Clearly [EV B(x)], = 0. We will show that the antecedent of D{x) holds at o.
Let y be such that [B(»)], = o, then we must show that

(18)

*) (40 —> x43) ~ (x#0 — y#d)VE], =1.

Since [B(3)], = 0, then for some n, n' € M we have y(k) = o for all k¢ {n, n'}.

Now if it were the case that (x) is false, then in view of (14) we must have that
[y#0 — x#0lo =1, [x#0 - y#0], =o.

So [y#8 — x40,y = 1, since [x#06], =.0, we must have [y#0]u, = o, iec.,

{m}={n, n'}. But this means m = n = n* ({n, n'} must be nonempty since y # 3)

and so [x#4d — y438], = 1, a contradiction.

To show the other direction, let [D(x)], = 0, then clearly (by (14)), [B(x)], = 0,
and the antecedent of D(x) holds at 0. Assume that m, n € M are such that for all &,
ke {m,n} — x(k) # o. We claim that m = n. Otherwise let y be such that y(k)
= x(k) for & # n and y(n) = 0. Clearly [B(»)], = o0 and so we must have that (x)
holds for this y and this x. Now clearly for any ¢z, [y405], = 1 implies # = 0o or
mét, and so [x#0], =1 must also hold. However, for t = {m}, [x#38],, =1
but [y# 6], = o. Thus we contradicted (¥) and therefore m = n. This proves the
other direction of (16).

(17) Let x,y be such that [D(x)vD()], =0 and [x = y], = 1. Assume
that x(k) = oAy(k) # o, for some ke M. Then for ¢ = {k}, [y#5], = 0, since
by (16) there could be only one point k € M such that y(k) # o. On the other hand

[x40], = 1 since, again by (16), there must be another point &* # k& such that
x(kY # 0.

(18) Suppose m,ne M are such M [# mPn, then {m,n}¢ S, we claim that
[E —» x4:0vy#d], =1 for x,y such that for all k,

x(k) # o0 iff
Yk £ o

k#m,
iff ks#n.
This is clear since for all t€ S, t % 0, 0; {m, n} &¢t. Now assume that M+ mPn,

then for ¢ = {m, n} € S and x, y defined as above, [E];, = 1 and [x43 v yo], =
Thus (18) is proved. t : yHo =

icm
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(19) Observe that from (17) and (18) it follows that the relation [x = y]l, =1
is an equivalence relation on {x| [D(x)lo = o} and that it is a congruence
relation with respect to [xPy], = o. :

(20) Thus from (17), (18) and (19) it follows that the model (M, P) is isomorphic

to the model (M, P) where M is the set of = equivalence classes of
{x] [D(x)] = o} and P is defined by x/ = Py| = iff [xPy], = o.
We are now in a position to define a faithful translation from the classical
theory RS of a reflexive and symmetric relation into the theory T, of this section.
If ¢ is translated into ¢*, then we shall have

T, Fo* if RSHTe.

To obtain the translation, we need some more definitions. )

@n

Define the following:
(2) Let the quantifiers V¥, 3 be defined by

Ve if  (V)(DOIVY),
e if @ (RO)E)A0).

(b) Let ¢ be a sentence of RS. Write ¢ in the form (@...) A(N\x Py \1;Poj),
where O is a string of quantifiers and P is the symbol for the relation
in the language of RS. Let the translation ¢* of @, in the language of T
be the following sentence -

VulQ*..) A(AwPy; = \/xPy;vE) —~ Ev D).

Where O is the same string of quantifiers as Q except that V and 3 are
replaced by V* and 3* of (21) (a), and D, P and Eare as defined in (8), (10) and (12).

Leva 22. For @, ¢* of (21) we have: Ty +o* iff RSF 0.

Proof. We show that T, not F ¢* iff RSnot F T¢.

Assume that there exists a model (M, P) in which ¢ holds. We will show
a Kripke model of T; in which ¢* does not hold. Let (S, R, 0, D) be the model
associated ‘with (M, P) as constructed in the beginning of this section. We want
to show that [¢*], = 0. To show this, let u be any element such that [D()], = o,
and let us show (since [E], = o) that

[ I a(AwPy; = \xPyivE)]]o = 1.
To prove this remember that by (20), (M , P) is isomorphic to (M, P). We use
this to proceed and show by induction on the length of (Q*...), that for any substi-
tution of elements f; such that [D(f)], = 0, and any string of quantifiers Q; we
have: :

(%) (I (o =1 if  ME(Q-)¥(a(f))
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where a(f;) is as in (17) and

¥ = ANAx:Py: = VyPoy),
‘/’* = /\(/\”jP”j - \/xiPyl\/E)'

For the proof observe that the empty string of quantifiers (x«) follows from
(14), (18) and (20). The induction cases follow from the definitions of V*, 3* and (14),
The definition of V* 3* ensures that V* 3* are V and 3 relativized to
{x| [P = 0}. |

Now for the other direction, let (S, R, 0, D) be a model of T, where ¢ is
false. Then for some te S, ue D, we have

23) [(o* ...)A(/\u,ijﬁ\/x,Py,\(E)], =1

Let M = {xe D, [D(x)], = o}/= (ie., equivalence classes over = of (11)).
Clearly ¥ is nonempty. Let for x/=, y/= e M, x/=Py/= iff [xPy], = o. By (12)
and (11) this definition is okay. We now have to show that P is reflexive and sym-
metric on M. (12) shows that P is symmetrical. For the reflexivity observe that
by (10)'if x/= € M then [B(x)], = o and so by (9) and (12), [xPx], = o.

So (M, P) is a model of RS. We want to show now that (M, P) k ¢. To show
this we observe that [E], = o and use (23) and the same argument we used in the
proof of (%) of (Lemma 22). )

Thus the proof that 7 is undecidable is completed.

Remarks. Note that in the translation @ ¢* of RS.in T, we have not used
the ordering <. Also note that the model (S, R, o, D,) that was constructed is
a model of constant domains (ie., a model CD = HPC + schema

Vx(4AvB(x) — AVVxB(x)).

Thus we get that the theory of linearly ordered abelian group in the logic CD is
-undecidable. Also since < was not in the translation, the proof presented works

and [DWVE], =o.

for the theory T7 of abelian groups with axioms E1-E4, S1-S5 and Al-A5. Now -

for the case of HPC, the undecidability of the theory of abelian groups with decid-
able equality (and hence x4y can be taken as x s y!) was proved in [1]. However,
as remarked in [2], the theory of abelian group with decidable equality with CD
as the underlying logic is decidable. We see here, in comparison, that if we formulate
the theory of abelian groups with # and decidable equality (S5), then the CD
theory is undecidable. To summarize

THEOREM B. In the logic CD, the theory of abelian group formulated without 4
(bu{ with decidable equality) is decidable, but when formulated with # is undecidable,

2. Algebraic closed fields. The language of these theories contains +, o, =,
0, 1. (As before, = is definable from #.) The axioms are taken from [4] and are
the following:

Axioms for the theory T, of algebraically closed fields are E1-E4, S1-S4, A1-AS5,
and the following:
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Group M.
Ml: xy =yXx,
M2: x-1=x,

M3: x(y+z)=xy+x-z

M4: x#0 — Ty@x-y=1),

M5: x#yAzdo — xzHyz.

Add. 87 to Group S.

S7: O41.

Group AC. )

ACL. (Vxy, o, %) 113"+ Y, %,y = 0) (this is a schema; ne ).

TueOREM C. The theory Ty of algebraically closed fields is unde\cidable.

The decidability of the theory with the more natural axiom schema.

AC2: (Vxp, oo, %) A"+ Y %,y = 0) s still open.

We now turn to prove that T, is undecidable; we use similar constructior}s
as before. Let (M, P) be an infinite model of a classical reflexive and symmetric

relation P. We construct a Kripke model (:S' ,R,0, Dy of the theory T, called
the Kripke model associated with (M, P) as follows:

(24 Let S be the same as in (1).

(25) Let R=S xS be the reflexive and transitive closure of the following relation:
{MYyxS U {({m,n}, {m}| {m,n}eS}yv {({m,n}, 0)| {m,n}eS, m# n}.
(26) Let o = {M}. '

For each re S, we must define the classical models D,. These are going to be

. certain rings. To describe these rings we need more definitions.

Let K be an algebraically closed field. Let ¥ be a set of indeterminates over K.
We want to define a ring K{¥} as follows. The elements of K{Y} are.all
finite sums of elements from (J K[y], where K[y] is the ring of polynomials

ye¥t .
in y over k. So if ge K{Y}, then ¢ has the form ¥ gy, vy € Kyl
Define addition on K{Y} as addition of sums, ie., ‘

g+q* =Y a)+L a0 -

Define multiplication on K{Y} by extending the following multi.plication
table to all the elements of K{Y} through the distributive and associative laws:

s y*if
yr= 0 if

@n

y =y,
y#
Let y,y'eK{Y}, we can define a homomorphism he(y,¥%): K{Y}

—K{{y,y'}} by letting, for ¢ = Y.y, 2(, ¥ (q) = result of substituting
oin g for all x e Y—{p, y'}. Let hg(o0): K{Y}—K be defined by the substi-

for y,y'elY.


Artur


64  D.M. Gabbay

tution of o for all the y e Y. Let K{Y} be the set of all elements of the form
r = g/q* (ie., rational functions) with ¢, g*e K{Y} and g¢' is nonzero,
ie., h(o0)(g?) # o. Extend the definitions of multiplication and addition
to K {Y} in the natural way. We can also extend hy(c0) and hg(y, 1) in
a natural way.

We are now in a position to define the domains and models for p,.
Proceed as follows: . :
(a) Let Do = Dyyym # n= Dy, = K{Y}, where ¥ is a set of transcen-
dentals of the form Y = {fi| me M}.
(b) Let D,y = K(m){Y—{f}}, where K(m) is the algebraic closure of K[#i].

(28)

Let us define the extensions of -+, o, #, =, 0, 1 in D,.
(29) Let + and o, 0, 1 be as defined for the riﬁg K{Y} in (27).

(30) To define 3, let r,r* be elements of the domain; let
(a) [rar'], = 1 iff hg(c0)(r) # hg(c0)(r') for 1 = 0,0, {m,n}, m #n,
) [raertlyy = 1 iff hgpn(0)(r) # Bigemy(0) ().

To define = on D, let )

@) [r =r']y = 1 iff r, 7" are identical,

(0) [r = r'l, = 1 iff hg(o0)(r) = hx(0)(r),

©) Ir = r'Ymmy.= 1, for m 5 n, iff A, D)) = he(W; B (),
(@) [r = 'y =1 iff Kggn(e0)(r) = hg(0) ().

. Thus the definition of (S, R, 0, D,) is completed.

LeMMA 32. The Kripke model thus defined is a model of the theory T, of algebraic-
ally closed fields.

Proof. We check each axiom.

(a) E1-E4 follow from the fact that A is homomorphism. S1-S2 are simple
to check. For 83, notice that if Y g«(7;) # Ygi(7;) then for some i, g; # gt and
so [g; = gils; = o. Equality art is defined in such a way that it amounts to
substituting 0 for some of the indeterminates, e.g., Dy, is nothing but K(m). 84 also
holds because % is a homomorphism. Al1-AS clearly hold. So do M1-M3. To check
M4, note that x40 iff #(x) # o and then 1/x is also present, by construction. M5
and S7 are also easy to verify. AC1 holds because D, is isomorphic with K(#i)
which is algebraically closed and D, is isomorphic with K. Thus Lemma 32 is
proved.

G0

I

To proceed with the translation we need more definitions:

(33) Let E be

J

(vxl’x29x3)('#/\jxixj =0 =\ (5 = ovx;#0)).

icm
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(34) Let B(x) be
Yu, v[usovodkov u+v = xAuv=0-u=0vo =0oVvE] - x#oVvE.
(35) Let x=y be
Az(z#oAx =yz).
(36) Let D(x) be
Vy[(ydo <> x#0) > EvAz(y =2x)] > B(X)VE.
Let xPy be

(E - xdovydovVx(x = ovx#))A(x =y - E).

€D

LevMa 38. In the above model:

(@) [E], =0 iff 1 =o.

(b) [B(X)]o = 0 iff x has the form mg(i)[r with W e X and q(m) a polynomial
in m.

© [D(®)]e = o0 iff x = Ma, me ¥, a#o.

(d) For i, ne Y if ado, biro then [amPbii}y = o iff M FmPn.

Proof. (a) For t = o, let m;, i=1-3 be three distinct transcendentals;
(We assumed M was infinite.) Then clearly the antecedent of E holds at O but the
consequent does not. Now assume that ¢ # 0 and [ A x;-x; = 0], = 1. Then for

i#j

t = {k} or t = co, clearly [\Vx;=0], =1, since D, is a field. In the case of

j
t = {n,n'}, n # n', observe that the only elements X that are not 0 are of the
form (g(R)+4*(@V))/r. Since [(gm)+q"(A"))/r4o0], = 0 we must have that ¢ = fip,
g* = n'p*, with p, p* polynomials in 7, i* respectively. Now if x, = (Ap;+ApD/ry,
then )

Xy 0 Xy = (ﬁ2p1p2+(ﬁ1)2p{p;)/rir2
50 pipy =0, pi-p; = 0. Also,
P1'Ps = P3Py = p1ps = Ppip3 = 0.

This clearly implies that at least one of the x,’s is 0. '

(b) First, if x has the form g (m)/r, then [x3kov E], = 0. Now if u, v are
such that (u#ovoviol, = 0, then

u=Yynq@r

We want to show that

and v =3 Afqt A

[utv =xAwv=0 — u=ovv=0vE]y=1.

So assume [u+v = xAu-v =0, = 1. Since (u'v = 0], = 1 we must have that
n; # n} for all 7,j. But then since [u+v = x]o = 1, either u = x or v =X, ie.,
wu=oorv=o Atanyts o, [E; =1and so u=ovv=0VE] =1L For the
other direction, let x be-such that [B(x)], = o. By Lemma 38 (a) we must have


Artur


66 D. M. Gabbay

that [x#:0], = o0 and [consequent of B], = 1. So x must have the form Y, 7,g(#,)/r.

If there is more than one 7; present let

u=nq()fr, v =i>Zzﬁ;q(ﬁi)/r
then clearly -

[kovoskolo =0, [to=xlp=1, [v=o0l=1
and

[u=o0ovv=0VE], =

So the antecedent of B does not hold at o, Thus x must have the form 7, g(ii,)/r.

(¢) First observe that if x is of the form. g (7)/r and at o, y4ko <+ x40, then y
must be of the form g, (7)/r. Now assume that [D(x)], = o, then we show that
x = mL for some 7. Now since [D(x)]o = o, we get that [B(x)], = o and therefore
x = mi ‘q(m)[r with g(m)40 and i>1. If i = 1, we are finished. Otherwise let
y= Fn‘_‘ 1g/r. Clearly y#o <> x40, so we must have that either x = y, which is
impossible, or that for some Z, m'~'g/r = Zmg/r, which again is impossible.

Now assume that x = 7. Then certainly [Ev B(x)], = 0. To show that the
antecedent of D(i) holds at o, assume [y4:0 +> x4:0], = 1. Then y must be of the
form mg(m)/r and therefore z(y = xz).

(d) First assume that M FmPn. We distinguish two cases.

(1) m = n, then [MaPmb], = 0 since [mad = fmb], = 1.

(2) If m # n, then we have [Elmny = 1 and [Wadov @biko]y,,, = 0, and
[Vx(x = 0vx#0)]p = 0. So again, [aPib], = 0.
N Now assume that [MaPiib], = 0. If [a = fib— E], = 0, then we must have
[m_a = 7ib]y = 1, which can hold only if m = n and so mPn. If [E - Wa#ov
viib4oly = o, ,then for some t # o, (Wado], =0, [Ab4o]l, =0, [Vx(x =ov
le#o)lj, =0. Since [Vx(x=ovx#0), =0, t # w0, and ¢ # {n'}. So t={m", n'},
m" #n'. But then [Mado], =0 implies me {m*, n'} and similarly n e {m*, n'}
and so mPn must hold in M. Thus Lemma 38 is proved,
(39)  Now observe that from Lemma 38 (d) it follows that if x = y, ! = p' then

. 1 . = ’ -

_xPy.liT x'Py'. Thus if M = {x| [D(x)], = 0}/= and P is defined by
x/= Py/= iff [xPy], = 0, we get that (M, P) is isomorphic to (M, P). '
(40) As we did in (21) (for the theory Ty of linearly ordered abelian groups),
we define V* and 3* by

V0o =Vy(DO)ve),
3y0) = Iy (DG)—E) A ).
The translation ¢+ ¢* is defined exactly as.in 1), i.e., if ¢ is a formula
of RS of the form (Q..) A(Ax:Py;~\/u,Pv) then ¢* is the following
formula of T,: ‘
Yul(Q*..) A(AuyPo;—\/x,Pv,v E)>Ev D(u)]

where P, D, E are those defined in this section (§ 2). We have:
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LemMa 41. T, F o* iff RSt "o,

Proof. First assume that RS F 71¢; so ¢ has a model (M, P). We may assume
that M is infinite because RS contains no equality. Construct the model (S, R, 0, D,)
associated with (M, P). Observe, by following the lines of argument of the proof
of (22) that [¢*], = 0. The proof of (22) used (14), (18) and (20). Our proof now
will use (38)-(39), which were defined for the same purpose.

For the other direction, let (S, R, 0, P,) be a model in which ¢* is false. Obtain
a model of ¢ by following the line of the proof following (23). The reflexivity and
symmetry of P follows from (37). Thus Theorem C is proved.

We turn now to the theory T’s of real closed fields. The language of T contains
the symbols +, /, =, #, 0, 1 and >. The axioms are the following:

Axioms for the theoty T of real closed fields are E1-E4, S1-84, A1-AS5, MI1-M35,
87 and Groups P and RC.

P1:
P2:
P3:

x#o0 — x>0v(—x)>0,
x>0Ay>0 —» x+y>0,
x>0Ay>0 = x>0,

P4: T1(0>0),
RCl: x#0->171dy(x =p*v —x =yz),_
RC2: (Vg or X2, 1 1A pP"H4+Y %, = 0).

We do not know whether T is decidable or not. Neither do we know whether
the theory with RC3 and RC4 is undecidable. Where

RC3: x#o0—-Ty(x = y*v —x= yz)"
RC4: (Vxp, oo %20y (A" 142100 = 0).

3. Linear order. We begin with the theory T, of dense linear ordering. This
theory was first proved undecidable by S noryfski [6] by interpreting in it the
intuitionistic theory of one monadic letter. In [1] we show that the theory of decid-
able linear ordering is undecidable (here # can be defined from <).

The language of T, contains <, #, =, and the following axioms:

E1-E4, S1-85, 01, 03, 05, 06, S5 and 07, 08, 09 below:

07: Ay(x<y),

08: Ay(y<x),

09: Ay(x<z = x<yAy<z).

TueoreM D. T, is undecidable.

‘We sketch the proof; we use the same method we used before.

Let (M, P) be a countably infinite model of a reflexive and symmetric relation.
We can assume that M is the set of rational numbers. We construct a Kripke model
(S, R,0, D) called the Kripke model associated with (M, P) as follows:

(42) S ={M}u{o}u {{x,y}| xPy}, let 0 = {M}.

43) R={M}xSuSx{o}u{, 1l teS}
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Let K be the rational numbers. Let D, = K x M. We have to define <, #, =
on D,, t e 8. We proceed as follows: . S

@) [r,m) =@HmH], =1 if r =1t m=m.

@5)  [ram) < @hmb]p =1 iff m<ml.

@6) [r,m) < (*,m)] = 1iff m<mt or it m = m® then r<rt.

@D [, m) < m )]y = 1 iff m<m! or it m= mte {n,n'} then r<rt.

Let x4y mean x<yvy<Xx.
Leva 48. All axioms of Ty hold in the model.
Lemma 49. [x#7]o = o is an equivalence relation in the model.
Proof. Transitivity follows from S4,
LeMMA 50. Let E be the sentence AxVy(x
iff t=o.
Lesva 51. If xPy is aefined as E—(Vz(z = xvz#x) <> Vz(z = yvz=H=y))
then [(r, m)P(rt, mO)], = o iff mPm".

LEMMA 52. The relation x = y defined below is an equlvalence relation on D,
and furthermore, x = X* Ay = yt AxPy — x'Py', where x =y is Vz(zdkx > 24 ).
In fact, the set M of equivalence classes with the relation P (induced by [xPyly = 0)
is isomorphic to (M, P).

Now let ¢ be a sentence of RS in the form (Q..) A (A X, Py =\, Pvy).
Let ¢* be

= yvxy), then [E]; =

(@) AMA;Po;=\/x,Py;VE)~E.
We claim that

T,ko* iff RSFg.

Remark. This translation and construction shows that the apartness relation
itself (El-E4, S1-85) is undecidable (Smorynski [6]). Sunply take the same
constructions for a language without <.
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