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Commutative rings
in which every proper ideal is maximal

by

Joachim Reineke (Hannover)

Abstract. We will give the full description of commutative rings in which evety proper
principal ideal is a prime ideal.

Introduction. Perticani studied in [2] the class of commutative rings with
identity in which every proper ideal is maximal. He gave a full description of such
a ting R only in the case when R has at least two different proper ideals. In the
case where R has only one proper ideal he reduced the problem of characterizing.
such rings to the one of the computation of cohomology groups. In this paper
we will give a fuil description in both cases. The first case is a trivial conclusion of’
the Chinese Remainder Theorem and the second will follow very easily from the
Cohen Structure Theorem of complete local rings. '

All throughout R denotes a commutative ring with identity. We have the same-
notation as in {3]. The following lemma shows that three classes of rings with
pathological properties are only one class and we do not use it in the following.

PROPOSITION 1. Let R be a ring. Then the following are equtvalent

1. every proper ideal is maximal,

2. every proper ideal is a primeideal,

3. every proper principal ideal is a primeideal,

Proof. 1-2-+3 is trivial. To see that 3—1 let A be a proper ideal of R and
aed,a#0.Suppose bee A. If be 5 0, then be (be)=d or ce (be)=4. If be = 0,
then be(dsd or ce(@cA. It follows that R/4 is an integraldomain. Clearly
R/A is a regular ring. Therefore 4 is a maximal ideal. Q.E.D.

Call a ring R a max-ring if every proper ideal is maximal.

Lemma 2 (see Theorem 1.1 and Theorem 1.4 of [2]). Suppose R i§ a max-ring
and R contains at least two. different proper ideals then R is isomorphic to a product
of two fields. ’

Proof. Let A4,, A, be proper ideals of R and 4, # Az It follows immediately
that A, n 4, = (0). Since 4,, 4, are comaximal it follows from'the Chinese:
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Remain&er Theorem that R is of the form R = R,/A; X Ry/4,, hence a product
of two fields. Q.E.D.

Suppose R is a max-ring. Because of Lemma 2 we can assume w.l.o.g. that R
contains exactly one proper ideal. Thus R is an artinian local ring. Let 4 be the
-only proper ideal of R. Obviously 4 is a principal ideal.

LEMMA 3 (see Proposition 2.1 of [2]). Suppose R is a max-ring with only one
proper ideal, say A = (@), a # 0. Then A* = (0).

" Proof. Since R is artinian and local, « is nilpotent, say a” = 0. It is obvious
that n = 2, since otherwise there would exist € R such that & = 5"~ '¢" = 0. QE.D.

DEFINITION. Let p be a prime or zero. We will call a ring a coefficient ring
if it is a noetherian local ring L whose maximal ideal 4 is equal pL and whose
-characteristic is a power p" of p. Let R be an arbitrary local ring. We will call a sub-
xing L of R a coefficient ring for R if L is a coefficient ring and L = R, where
—: R—R/M is the canonical mapping and M is the only maximal ideal of R.

Facts (see [1],

1. Every local ring R with nilpotent maximal ideal contains a coefficient ring
for itself.

2. Bvery field F of characteristic p (p = 0 or p a prime) is the residuefield
of some coefficient ring L, of characteristic p” for each n>1. Any two such coef-
ficients rings of equal characteristic are isomorphic over F by a unique isomorphism.

3. Every coefficient ring L of characteristic p (p = 0 or a prime) is a field.
If char L = p", p>0 and n>2 then L is of the form L = V/p"V where V is a discrete
.and complete valuationring of characteristic zero and residuefield of characteristic
p>0, p¢Ily.

We are now able to give very easily the complete description of rings with
-only one proper ideal:

THEOREM 4. Suppose R is a commutative ring with identity. Then every proper
principal ideal of R is a primeideal if and only if R is of the form: (i) R & K, ®K,
where Ky, K, are fields, or (i) R = K[x)/(x®) with K a field, or R 22 L where L is
a coefficient ring of characteristic p* and p>0 (so that L = V/p*V where V is a discrete
valuationring of characteristic O and residuefield of characteristic p>0 and p generates
My the only maximal ideal of V).

Pro of. “+«” obviously.
” Because of Lemma 2 we can assume that R has exactly one proper ideal,
Letae R a# 0and 4 = () be the only proper ideal of R and let R be the residue-
field of R. From Fact 1 we can conclude that there exists a subring L of R which is
a coefficient ring for ‘R. Clearly charR = charR or otherwise charR = p>0 and
char R = p" for some n=2.
Case A. charR = charR. Then L is a field and since L = K it follows that
R = Lla] = L[x]/(xz)
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Case B. charR = p”, p>0, n>2. Then p is a nonunit. Therefore p* = 0 and
(p) = 4 is the only proper ideal of R. Let be L such that b = @ Then a = b+cp
for some ce R. Again let keL such that k = & It follows that ¢ = b+kpe L.
Hence R = L. This proves the theorem.
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