228

V.-T.-Liem

- in April 1995 B
- [19] G. Venema, Embeddings of the shape classes of sphere-like continua and topological groups, to appear.
- [20] C. T. C. Wall, Finiteness condition for CW-complexes, Ann. of Math. 81 (1965), pp. 56-69.
- [21] G. P. Weller, Locally flat imbeddings of topological manifolds in codimension three, Trans. Amer. Math. Soc. 157 (1971), pp. 161-178.
- [22] E. C. Zeeman, Seminar on combinatorial topology, Mimeographed Notes, Inst. des Hautes Etudes Sci., Paris 1963.

UNIVERSITY OF UTAH Salt Lake City, Utah

Accepté par la Rédaction le 3, 9, 1975

Commutative rings in which every proper ideal is maximal

b

Joachim Reineke (Hannover)

Abstract. We will give the full description of commutative rings in which every proper principal ideal is a prime ideal.

Introduction. Perticani studied in [2] the class of commutative rings with identity in which every proper ideal is maximal. He gave a full description of such a ring R only in the case when R has at least two different proper ideals. In the case where R has only one proper ideal he reduced the problem of characterizing such rings to the one of the computation of cohomology groups. In this paper we will give a full description in both cases. The first case is a trivial conclusion of the Chinese Remainder Theorem and the second will follow very easily from the Cohen Structure Theorem of complete local rings.

All throughout R denotes a commutative ring with identity. We have the same notation as in [3]. The following lemma shows that three classes of rings with pathological properties are only one class and we do not use it in the following.

PROPOSITION 1. Let R be a ring. Then the following are equivalent:

- 1. every proper ideal is maximal,
- 2. every proper ideal is a primeideal,
- 3. every proper principal ideal is a primeideal.

Proof. $1\rightarrow 2\rightarrow 3$ is trivial. To see that $3\rightarrow 1$ let A be a proper ideal of R and $a\in A$, $a\neq 0$. Suppose $bc\in A$. If $bc\neq 0$, then $b\in (bc)\subseteq A$ or $c\in (bc)\subseteq A$. If bc=0, then $b\in (a)\subseteq A$ or $c\in (a)\subseteq A$. It follows that R/A is an integral domain. Clearly R/A is a regular ring. Therefore A is a maximal ideal. Q.E.D.

Call a ring R a max-ring if every proper ideal is maximal.

LEMMA 2 (see Theorem 1.1 and Theorem 1.4 of [2]). Suppose R is a max-ring and R contains at least two different proper ideals then R is isomorphic to a product of two fields.

Proof. Let A_1 , A_2 be proper ideals of R and $A_1 \neq A_2$. It follows immediately that $A_1 \cap A_2 = (0)$. Since A_1 , A_2 are comaximal it follows from the Chinese

Remainder Theorem that R is of the form $R \cong R_1/A_1 \times R_2/A_2$, hence a product of two fields. Q.E.D.

Suppose R is a max-ring. Because of Lemma 2 we can assume w.l.o.g. that R contains exactly one proper ideal. Thus R is an artinian local ring. Let A be the only proper ideal of R. Obviously A is a principal ideal.

LEMMA 3 (see Proposition 2.1 of [2]). Suppose R is a max-ring with only one proper ideal, say A = (a), $a \neq 0$. Then $A^2 = (0)$.

Proof. Since R is artinian and local, a is nilpotent, say $a^n = 0$. It is obvious that n = 2, since otherwise there would exist $b \in R$ such that $a = b^{n-1}a^n = 0$. Q.E.D.

DEFINITION. Let p be a prime or zero. We will call a ring a coefficient ring if it is a noetherian local ring L whose maximal ideal A is equal pL and whose characteristic is a power p of p. Let R be an arbitrary local ring. We will call a subring L of R a coefficient ring for R if L is a coefficient ring and $L = \overline{R}$, where $-: R \rightarrow R/M$ is the canonical mapping and M is the only maximal ideal of R.

Facts (see [1]),

- 1. Every local ring R with nilpotent maximal ideal contains a coefficient ring for itself.
- 2. Every field F of characteristic p (p = 0 or p a prime) is the residue field of some coefficient ring L_n of characteristic p^n for each $n \ge 1$. Any two such coefficients rings of equal characteristic are isomorphic over F by a unique isomorphism.
- 3. Every coefficient ring L of characteristic p (p=0 or a prime) is a field. If char $L=p^n, p>0$ and $n\geq 2$ then L is of the form $L=V/p^nV$ where V is a discrete and complete valuationring of characteristic zero and residuefield of characteristic $p>0, p\notin \Pi_V^2$.

We are now able to give very easily the complete description of rings with only one proper ideal.

THEOREM 4. Suppose R is a commutative ring with identity. Then every proper principal ideal of R is a primeideal if and only if R is of the form: (i) $R \cong K_1 \oplus K_2$ where K_1 , K_2 are fields, or (ii) $R \cong K[x]/(x^2)$ with K a field, or $R \cong L$ where L is a coefficient ring of characteristic p^2 and p>0 (so that $L \cong V/p^2V$ where V is a discrete valuation ring of characteristic 0 and residue field of characteristic p>0 and p generates M_V the only maximal ideal of V).

Proof. "←" obviously.

" \rightarrow " Because of Lemma 2 we can assume that R has exactly one proper ideal. Let $a \in R$, $a \neq 0$ and A = (a) be the only proper ideal of R and let \overline{R} be the residue-field of R. From Fact 1 we can conclude that there exists a subring L of R which is a coefficient ring for R. Clearly char $R = \text{char } \overline{R}$ or otherwise char $\overline{R} = p > 0$ and char $R = p^n$ for some $n \geqslant 2$.

Case A. char $R = \text{char } \overline{R}$. Then L is a field and since $\overline{L} = \overline{R}$ it follows that $R = L[a] \cong L[x]/(x^2)$.

Case B. char $R=p^n$, p>0, $n\geqslant 2$. Then p is a nonunit. Therefore $p^2=0$ and (p)=A is the only proper ideal of R. Let $b\in L$ such that $\overline{b}=\overline{a}$. Then a=b+cp for some $c\in R$. Again let $k\in L$ such that $\overline{k}=\overline{c}$. It follows that $a=b+kp\in L$. Hence R=L. This proves the theorem.

References

- I. S. Cohen, On the structure and ideal theory of complete local rings, Trans. Amer. Math. Soc. 99 (1946), pp. 53-106.
- [2] F. J. Perticani, Commutative rings in which every proper ideal is maximal, Fund. Math. 71 (1971), pp. 193-198.
- [3] O. Zariski and P. Samuel, Commutative Algebra I, II, University Series in Higher Mathematics (1967).

Accepté par la Rédaction le 3. 9. 1975