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Somie uniformization results
by *

H. Sarbadhikari (Calcutta)

Abstract. Some results on the uniformization of Borel sets are proved in this paper.

1. Introduction. Let X, Y be Polish spaces and BSX'x Y. We say C uni-
Sformizes B if C<B and for all xepryB,C~ B* is a singleton where B”
= {y: (x,) € B} and pry B is the projection of B to X. In general, a Borel set B
does not have a' Borel uniformization ([2], [6]). However, in some cases, such
a uniformization exists, for example, if B* is o-compact for each x [1] or if (B >0
for each x where u is a probability measure on the Borel g-algebra of ¥ [3].

The chief aim of this paper is to prove the following:

TrEOREM 1. Let X, Y be Polish spaces and B=X x Y be Borel. B has a Borel
uniformization if any one of the following is true:

(1) for all x e pryB, B contains an isolated point,

(2) for all x € pryB, B* contains a point which is not its point of condensation,

(3) for all x e pryB, B* is not meager.

The paper is organized in the following way. Section 2 is devoted to preliminaries.
In Section 3, a proof of Theorem 1 is given. In Section 4,2 related result is proved.

2. Preliminaries. A set is called meager if it is a countable union of nowhere
dense sets. A comeager set is one whose coraplement is meager. Let X, Y be Polish
spaces, B X x ¥ and U< Y. Following Vaught, we put B} = {x: B*n U is co-
meager in U}, It is known that if B is Borel and U open, then Bj; is Borel [7]. For
any set 4, let 6(4) denote the diameter of A. ,

If f s a function, put Z, = {y: f~4(») is a singleton}, I = {y: f~*(») contains
an isolated point}, Dy = {y: f~1(y) is countable and non-empty}, C; = {y: f~()
contains a point which is not its condensation point}. It is known that if fis a Borel
measurable function defined on a Borel subset of a Polish space into a separable
metric space, then Z;, I, D,, C; are coanalytic [4].

3. Proof of main theorem.

Proof of (1). Let {/,} be a countable open base for Y. For any n, define f;
on B n (XxV,) by f,(x, ) = x Let Z, = {x: B*n ¥, is a singleton}. Then Z, = Z,
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is coanalytic and pryB = |J Z, is Borel. Let B,=Z, be disjoint Borel sets such
n
that pryB = UB,. Let C= U ((B,xV,) nB). Then C is a Borel uniformi-

zation of B.

Proof of (2). Let {¥,} and {f,} be defined as above and, for any n, let Z,
= {x: B*n V, is countable and non-empty}. Then Z, = D, is coanalytic and
pryB = UZ, is Borel. Let B, be as before. Let D = y((‘B,,x V) o B). Then

DcB is a Borel set such that for x epryB, D¥ is non-empty and countable.
D can therefore be uniformized by a Borel set C, which also uniformizes B,

Remark. Proofs of (1) and (2) illustrate the use of the reduction principle in
proving selection theorems. For a detailed exposition see [51.

Proof of (3). This follows from:

TugoreM 2. If X, Y are Polish spaces and B=X x ¥ is a Borel set such that
for all x e pryB, B is comeager, then B has a Borel uniformization.

Assuming Theorem 2, we prove (3) as follows: Suppose BEX'x ¥ is a Borel
set such that for all x & pryB, B® is not meager. Let {¥,} be a countable open base
for Y.Put D, = B}, — \ By, forall n. By Theorem 2, the Borel subset B n (D, x V)

m<n

of Xx ¥, can be uniformized by a Borel set C,. As pryB = | By, = U D, [7],
n n
C = | C, uniformizes B, This concludes the proof of Theorem 1.

(1) and (2) yield the following:

COROLLARY. Let X be absolutely Borel and Y a separable metric space. Let
f: XY be Borel measurable. If Y = I, or C, then f admits a Borel selector, ie.,
there is a Borel subset B of X such that f restricted to B is one-to-one and f(B)
=fX) =Y.

Remark. (3) is a category analogue of the result of Blackwell and Ryll-Nax-
dzewski [3] referred to in the introduction.

Proof of Theorem 2.

LemmMa. Let X, Y be Polish spaces and B X x Y be Borel. Given any open sub-
set U of Y, there is a sequence {Z,} of subsets of X x Y satisfying the following:
(a)* Each Z, is a Borel subset of X'x U.
() N Z,<B.
k

(c) Given aity non-empty open W< U, any k and any e>0, there is a Borel set
FeZ, n (X' x W) such that for all x, F* is closed, §(F*y<g and if x € BY, then F*is
not meager.

Proof. Let M = {BSXx Y: B is Borel and satisfies the above}. We show
that M contains all Borel sets.

Step 1. M contains closed sets.

Let {W,} and {¥,} be countable open bases for X and ¥ respectively. Lot
B=X'x Y be closed. Then there are open sets U, SXx Y, k = 1, 2,... such that

©
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B= Q Uy. Let USY be open. Put Z, = U, (\ (X' x U) for all k. Clearly, {Z,}

satisfies (a) and (b). To see that it also satisfies (c), fix any k, any ¢>0 and any non-
empty open subset W of U. We shall construct F so that (c) is satisfied.
Zyn(Xx W) = U, (Xx W) is open and hence a countable union of sets
of the form W, x V,. Let L = {m: W, appears in this union}. Corresponding to
each m & L, choose exactly one n such that W, x ¥, appearts in this union and let
v, # @ satisty ¥, V, =V, and §(V,)<s. Let
F = U (PVm'— U VVH)X l—/;n .

mel n<m
nel

Step 2. M is closed under countable intersections.

Let B,e Mtforn = 1,2, .. and let US ¥ be open. For each n, let the sequence
of sets Zy, k = 1,2, ... salisty (a), (b), (¢} if B is replaced by B, and Z, by Z,.
Rearrange the double sequence {Z,} in the form of a simple sequence {z.}.
Then {Z,} satisfies (a), (b), (¢) it B = B,.

Step 3. M is closed under countable unions.
Let B,e M forn = 1,2, ... and let US Y be open. We construct a sequence
{Z,} satislying (2), (b), (¢) if B = ( B,.

Lat {V,} be a countable open base for U. For each m, n, let Zy, k= 1,2, ...
satisfy (a), (b), (c) with B replaced by B,, U by V,, and Z, by Z,,... For all n, m, k
put

-Dunl = B:‘Vm—' jU B}k!’m B Em = U -Dnm = U -Bl,lka 3
<n n n

ka = U ('Zlnnlpm (Dnm>< Y)) H Zk = U (Zmlc'— U (Eix Vz)) .
n m i<m

Clearly, Z, is a Borel subsct of X'x U for each .

m Zk = m U (‘ka_ U (El X Vl)) = U (ka" U (Eix Vl})

k k. m i<m m k i<m

since Z,, S E, x V,, for all &k and m.
For any m,

ﬂ (ka""' U (Etx VI)) = ﬂ U (ank M (Dmnx Y)— U (Ei X Vi))

k t<m kon i<m
== U o (anla N (Dt1m>< Y)— iU (E; = Vi))

i i <M

since Dy, = 1,2,.. is a disjoint sequence.

Thus

Q‘ZI\:E U U ﬂ Znnk—g U Bn .
"

mon ok

Fix any k, any ¢>0 and any non-empty open subset W of U. For all a1, n, put

U 'El Gnm = }[m n Dnm '
<m
WnVi#g

]{m = L, — and
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For all m such that Wn V, # & and all n, choose a Borel set F,,sZ, .~

A (Xx (WA V,)) such that for all x, Fy, is closed, 8 (Fy,)<e and if x & B, . thed

F7, is not meager. Let

F= U U ((Gnm X Y) Al Elm) "

H m
WaVm#*g

F is clearly a Borel subset of X'x W, To see that F =2, let (x, y) & F. There exist
unique 7 and 1 such that W V,, # @ and (x, )€ (G, x ¥) " F,,,. AS Fus7,..
and G S Dy (X, N EZye " Dy x YIS Zyy. Let i<m. If WAV, # @, x¢ E,
and if WnaV,=0, y¢V, since (x,y)eF,,cXx W implies ye W. Thus (x,y)
¢ U (E;x V). Hence (x,y)eZ,.

i<m

Clearly F* is closed and 8(F*)<efor all x. Let (U B,)* n U be comeager in U.

n
We show that there is some m, n such that Wn V,, % & and x e G,,,. Then F*
= Fy, and x e B}y, . Hence F*is not meager.
It is enough to show that there is an m such that W n Vs Gand xek,.
Clearly, ( U B))* n U is comeager in U implies ( | B,)* n W is comeager in W so
n n

that there is some n for which By n W is not meager. Hence there is a V,, S W such
that x € B}y, <E,.

Proof of the theorem. Let {V,} be a countable base for Y. Lel {Z,} sutisfy
(@), (b), (¢) of the lemma if U is replaced by Y. Let C, €Z, be a Borel set such that
for all x, C7 is closed, 5(C)<1 and for x epryB, C} is not meager,

For all n, put Hy, = Cfy,~ U C},, and choose a Borel set Fy,£Z,

m<n
N (X'x V,) such that for all x, Fj, is closed. §(F},)<% and x e pry B implies F3, is
not meager. Let Cy = |J ((Hy, % ¥) n F,,). Then C, is a Borel subset of Z,. Also
G, &€y, forif x e Hy,, x € Cfy, and hence ¥, = C¥ as C7 is closed ; thus (H(, x Y) n
N Fo, € Hy, x ¥V, Cy for all n. Clearly, for all x, C§ is closed and §(C3<4. Let
xepryB. Then CY is not meager and therefore x & |J Cfy, = () Hy,. Hence C3
n n
= F3, for some n and therefore is non-meager. By induction, we define a descending
sequence {Cy} of Borel sets such that for all k, C,SZ, and for all x, C3 is closed,
. 0(CH<1/k and xepryB implies CF is non-meager. C = () C uniformizes B,
k

4. A related result.

THEOREM 3. Let X, Y be Polish spaceés and BSX x Y be a Borel set such that
Jor all x e pryB, B* is comeager. Then there exist a sequence {Z,} of Borel sets in
Xx Y such that (DZkgB and for all k and x, Z is open in ¥ and x e pryB implies
Z3 is dense (and hence comeager) in Y. |

Remark. Theorem 2 follows from Theorem 3 and the reduction principle.

Theorem 3 is a particular case of:

icm®
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THEOREM 4. Let X, ¥ be Polish spaces and BEX x Y be a Borel set. Given an y
open USY, there is a sequence {Z,} of sets such that
(a) Zy, is a Borel subset of Xx U for each .
®) NZ=B

(c) For all k and x, Zi is an open subset of Y and if xeBy, then Z% is co-
meager it U.

Proof. Let M = {BSX'x Y: B is Borel and satisfies the above}. We show
that M contains all Borel subsets of X'x ¥,

Step 1. Clearly M contains all G, sets and hence all closed sets.

Step 2. It is easy to see that M is closed under countable intersections.

Step 3. M is closed under countable unions.

Let B, e M forn=1,2,.. and let USY be open. Let {¥,} be a countable
open base for U. For any fixed m, nlet Z,,,, k = 1,2, ... satisfy (@), (b), (©) if Bis
replaced by B,, U by V,, and Z, by Z,,,.. For all m and %, define E, and Z,, as in

the lemma of Section 3 and let Z, = {J (Z,— U (E;x 7). It is easy to see that
m i<m
{Z} satisfies (a) and (b) if B = | B, and that for all & and x, Zy is open. Let x
n
e (U B)§. To show that Z¥ is comeager in U, it is enough to show that it is dense
n

in U. We prove this in two steps.
Step 1. V.= {J ¥, is dense in U.
xe'?E,r.
Step 2. :“Z',f 2 V.
Proof of Step 1. As xe( UB);, xe( U By for all m. Thus given m,
n n

there is some » such that By n ¥, is not meager and hence there is some V,= Vi
such that x e By, < E,. Now, V.SV, AV, so that ¥V, A V,, # @.
Proof of Step 2.
Zi=U@y— U W= U @u- U 7).

m t<m m i<m

xaky xe by xel

It xeE,, there is an n for which x & D,, so that Z%, = Z¥,. Hence =2 Vo

and therefore ZZ, 2 V,. Hence
i x’“ -
(ka"‘ U = V;n"" U V}
i<m i<m
xgkEy xek;

Thus
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On the classification of locally compact
separable metric spaces

by

Gary M. Huckabay * (Lawton, Okla.)

Abstract, Let M be a locally compact separable metric space, Let P, C, and N be the space
of irrationals, the Cantor set, and the positive integers, respectively. For any space X let H(X) be
the homeomorphism group. The existence of standard maps of P onto M and Cx N onto M is
established. This provides a classification .of the locally compact separable metric spaces by
considering certain subgroups of H(P) and H(Cx N).

1. Introduction. A result due to A. R. Vobach [3] completely classifies the
compact metric spaces in terms of certain subgroups of the Cantor set. In view of
the techniques used by Vobach, it is reasonable to wonder if such results are poss-
ible for other classes of spaces with the Cantor set replaced by some other universal
space. In this note, we show that this is the casé for locally compact separable metric
spaces and the irrationals. The author is indebted to Professor Vobach for several
waluable suggestions.

2. Preliminaries. Let N be the positive integers with the discrete topology,
iC any Cantor set, C’ any Cantor set with a single point removed, and P the space
of irrationals on the real line with the subspace topology. For any space X, let H X
denote the full homeomorphism group. Finally, map and ~ will mean continuous
function and homeomorphic, respectively.

LeMMA 2.1, If A; = N for each i, then IT {diiie N}, CxP and P are homeo-
morphle. ' . ‘ ]

Proof. To see that IT{d,: ie N } and P are homeomorphic we refer the reader’
to [2], p. 25, Example 2. '

Let B, = {0,2}. Then IT{B,: i€ N}~C and B,x N=N. Therefore

~

CxXPII{B;: ie NyxIT{d;: ie Ny=IT{B,x 4,: ieN}xIT{d;: ie N}~P.

LEMMA 2.2. Let X, Y and Z be spaces F: X~ Y an identification, and G- X~z
continuous. If GF™" is single-valued, then GF=* is continuous.

s st s -

* This material will appear in the author’s doctoral dissertation, under the direction of Paul
F. Duvall, Jr, at Oklahoma State ‘University. .
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