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Tt is an interesting question whether the following generalization of the
er—Swiatkowski theorem is true: ‘ o ~
'Brucffna funct?on fis a Baire class 1 function with the Darboux property, T s:ausﬁes
. . | ; )
Khintchine’s condition n.e., fr exists n.e. and f+=0 ae. in (a, b), then f is non
.decreasing and continuous in (a, b).
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Decomposition spaces and shape in the sense of Fox
by

Yukihiro Kodama (Tokyo)

Abstract. It is proved in the paper that if X, ¥ are finite dimensional metrizable spaces,
f: X—Y is a closed continuous map such that £7'(y) is approximatively k-connected for y ¢ ¥
and k£ =0, 1, ..., dim¥, then Sh(X)=Sh(¥) (in the sense of Fox [5]). By applying the theorem
it is shown that for every finite dimensional locally compact metric space X there exists a A-space ¥
such that dimX = dim¥, Shy(X) = Shyy(Y) and Sh(X) = Sh(Y).

§ 1. Introduction. In [5] Fox introduced the notion of shape for metric spaces
and proved that for compacta this notion coincides with the notion of shape in
the sense of Borsuk [4]. In the previous paper [9] we proved that a certain de-
composition map induces a weak shape equivalence. The purpose of this paper
is to prove that a similar theorem holds for shape in the sense of Fox. Let X be
a finite dimensional metric spaces and let 9 be an upper semicontinuous decompo-
sition of X each element of which is a closed set being approximatively %-connected
fork=0,1, .., max(dim X, dim ¥). Then we shall show that the equality Sh(X)
= Sh(Xy) holds, where X, is the decomposition space of X by & and Sh(X) is
the shape of X in the sense of Fox. As an application of this theorem we can obtain
a generalization of Ball’s theorem [1]. Finally, we shall prove that for every finite
dimensional and locally compact metric space X there is a 4-space Y such that
dimX = dim ¥, Sh(¥X) = Sh(Y) and Shy(X) = Shy(Y), where Shy(X) is the
weak shape of X defined by Borsuk [3].

Throughout this paper all of spaces are metrizable and maps are continuous.
By an AR-space and an ANR-space we mean always those for metric spaces and
by dimension we mean the covering dimension.

§ 2. The shape in the sense of Fox. We first recall the basic notions introduced
by Fox [5]. Let X and ¥ be metric spaces and let M and N be AR-spaces contain-
ing X and ¥ as closed sets respectively. By U(X, M) we mean the inverse system
consisting of open neighborhoods U of X in M and all inclusion maps u: U'—U,
U'cU. Similarly, by V(Y, N) denote the inverse system of open neighborhoods
of Uin N. A mutation f: U(X, M)~ V(Y, N) from U (X, M) to V(Y, N) is defined
as a collection of maps f: UV, Ue U(X, M), Ve V(Y, N), such that
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@) iffefandu: U'—Uandov: V> V' are inclusions of U’ and Vinto Uand 7/,
UU eUX, M) and V,V' e VY, N), then vfuef;

(2.2) every neighborhood Ve V(Y, N) is the range of a map fef;

(2.3) if fi,foef and fi.f5: U=V, then there isa UclU U eUX, M), such

that fyu=~fyu, where u: U'-U is the inclusion map.

Consider two mutations f: U(X, M)~ V(Y, N} and g: .V(I.’, N)Y—W(Z, P).
The composition gf: U(X, M)—-W(Z,P) of f and ¢ is given by all the
compositions gft U—M which are defined. Two mutations f,g: UX, M)
—V(Y, N) are homotopic, f~g, if
(2.4) forany mapsf, g: U~V from fand g respectively there is a U’ e U(X, M),

U’ U, such that fucegu, where u: U'—U is the inclusion map.

Two metrizable spaces X and Y are said to be of the same shape in the sense
of Fox (notation: Sh(X) = Sh(Y)) if there exist two mutations [+ UX, M)y
—V(Y,N) and g: V(¥,N)-U(X, M) such that

(2.5) fyg~u and gf~v, where u and v are mutations consisting of all inclusions
in U(X, M) and V(Y,N) respectively.

If the mutations f and g satisfy the first of conditions (2.4), then we say that the
shape of X dominates the shape of Y and we write Sh(X )2 Sh(Y).

Let k be a non negative integer. According to Borsuk ([2], p. 266) a metric

space X is said to be approximatively k-connected if there is an AR-space M con-

© taining X as a closed set and satisfying the condition: For every neighborhood ¥

of X in M there is a neighborhood U of X such that every map of a k-sphere Sk

into U is null-homotopic in V. By the same way as in the proof of [2], Theorem (2.1) ‘

we know

(2.6) if Sh(X)=Sh(Y) and X is approximatively k-connected then Y is ap-
proximatively k-connected.’

§ 3. Main theorem and its applications.

THEOREM 1. Let X and Y be finite dimensional metric spaces and let f1 X=Y
be a closed map from X onto Y. If dim Y<# and for each y e Y [~ (¥) is approxi-
matively k-connected, k = 0, 1, ..., n then Sh(X)=Sh(Y). In addition, if dim X <n,
then Sh(X) = Sh(Y).

The proof of the theorem is given by a similar process to the proof of [9],
Theorem 2. We first state lemmas used in the proof of the theorem.

Let X be a metric space and let & be an upper semicontinuous decomposition
of X consisting of closed sets. Denote by f the decomposition map of X onto the
decomposition space Y for 2. Let M be a metric space containing X such that
each element of 9 is closed in M. A collection % of open sets in M is said to be
a cover of @ if X< | {U: Ue%} and for each Ue# U n X is non empty and
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.saturated, ie. UnX =f"Yf(Un X). The following lemma has been proved in [9]
in case each element of D is compact.

LEMMA 1. Every cover of D has a siar refinement.

Proof. Let % be a cover of 2. Put M’ = |J {U: Uea}. Consider the de-
composition &' of M" consisting of each element of @ and each point in M’ - X.
L‘etf‘ be the decomposition map of M onto the decomposition space Z of M’ by .@"
Since @’ is upper semicontinuous, f is a closed map and hence Z is paracompac;
by the theorem of Michael [15]. Since each set U X, Ue %, is saturated, f(%) is
an open cover of Z. Take an open cover % of Z such that % 3 F(#). (For two
collections &7 and 4, by &7/> (resp. a5
star refinement) of #.) Put ¥ = F~1%". The
is a star refinement of 4.

) we mean & is a refinement (resp.
n it is obvious that a cover ¥ of @

A cover % of 9 is said to be an n-refinement of a cover V of @ if there is
a sequence ¥y, ¥'7, ‘ﬁ*”l, s P> P ne1s ey Of covers of @ such that Yo
=VZ/,“¢”,,+1 Vo V>V ey and Vi >V, i=0,1,..,n and for each
Vev,, i=1,....n+1, there is a Ve such that every map g: SV,
j=0,1,..,n is null-homotopic in V. ‘When % is an n-refinement of ¥, we
write % ; v '
The following lemma is a consequence of Lemma 1.

LEMMA 2. Let M be an AR-space and let X be a closed subset of M. Let & be
an upper semicontinuous decomposition of X each element of which is app roximatively
k-connected for k =0, 1, ...,n Then every cover of @ has an n-refinement.

As an immediate consequence of the definition of an n-refinement we
have

Levmva 3. Let % and " be covers of 9 such that % ; v,

(3.1)  Let K be an (n+1)-dimensional simplicial complex and K° the set of its
vertices, If f: K°—M is a map such that Jor each closed simplex ¢ of K there
is a Ued containing f(o n K°), then f has an extension g: K—;M such
that for a closed simplex o of K there isa Ve ¥ containing g (o).

Let K be an n~dimensional simplicial complex. If f and g are maps of K into M
such that for each closed simplex o of K there is a UeW containing f (o) v
k.J g (9) then there is u homotopy H: Kx I-»M connecting f and g such that
Jor euach closed simplex o H (0% 1) is contained in some Ve .

N Remark. In Lemma 3, let {¥,, ¥ i} bea sequence of covers of & in the defi-
nition of r-refinements such that % = 7" vand ¥ =¥, Mo is an i-simplex
of K, then we can construct a map g and a homotopy H such that g (o) is in some
clemen%‘ of ¥ and H(c x /) is in some element of ¥'ipq foreach i=1,2,..,n
Tf; };il;tlcular, il o is an n-simplex, then we can assume that g (o) is in some element
0 L n* ‘

e
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Proof of Theorem 1. Let M and N be AR-spaces containing Xan.d Y as
closed sets respectively. By U(X, M) denote the inverse system of neighbor-
hoods U of X in M and all inclusion maps u: U'=U, U’; U. Similarly »by V(Y, N)
denote the inverse system of neighborhoods ¥ of Y in N. Let 7' M—N be an ex-
tension of f: X— Y. Then f generates a mutation f: U(X, M)—V(Y, N). To prove
the theorem we have to construct a mutation g: V(Y, {V)——»?’J X, M )’ such that
fg~v, where v is the mutation consisting of all inc!,usmns in V(Y, N). Let U
e U(X, M). We first construct a map g whose range Is U (cf. (2.2)). Th1:oughout
the proof of the theorem we shall keep the notations used in the cotjs‘tructmn f)f g.
Consider {U} as a cover of the decomposition & = {F710): ye Y} of X. Take
covers %' and % of & such that

(3.3) asus>{U.

Since f: X— Y is closed, there is a locally finite open cover ¥~ of ¥ such that order
¥'<n+1 and f*l“lf’;%. Let # be a locally finite collection consisting of open
sets of Nsuchthat " n ¥ = ¥~ and ¥ and ¥ are similar, Put V' = (J {W: We v},
By K denote the nerve of ¥ and let ¢: V—K be a canonical map. Let us define
amap g': K—U as follows. For a vertex w of X, let ¥ be the element of ¥" corre-
sponding to w. Choose a point xyef (W n Y) of X and put g"(w) = xy for
each vertex w of K. For every closed simplex o, g"(c n K% is contained in some
element of %, where K° is the O-skeleton of K. Hence, by Lemma 3 (3.1), g’ is
extended to a map g': K— U such that for each closed simplex o of K ¢'(¢) is in
some element of %'. Define g: VU by g = g'¢. Let g be the collection of all
maps g: V—U and ugv: V'-U’, where UcU’, U,U' e U(X, M) and V'cV,
V', Ve V(Y,N), u and v are the inclusion maps of U, ¥’ into U’, V respectively
and g is a map which is constructed by the above-mentioned process. It is obvious
that g satisfies conditions (2.1) and (2.2). Let g,,9,€9. Let U,, %, %[, ¥";, Vi, K,
g1, @i, 1 = 1,2, be neighborhoods in U(X, M), covers of @, ..., canonical maps
which are used for the constructions of g, and g,. Take covers %, %3 of & such

that %, ; Us>Uy AU, Let ¥75 be a locally finite collection of open sets of N
satisfying the conditions:

(3.4) order ¥3<n+l and Vi= | {V: Ve¥,loV,
(3.5 3N Y and ¥y are similar, that is, for every finite subcollection ¥,
N k ke
i=1,.,k of ¥sNV,# @il and only if ) ¥, n ¥ = O,
i=1 1,
(6) V3>V AV and fTHF 5 A Y)S Ay, where for collections ¥, ¥ and ¥

VY=Y Ve
V'e,}.

and VAV, ={VnV': Ver, and

icm
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Such an open collection #”; is constructed as follows. Put % = Voav nf)an
NY: Vet ,V eV, UeUs)}. Since # is an open cover of ¥ and dim ¥<n,
there is a locally finite open cover ¥ of ¥ such that ¥ ’;W‘ and order of ¥
<n+1. Since N is a metric space, there is an open collection #; of N such that
Y30 Y =%"and ¥y n Y and ¥ are similar. We can assume that V3>V AV .
Since f~f(Un X) = U X for each Ue,, we have

0= snnXs2,.

Thus the collection ¥y satisfies (3.4), (3.5) and (3.6). Let K5 be the nerve of ¥,
and ¢@3: V3—~K; a canonical map. As in the construction of a map g we can find
amap g3: Kz— U, n U, such that for each closed simplex ¢ of K3 g3(0) is in some
element of %;. Put g5 = g3¢,. Then g5: Vs—»UynU,ising. Let u;: U, A U,
—U; and v;: V3=V, i = 1,2, be the inclusion maps. We shall show that u;g,
~g,v; for i = 1, 2. This shows that g satisfies the condition (2.3)and as a conse-
quence g is a mutation. Let 7 be a simplicial projection of K, into K (cf. (3.6)).
Since. @,v; ~7p,, giv, = giqplvlﬁg;mp:,. Therefore, to prove u, g, ~gyvg it is
enough to show that w g3~gin: K3—U,. By the definitions of gy and g3, we
can know that for each closed simplex ¢ of K, there is an element U’ of %} con-
taining g3(6) w g1 (o) (cf. Lemma 3 (3.1) and Remark). Hence, by Lemma 3 (3.2),
uygagy® in U;. Thus we know Uy ga=>g vy, Similarly u,g;og,v,. Therefore
¢-is a mutation,

Next, we shall prove that fg=~v. To do it, let We V(Y, N). Since N is an
AR-space, there is an open collection #" of N such that ¥’ = J {(w:wew
W, V'e V(Y, N), for each W e#”' W' Y isnon empty and if &, A" are maps
of a space Z into ¥’ such that & and &' are #™'-close then A~} in W. Here, if for
each zeZ there is a W, e %" containing both i(z) and #'(2), then we say that /
and 4’ are W”'-close. Put U = f~1(¥"), Then Ue U(X, M). For the element U,
find a neighborhood Ve ¥(Y, N) and a map g: VU by the above-mentioned
process. Let g be constructed by choosing covers %, %’ of & and an open collec-

tion " in N such that % » %' >]=%", order ¥’ <n+1 and f~(¥ n V)2
Let K be the nerve of ¥" and let g': K~ U be the map such that g = g'p, where
¢ is a.canonical map of ¥ into K. From the definition of g and the choice of %",
we can know that the map fg and the inclusion map v of ¥ into W are #-close.
Therefore fy=v in W, This shows that fg~uv.

Finally, suppose that dimX'<n. We have to prove gf~u. Let Ue UX, M)
and g €g be a map constructed for U by the process in above. Let % and ¥ be
a cover of & and an open collection in N used for the construction of g. Since M is
an AR-spale, we can know that there are open collections %' and ¥ in M satisfy-
ing the following conditions: '

(3.7) XeW =W W'ew'} and W'>u;
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(3.8) if h and &' are maps of a space into W' such that & and & are #"'-close
then h~h' in U;

(3.9 XeW= U{W" W' e#}lcW;
(3.10) W>W' AT and order W<n+1;

(3.11) - if L is the nerve of % and y: W-sL is a canonical map, then there is a map
h: L—W' such that for each closed simplex ¢ of L there is an clement W
of W' such that ¥ ~'(¢) U A(c)c W";

(3.12) let n: L—K be a simplicial projection (cf. (3.10)), where X is the nerve
of ¥, then the maps g’z and u”h of L into U are %'-close, where u”' is
the inclusion map: W< U and %’ is a cover of & used for the construction
of g (see (3.3).

Consider the map f = f|W: W—V. We shall show that gf’~u: W-sU, where u is
the inclusion map. Since mj and ¢f” are contiguous, my~@f’: WK, where ¢ is
a canonical map of ¥ into X. Let o be a closed simplex of L. By (3.12) thete is an
element U’ of %' such that g'n(s) U A(6) <= U’ and hence g'n~hin U by Lemma 3.
From (3.8) and (3.11) u~u"hj. Therefore uu'hf~g'mp g’ of = gf’. Thus we
know gf~u. This completes the proof of Theorem 1.

ExameLE 1. Consider the following sets in the plane E?:

- A={0,: -1<y<1}, B={(x):y=sinn/x, 0<x<g1},
' Y = {(x,0): 0<x<1}.

Put. T=AUB and X = T-{(0, —1)}. Define f: T-Y by J(x, ) = x for
{x,y)eT,and put g = f|X: X~ Y, Then, foreach ye Y, f1(y) and ¢ ~1(y) consist
of a segment, a half line or one point and hence these sets are k-approximatively
<connected for every k. However Sh(T) = Sh(Y) = Sh(1) # Sh(X). Here Sh(l)
means a trivial shape. Because, note that for every non-zero abelian group G
HYX:G) has an infinite number of elements, where H* means the Cech co-
homology group. Obviously the Cech cohomology group is an invariant for shape
in the sense of Fox. (This follows from Mardeié’s characterization ([12] and. [13])
of shape in the sense of Fox and the fact that the Cech cohomology group H'(X:G)
is isomorphic to the group of the homotopy classes of maps of X into Eilenberg~
‘MacLane space K(G,n) (cf. [7D; to obtain a direct proof is easy.) This example
shows that the closedness of f in Theorem 1 can' not be removed.

ExaMPLE 2. Consider the set 4 U B in Example 1. Let F be a continuum ob-
tained from 4 U B by connecting two points (0, 1) and (1,0) by an arc whose
interior does not intersect 4 U B. (F is a Warsaw gircle.) Let S be a circle. By
_f': F— S denote a map such that f(4) is a point @ of § and f'|F—A4: F~ A4~ S—{a}
is a homeomorphism. Let X be a topological sum of a countable infinite number

icm
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of copies of F. Similarly, let ¥ be a countable infinite number of copies of S. Let
Jf: X—Y be a map which is defined by f* on eachi copy of F, Then fis a perfect map
and for each y &€ ¥ f~1(y) is one point or an arc. However, as shown by Godlewski
and Nowak [6], Shs(X) 5 Shg(Y). Here Shg(X) means the strong shape of X
defined by Borsuk [3]. This shows that Theorem 1 does not hold for strong shape.

Next, as an application of Theorem 1, we shall generalize Ball’s theorem [1].
Let X and Y be finite dimensional and locally compact metric spaces. By ¥y and €y
denote the decompositions of X and Y consisting of all components respectively.
Let (3X and [JY be the decomposition spaces of X" and ¥ by #x and %y and let
p: X-[1X and g: Y- Y be the decomposition maps. Suppose that each element
of €y and ¥y is compact. The following theorem generalizes a theorem of Ball
{[1] Theorem 2.4).

‘THEOREM 2. Under the hypothesis mentioned above, suppose that Sh(X)<Sh(Y)
{resp. Shp(X)<Shy(Y)). Then there is a homeomorphism into A: IX—~Y such
" that for edch locally compact set F of X

(3.13) Sh(p"1(F))<Sh(q"1(A(F))) (resp. ShW(p"1(F))<Shw(q"‘(A(F)))).

Moreover, if Sh(X) = Sh(¥) (resp. Shy(X) = Shy(Y)), then there is a homeo-
morphism A: OX—OY for which the equality holds in (3.13).

Proof. Since X and Y are locally compact and each component in %y and
“©y is compact, the maps p and g are perfect and dim[JX = dim[J¥ = 0. Let M
and M’ be AR-spaces containing X and [1X as closed sets respectively, and let
P: M—M' be an extension of p. Since each element of ¥y is connected, it is ap-
proximatively 0-connected. Since dim [JX = 0, by Theorem 1, we know that there
is 2 mutation h: U(CIX, M)~U(X, M) such that ph~u’, where U(OX, M)
and U(X, M) aré¢ the inverse systems consisting of neighborhoods of [IX and X
in M’ and M respectively, ' is the mutation consisting of the inclusion maps in
U(OX, M) and p is the mutation generated by p. Similarly, if N and N’ are
AR-spaces containing ¥ and []Y as closed sets and §: N—N' is an extension of
q: Y-[1Y, then there is a mutation k: V([1Y, N V(¥, N) such that gk,
where V([JY, N') and V(Y, N) are the inverse systems of neighborhoods of [1Y
and Yin N’ and N respectively, v’ is the mutation consisting of the inclusions in
V(OY,N") and ¢ is the mutation generated by §. Since Sh(X)<Sh(Y), there are
mutations f: U(X, M) V(Y,N) and g: V(¥,N)=-U(X, M) such that gf~u,
where u is the mutation consisting of the inclusions in U (X, M). Consider the
mutation g¢fh: U(CIX, M)~ V([JY, N). Since dim[J¥ =0, by [11], Lemma,
there is a unique map A: [JX—[1Y which generates the mutation gfh. Similarly
we know that there is a unique map A”: [1 Y—[]X which generates the mutation pgk.
First, let us prove

(3.14)  A'A = 1y, where 1y is the identity map of X
Suppose that 4’4 (a) # a for ae X, Since dim[JX = 0, there are open sets V'
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and V" of M' such that ae V', AA@eV", V aV' =@ and V' up”
eU(OX, M). Put U =p ' (V") and U" =p*(¥"). Then U=1U uU"
e U(X, M). Since gf=~u, there exist We U(X, M), fefand ge g such. that I:V;c U
and gf~u: W-U, where u is the inclusion. Therefore we ha’\,re af(p (@)
cgf(p~(V') n W) U’. This relation contradicts that A’4(a) e V. Thus (3.14)
holds. 'We know that A is a homeomorphism into. Next, we shall show that

(3.15) if H is a closed subset of [1X then Sh(p™*(H))<Sh(g™* (A (&)

Consider the inverse systems U(p~'(H), M) and V(q"i(/l(ﬂ))f N) consisting
of neighborhoods of p~1(H) and g '(A(H)) in M and N respectively. To prove
(3.15), it is enough to show that f is a mutation of

U(p~(H), M) to V(g™ '(A(H), N)
and g is a mutation of
Vg~ (A(HD), N) to U(p~'(H), M).
It is easy to see that this fact is shown by (3.14) and the following assertion.

For every open neighborhood W of g™ *(A(H)) in N there exist Ve V(Y, N),
open sets ¥’ and V"' of N such that ¢"*(AH)<V'eW, V' A V' = @,
V=V oV’ and V' A Yand V' A Y are saturated, i.e. ¢~ 1g(V' nY)
=V'aYad ¢gq(V" nY)=V"nY,

(3.16)

Let us prove (3.16). Since g is a closed map, for an open neighborhood W of
g (A(H)) in N ¢(Y—W) and A(H) are disjoint closed sets in []¥. Since dim[]¥
= 0, it follows that there are open sets W’ and W'’ in N’ such that A(H)< W,
qY—-W)cW”", W nW'=@gand W u W'eV(OQY,N').Put V' = q“l(W’).n
NWand V"’ =g~ W’). Then V', V" and ¥V = ¥V’ U V"' satisfy the conditions
of (3.16). Thus (3.16) and hence (3.15) was proved. As shown in the proof of [1],
Lemma 2.3, the theorem follows from (3.15), ([6], Theorem 4.2) and the fact that
every locally compact 0-dimensional metric space is a union of a discrete family
of compact sets. The assertion for weak shape is proved by making use of [9],
Theorems 1 and 2 in place of [12], Theorem 1 and Theorem 1 in the above
proof. This completes the proof. )

The following corollary concerns a problem raised by Ball ([1], I 888).

CoOROLLARY. Under the same hypothesis as in Theorem 2,.suppose that each
element of €x is of trivial shape. Then there is a homeomorphism into A: XY such
that for every set K of X

@17 Sh(pT'(K))<Sh(g H(A(K)))  (resp. Shy(p~*(K))<Shy (g4 K))-

Moreover, if Sh(X) = Sh(Y) (resp. Shy(X) = Shy(X)), then there is o homeo-
morphism A: X~ and the equality holds in (3.17). :

L
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Proof. By Theorems 1 and 2 we know that Sh (1K) = Sh(K) = Sh (AK))
<Sh(¢~*(4(K))). This shows the first part of the corollary. If Sh(X) = Sh(Y),
then 4 is a homeomorphism and Sh(p~!(a)) = Shig~*(A(a))) for each ae OX.
Thus each element of %y is of trivial [shape‘ By Theorem 1 Sh (Ax)
= Sh(g™*(A(K))). This completes the proof.

The following definition was given for compact spaces in [10].

DEFINITION. A metric space X is said to be a 4-space if there is an inverse
sequence {K,, m, ,..,} consisting of simplicial complexes K, with metric topology
and simplicial maps 7, ,4.,: K,.,—K, such that im{K,} = X (cf. [11]).

THEOREM 3. Let X be a finite dimensional and locally compact metric space.
Then there exists a A-space Y such that dimX = dim Y, Shy(X) = Shy(Y) and
Sh(X) = Su(Y). :

Proof. Let {%,} be a sequence of locally finite open covers of X such that
each element of %, has a compact closure, order Un<dimX+1, %, >%, for
n=1,2,.. and mesh%,~0 (n-o), where 7,,, = {U: Ue, ). Let K, be
the nerve of %, with metric topology. For each n, let 7,,+1 be a simplicial projection
of K, 4, into K, defined by mapping a vertex v of K41 corresponding to Ve,
to a vertex w of K, corresponding to W e %, such that V< W. Consider the inverse
sequence {K,, 7, ,.,} and put ¥ = lim{K,}. Then ¥ is a A-space and dimX
= dim Y. As shown by Kaul [8], there is a perfect map f from Y onto X such that
for each x € X'/~ !(x) is the inverse limit of an inverse sequence consisting of closed
simplexes and hence £~ Y(x) is of trivial shape. By Theorem 1 and [9], Theorem 2
we know Sh(X) = Sh(Y) and Shy(X) = Shy(¥). This completes the proof.

The assertion in Theorem 3 for weak shape was proved in [11], Theorem 2
by a different way. As shown there, we can not remove the local compactness of X
in Theorem 3. To see it, let X be a set consisting of all rational numbers in a line.
If ¥ is a 0-dimensional space, and Sh(¥) = Sh(Y) or Shy(X) = Shy(Y), then X~
and Y are homeomorphic by [12], Theorem 1 and [9], Theorem 1 and hence Y is
not completely metrizable. Since every finite dimensional 4-space is completely
metrizable, ¥ is not a A—space.
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Somie uniformization results
by *

H. Sarbadhikari (Calcutta)

Abstract. Some results on the uniformization of Borel sets are proved in this paper.

1. Introduction. Let X, Y be Polish spaces and BSX'x Y. We say C uni-
Sformizes B if C<B and for all xepryB,C~ B* is a singleton where B”
= {y: (x,) € B} and pry B is the projection of B to X. In general, a Borel set B
does not have a' Borel uniformization ([2], [6]). However, in some cases, such
a uniformization exists, for example, if B* is o-compact for each x [1] or if (B >0
for each x where u is a probability measure on the Borel g-algebra of ¥ [3].

The chief aim of this paper is to prove the following:

TrEOREM 1. Let X, Y be Polish spaces and B=X x Y be Borel. B has a Borel
uniformization if any one of the following is true:

(1) for all x e pryB, B contains an isolated point,

(2) for all x € pryB, B* contains a point which is not its point of condensation,

(3) for all x e pryB, B* is not meager.

The paper is organized in the following way. Section 2 is devoted to preliminaries.
In Section 3, a proof of Theorem 1 is given. In Section 4,2 related result is proved.

2. Preliminaries. A set is called meager if it is a countable union of nowhere
dense sets. A comeager set is one whose coraplement is meager. Let X, Y be Polish
spaces, B X x ¥ and U< Y. Following Vaught, we put B} = {x: B*n U is co-
meager in U}, It is known that if B is Borel and U open, then Bj; is Borel [7]. For
any set 4, let 6(4) denote the diameter of A. ,

If f s a function, put Z, = {y: f~4(») is a singleton}, I = {y: f~*(») contains
an isolated point}, Dy = {y: f~1(y) is countable and non-empty}, C; = {y: f~()
contains a point which is not its condensation point}. It is known that if fis a Borel
measurable function defined on a Borel subset of a Polish space into a separable
metric space, then Z;, I, D,, C; are coanalytic [4].

3. Proof of main theorem.

Proof of (1). Let {/,} be a countable open base for Y. For any n, define f;
on B n (XxV,) by f,(x, ) = x Let Z, = {x: B*n ¥, is a singleton}. Then Z, = Z,
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