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On a certain condition of the monotonicity of functions
by

Maria Mastalerz-Wawrzynczak (Warszawa)

Abstract. The generalized derivative (Khintchine’s derivative) of a real valued function of
a real variable is investigated. The sufficient condition of monotonicity of a function is given.

The classical theorem about the monotonicity of a differentiable function
with a non-negative derivative has been generalized in many ways. For example:

ToLstov’s THEOREM [5]. Let f be a Junction satisfying in the interval (a, b) the
Jollowing conditions:

() f 7s approximately continuous,

(b) fap exist except perhaps at a countable set of points (i.e. nearly everywhere),

(©) fup=0 ae.

Then f is continuous and non-decreasing in (a, b).

ZAHORSKI'S THEOREM [6]. Let f be a function satisfying in the interval (a, b)
the following conditions:

() fisa Darboux function,

B) f' exists n.e.,

) f'20 ae.,

Then f is continuous and non-decreasing in (a, b).

In both of these theorems it is assumed, directly or indirectly, that the
function f is a Darboux function of the first class of Baire. In connection with this
Zahorski asks in [6] whether the following hypothesis is true.

ZAMORSKI’S HYPOTHESIS. Let f be a function satisfying in (a, b) the following
conditions:

D) fis a Darboux function of the first class of Baire,

2) f,, exists n.e.,

3) f20 ae.

Then S is continuous and non-decreasing in («, b).

Bruckner ({1]) and Swigtkowski ([3]) give an affirmative answer to this
question.
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The three above-mentioned theorems give the characterizations of the same
class of functions, namely: the class of continuous and non-decreasing functions
which have ordinary derivatives n.e. This follows from Khintchine’s theorem ([2]),
which says that every point at which a monotonic function f is approximatively
differentiable is a point at which that function has an ordinary derivative. This
remark suggests the possibility of replacing the ordinary derivative by a generalized
derivative which for monotonic function coincides (in the sense of existence and
value) with the ordinary derivative. The main theorem (Theorem 2) of this paper
is such a generalization of Zahorski’s theorem. . .

Suppose that to every point x.of the interval (¢, b) there is attached a family
T(x) of subsets of (a,b) which satisfies the following conditions:

(a) x e E for each EeT(x),

(b) if E,eT(x) and E, e T(x), then E; n E; & T(x),

(©) if 6>0 and EeT(x), then the sets En (x—8,x) and En (v, x+0) are
non-empty,

(d) if >0, then (x—§, x+8) € T(x).

The sets of the family T(x) will be called T-neighbourhoods of the point x.

DErFINITION 1. A point x will be called a T-accumulation point of the set A
<(a, b) if each T-neighbourhood of x contains points of the set 4—{x}.

The set of T-accumulation points of 4 will be denoted by Ay,

DEFINITION 2. A number g is called the T-limit of the function f at the point x,

if for every.e>0 there exists an E e T(x,) such that for every point x € E—{x,}
the following inequality is satisfied:

[f(x)—gl<e.

T— lim f(x) means the T-limit of f at x,.
x-rX0
Amnalogously we define T'— lim f(x) = % oo.

X=Xo

DermNITION 3. The T-derivative of a function f at the point x is the T-limit

JSrlxg) = T— ],imf(x)

X-rXo

One proves that under some additional conditions on 7(x), the T-derivative
of a mongionic function is its ordinary derivative.

DErNITION 4. T(x,) satisfies Khintchine’s condition if the conditions

® limx, = xg,
n-—roo
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8
3 lim—2 >0

n—+eo ]x,, —xol

imp]y that Xo E( U (xn_'5m xn+5n))gr'
n=1
Remark 1. If conditions (1)-(3) are satisfied, then we have also Xo

o
€ (k(;}x(x,,,c-é,,k, %w+0,))r, Where {m} is any subsequence of the sequence of
natural numbers.

REMARK 2. If T(x) is the family of the sets containing x for which x is a density
point, then fr(x) = f,(x).

THEOREM (Swiatkowski, [4]). T(xo) satisfies the condition of Khintchine if and

only if for every function f which is monotonic in some neighbourhood of x, the exist-
ence of fr(x,) implies the existence of f “(50).

It will be convenient in the sequel to have

DErRINITION 5. We shall say that the function f and the family 7' = {T(x)}
satisfy condition (W) in the interval (a, b) if
(1) fis a Darboux function,
{2) fis n.e. continuous,
(3) T(x) satisfies Khintchine’s conditiori for nearly every point x € (a, b),
{4 fr exists ne.

Furthermore {p,: n e N} will denote the set of points with the exception of
which f is continuous, T satisfies Khintchine’s condition and fr exists.

LevMma 1. Let f and T satisfy condition (W) in the interval (a, b) and let o, B be
mumbers such that a>p. Then at most one of the sets

A= {x: fi(x)>a}, B={x: fix)<p)
can be dense in (a, b).

Proof. Without loss of generality we may assume that o>0> 8. Now suppose,
on the contrary, that 4 = B = (a, b). Then there exists an x; € 4—{p,}. Since
Jr(x1)>o, there is a T-neighbourhood E; & T(x;) such that

=1

for all xe E; —{x}.
po 1TV

Let ; be such a positive number that p, ¢ {x;—&,, x, +6,> and let x & E N
M (x; =8y, x,). Hence (x,/(x)) lies under the line y = oi(x—x,)+f(x,). Because
Jfis a Darboux function in (x, x,), there is a non-denumerable set of such points z
that f(z)<a(z—x)+f(xy). Let xi be such a point in (x, x)—{p,: ne N}

The continuity of the function fin x] implies the existence of such a number
d;>0 that

S <a(x—x)+fx) for all xe {xj—d;, x14+d>.
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Put
a} = sup{x: FO)<alt—x,)+f(x,) for all te{xy—ds, D} .
We have of course a;<x;. Let be 0<o,<i(ai—xi+d;). In the interval

(a}, ai+0,) there are uncountably many points z such that f(z)>a(z —x)+f(x;).
Let xi' ¢ {p,: ne N} be one of them. Since the function f is continuous at x7/,

there is a positive number d;’ such that
F)>ale—x)+f ) for all xe {xy —dy, xy +di'>.
Put .
by = x| —d, a, =b—-08; where 0<8i<%d; and b,—8i>aj,
Ay =(=dia),  By= by x] +d)).
Then we have

>0 for x' €4y and x" e By .

£ =G

x' -

Now, since it was assumed that B = <a, b), we can find x, € (2, b;) n B~
—{ps}. As before, there is an E, € T{x,} such that

Sx)—f(x,) <

X —X

B for xeE,—{x}.
Let 6, be such a positive number that p, ¢ {x,~8,, x,+6,). Because fis a Dar~
boux function, we can find a point x5 € (x,—8,, x,)—{p,: ne N} such that
x5)—f(x
S 2') f(lz)<ﬁ‘
Xo =X,

Since f is continuous at x3, there is a d;>0 such that

FE>Bx—x)+f(x))  for all. xe {xy—dy, x5+ds>.

Put

ay = sup{x: fO=p(—x2)+f(x;) for all te(x'l—cl;,x}}.

It is obvious that a3 <x, and in every interval (a3, aj+7) where >0, there are
points x such that corresponding points of the graph of the function f lic below
the line y = B(x—x,)+7(xy).
Let
t ’ !
Gy —Xy+d
0<o,< 3—52———2
In the interval (a3, a540,) there are uncountably many points x for which the
inequality f(x)<f(x—x,)-+7(x,) holds. Let x} be such a point not belonging to
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{ps: me N}. Because of the continuity of f at x3 there is a positive number 45"
such that

S <P =) +/(x)

for all xe(xy ~dy, x5 +d3) .
Put

by = x3/ ~d, ay = b,~5,, where 0<5’2<%;2—,, by—3,=ay
and

' Ay = (=5, @), B = (b, ¥y +d3).
‘Then we have

SN =)

X=X

<p for

x'ed, and x" € B, .

) Repeating the above argument, we obtain sequences of numbers {x,}, {x;'}..
! N ’ .

{4}, {a.}, {b,}, {a;} and sequences of intervals {4,}, {B,} such that

)

ay =@, by = b and for nx1

’

o’ o r ’ ’ )
Ayy < An—dn<'xn+dn<an‘<an<bn = xn,'—dn <xr’:’<xn’+dl,x,<bn-1 >

I ’ (l,’,-—~ ".—d'; i "
@ Xy — < """(“xr*-) and b,,—a,,<}"_.____" i by ,
2 2'!
® Patt <@y, B,
b—a
@ {y, by> 211, b,y  and b,,—a,,<~§,— >
(5) Au = (x;_d’:’a’;) s Bn — (bm xrl;,""d;:') ,
SN ="
(6) ———;lf, )>oc for x'e€d,,_, and x"eB, _,,
X —X n—1
x’ — ¢ ',\:/I
™ ﬁ;)':{,(r—) <B for x'ed,, and x"eB,,.

Let {x¢} = () <&, b,>. From (3) it follows that Xo & {p,: neN}. Hence
n=1
JSr(x,) exists. But
Xy = ;(xl’l_dr:_'-“lll) € <an—1:v bn—-1>

- - o ’
80 x,—x, and y, = x,"e€<a,_y, b,_,> and so y,~x, too.
Furthermore
1 " 7
oy = -5(411’,—-"3»"-}-{7") l 0

and d,’|0
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as well as
it

% -1

-1 a
IX,,—XO[ lyu—xﬂl

From this, and because
An = (xn—um xn'Hxn) ) Bn = (yn'—dl,»’s yn+drlnl) B

it follows that for every subsequence {r,} of the sequence of natural numbers we have

0 - o0
(8) xp€( U Azm,- Jr and  x€ (k UiBlek—l)"['
k=1 =
and
et r * t
(9) Xo € ( U Alnk T and Xo € (kU1B2"k T *
k=1 =

Hence for every set E & T(x,) there exist such numbers 7, m thit none of the four
sets Asy—q O E, Byy_y O E, Ay 0 E, By, 0 E s empty. This implies, by (6) and (7),
that f7(x,) does not exist. This contradiction proves the lemma.

COROLLARY 1. Under the assumptions of Lemma 1 at most one of the sets

A ={x: fi®za}, B={x: filx)<p}

can be dense in the interval (a, b).

Levva 2. Let f and T satisfy condition (W) in the interval (a, b) and f1(x) = M >0
n.e. in (a, b). Then there exists a non-empty interval (o, f)<(a, b) such that f|q,gy i
continuous and non-decreasing. ‘

Proof. Suppose, on the contrary, that there is no interval (a, f)=(a, b) in
which fis non-decreasing. Put a, = a, b, = b. Then there are in (¢, b;) two points
x7,xy such that

a,<xy<xy<b;, and flxD>f(x)).

‘We can assume that p, ¢ (x7, x{'> and x} ¢ {p,: ne N}. (Indeed, if p, & (¥, x1'D,
then either f(x1)>f(p,) or f(p)>f(x7). If, for example, f(p)>f(x}"), then, since
fis a Darboux function, in the interval (p,, x1") there are uncountably many points x
satistying the inequality f(x) >f(x1). We can choose one that is different [rom all p,
and substitute it for x7. In the case f(p,)<f(x1) the proof proceeds analogously).

Let -0 <e, <L[f(x1)—f(x})]. By the continuity of f in x| we have a d;>0
such that

FO>f(x)—e,  for all xelxy, xi+d, D,
Let us put
a, = sup{x: f(Hf(x))—e, for all te(xi+d;, x>},

It is evident that a;<x} and in every interval (ay, ap+98) (§>0) there are un-
countably many points x such that f(x)<f(x))~¢,. Let x;” denote one of them,

©
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ree .
such that‘a.c1 ¢ {p, n e]'\f}land ap<x;’ <minfxy, ay+1(a,—x))]. Hence for
o ’ r .
every positive number &y <7[f(x})—e; —f(x7')] there exists a d;>0 such that

JE)<f(x")+ey  for all xe ey —df, x}">.

Setting
by = inf{x: f(O<f(x")+ey  for all zex, x) —d),
a, = maxa,, by—5(xy" ~b,)1,
Ay =(x1,a3), B =(b,, x,
we have
b2>a;’ Dy ¢<a2’b2>c(x;>xlll-)
and
J&)>f(x") for x'ed; and x"eB
because

SE)SIG Ve <f ) = —2a <

Since we have supposed that there is no interval in which f is non-decreasing, we
can define recurrently sequences of numbers {x;}, {x,'}, {a}}, {&,}, {@,}, and se-
quences of intervals {4,}, {B,} such that

(1) a =a b =band a, <x,_,<a,<a,<b,<x, ,<b,_,
and b,,'—‘ﬂ,,<'%j(b,,._1—fl”_1) for n>1,

'(2) pn¢<an+1= bn+l>?

(3) 4, = (xr,ﬂ a:x+ )= (En—‘sns X,+0,) where Xy = %(ar:+1+x:n)
and 511 = %(dr,r-FI_xllz)a

I = =
Bn = (bn-(-l: xn) = (X,,“‘O',,, xn+o-n) where Xy = ';T(bn+1+x:zl)
1t
and Oy = ?(xn _“bn-i-l)’

- 5"
(4) 5ri‘<~|xn—bn+1|<‘§n+iﬁa aplslflx_a114-1l<0n+g;’
(5) 6,10, 0,10,
(6) J&x)=f(x") for x'ed,and ¥ eB,.

Conditions (1) and (2) imply the existence of such a point x, & {p,: ne N} that
{24} = ﬂl {ay, b,». Hence there is a T-neighbourhood E of the point x, such

n=

that for all x e E—{x,} the following inequality holds:

) ~fGa) 1,
PO .

X—Xg

()
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On the other hand, since X,—x, and &,~»x,, from conditions (4), (5) it follows that
0 [<e] ,
Xo € ( U Anu);‘ and Xo € (l Ul Bm)’l‘
k=1 =

for all subsequences {n}, {n,} of the sequence of natural numbers. Hence there is
a natural number n such that the sets 4, n E and B, n E arc non-empty. Thus (6)
contradicts (7) and the lemma is proved.

COROLLARY 2. Under the assumption of Lemma 2, in the interval (a, b) there
exists a dense set of intervals of monotonicity of the function f.

Lema 3. Let f and T satisfy condition (W) in (a, b) and f1(x)= M>0 on a dense
set in (a,b). Then there exists an inferval (o, fyc(a, b) such that [l is non-
decreasing.

Proof. Let 4 = {x: f{(x)=M} and B = {x: fr(x)<3M}. From Corollary 1
it follows that B is not dense 'in (a, b). Then there exists an interval (a,, b,) <(«, b)
which is disjoint with B. Thus the function f|, s, satisfies the assumpticms: of
Lemma 2 in (a,, by), and so the existence of the interval (o, §) with the required
property is proved,

COROLLARY 3. Under the assumptions of Lemma 3 there exists in (a, b) u dense
set of intervals of monotonicity of the function f.

REMARK 3. If moreover fy=>M>0 holds almost everywhere, {x, f)><(a, b)
and the function £ is monotonic on («, f), then fis continuous in (¢, §) and f(f)—
—f@)=M(B—0).

Levva 4. Let f and T satisfy condition (W) in (a, b) and let f1(x)=M>0 hold
a.e.in (a, b). Let pe(a, b) besuch apoint that the function f is not monotonic in any
interval which contains f as the left end-point. Then for every pair of positive numbers &
and & there exists such a point x, that the following conditions hold:

(1) xOE(ﬂ’ ﬁ+5),
@ Sx)=>f(B)—¢,
3 f is not monotonic in any interval (x,—7, Xg),

G é) f is monotonic in the interval (x,, xo+#) for certain >0 or
b) x, is the point of continuity of f.

Proof. Suppose that there exist numbers £>0 and §>0 such that there is no
point x, satisfying conditions (1)-(4). Since f is a Darboux function, continuous
in (a, b) except at most at a countable set of points, we have a point of continuity
of f x, € (B, f+0) such that f(x,)>7(B)—4e. The point x, satisfies conditions (1),
(2) and (4b) and so it can not satisfy (3). Hence x, is a left-end point of some interval
of monotonicity of the function f. Of course f is non-decreasing in that interval
because f;=M>0 ae. Let (a,, b;) denote the maximal open interval of monot-
onicity of f contained in (8, f+5) and containing x,. We have F(b,)>/1 (P—%e.

i
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Because a satisfles conditions (1), (3) and (42), it cannot satisfy (2), and so f(a,)
<f(h)—s. ‘

Repeating this procedure, we conclude that there exists a sequence of intervals
(a,, b,) such that

(I) U (an: bn) in dense in <ﬁ= b1>>
n=1

(I)  intervals <a,, b,> are mutually disjoint,
(II)  each interval {a,, b,> is maximal interval of monotonicity,
av)

S@)<f(B)—e, f(b)>f(B)~%e for every ne N,

(V) the set 4 =<{B,a,>~ U (a,, b,) is uncountable and each of its points is

n=2

an accumulation point of the two sequences {a,} and {5,}.

Conditions (IV) and (V) contradict the assumption that the function f is nearly
everywhere continuous.

THEOREM 1. Let f and T satisfy condition (W) and Jr=M>0 ae. in (a, b). Then
J is non-decreasing in (a, b).

Proof. Let T satisfy Khintchine’s condition and let S be continuous and fy
exists in (a, b) except at the points of the set {p,: neN}.

Suppose that f"is not non-decreasing in (@, 5). From Lemma 3 it follows that
there exists a non-empty interval (x, )= (a, b) such that f|, s is non-decreasing.
Let (x;, 8,) denote the maximal open interval of monotonicity of f containing
(«, B) and contained in (a, b). Since we have supposed that f is not non-decreasing
in (a, b), we must have a # a; or b 5 §,. Without loss of generality we can as-
sume that f; % b. Let 8, be such a number that 0<d,<%(By—ay) and p,
#(By, f1+8,). Then it follows from Lemma 4 that there exists such a point
xy € (By, B, +9,) that

M SG)>f(B) — 76 M(By—0y)
n

the function f is not monotonic in any interval which has X, as the right
end-point.
(D) a) x, is the left end-point of some interval of monotonicity of f or

b) f'is continuous in x,.

From (IIY) it fbllows that there exists an k>0 such that for all point
X € (X, ¥ +h) =By, By +0,) the following inequality holds:

SE)>f(B) ~ 5 [M(By—y)] .

From (II) it follows that there are in the interval (x,—%h,, x,) A (8, x,) points
x3, %y such that

xy<xy and  fx)>fx1).


Artur


M. Mastalerz-Wawrzyhczak

196

’r .
Because f is a Darboux function, we can ?/hoose %1 In such a way that
xy ¢ {p,: neN}. Hence for &, = L[f(x1)—f(xy)] there exists a §;'>0 such that

FOSF) +8 for  xedxy ~d7, x>
Put
by =inf{x: f(O<fOx)+ey  for all e {x, x) =67} ;

of course, bi>x; and for an arbitrarily small inlterve}% (by—96, {7,'}) the’re are un-
! t

countably many points x such that f(x)>f(x;)+&,. Let x; ”e, (by—38,b)~

—{p,: me N}, where 0<6 <367, be such a point. Then there is a 8, '>0 such that

F@) > )= =f(x1)]  for
Let us put

= sup {x: f(D(x1) =3 &Y ) A1)
Ay = (g, 30 +89) = (1~01, y1+01),
By = (e, %1 +hy) = (31—01, ¥, +0,),

Cy = (), x1) = 0 —o7, ¥ +0Y),

Dy = (", a) = )"~y )" +a!),

b,

. 1m"e
min(d], a, +%40;").

e e trr

xe(rg,x, +d;).

a for te {xy +87"7, x>},

oy

I

]

Then we have
ey p1 #<ay; by,

(2) for every point x e <a,, b,> the following inequalities hold:

] ter

" I e
Ix—yi<dor,  P—pil<ior,  Ix-yi<3el,  Ix—yiI<doy’,

(3) for all points x', x" such that x" e 4;, x"/ € B, we have

o)y 1 S&) =/ Gy +B))

_—XTT Z5 (because e e ?M> y

x5 (ot +81)
116
X' —x

4) whenever x'eCy and x” e D, .

Let us notice that (a,, b,) is not the interval of monotonicity of £ Hence the
same arguments allow us to define recurrently sequences of numbers ) )
078 7 o (00, (o), {o)"}, {a,}, {b,} and sequences of intervals {4,},
{B.}, {C,}, {D,} such that

An = (yylx_o—r:b y,’l+0',',), ‘Bll =

(1:) (yn_o-nﬁyn'l'o'n)a
G=0=0 0 +a)), D=0 o)y +a,

v
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4 M rre 2z ’
) Gy <Vas1=Opr 1 <Y1+ 0y <Pni1—Onig <Vritanyy
2 r: r’ 1
St 1 <byt 1 Y1 =011 <Vns 1+ 01 <Ppp1— Oy
<yu+1+o-n+1<bn’ .
(3,) pn ¢ <aﬂ’ b">’
@) If xe<a,,bd,), then
’ 17 r? r
lx'"'ynl <4‘7;= lx'_ynl S%Un: ]x_yn l<%a'n H Ix"yr’x”! s%‘rrlxl E
SN =fx") 1 '
&) —J—C,-T—) > 3 M whenever x'e 4, and x"e B,,
f(xl — x’l
(6" : ——-;)—#) <0  whenever x'eC, and x"eD,.
x'—x

o0
Let {xo} = ) <a,, b,>. From condition (3" it follows that f7(x,) exists. Omn.
n=1
the other hand, from condition (4') it follows that Xo is a T-accumulation point
o w0 e} el
of each of the sets U 4,,,, U B,,, U C,,, U D,,, where {m} denotes an arbitrary
k=1 k=1 = k=1 = k=1

subsequence of N. Hence for every set Ee T(x,) there are sequences {m} and {n,','}
such that

AL NVE#0% B/nE and CitnE#0% Dy nE.

But under conditions (5') and (6’) this implies that S1(xo) does not exist. This contra-
diction proves the theorem.

TaeoreM 2. If f and T satisfy condition (W) and 320 a.e. in (a, b), then f is
non-decreasing and continuous in (a, b).

Proof. If the function f were not non-decreasing, then there would exist
points xy, x, € (2, b) such that

) —
_ S

Np~—Xq

2M

Hence the function g(x) = f(x)+Mx will not be non-decreasing cither, in spite-
of the fact that it fulfils the assumptions of Theorem 1.

ReMARK 4. The assumption that the function S has the Darboux property
seems to be too strong because in the proofs we only use the fact that every point
of the set {x: f(x)>a} (or {x: f(x)<b}) is its point of bilateral condensation. But,
as was shown by Zahorski in [6], for Baire class 1 functions it is equivalent to the
Darboux property. .

REMARK 5. Theorem 2 is a generalization of Zahorski’s theorem because the
assumption (B) in Zahorski’s theorem implies continuity nearly everywhere.
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Tt is an interesting question whether the following generalization of the
er—Swiatkowski theorem is true: ‘ o ~
'Brucffna funct?on fis a Baire class 1 function with the Darboux property, T s:ausﬁes
. . | ; )
Khintchine’s condition n.e., fr exists n.e. and f+=0 ae. in (a, b), then f is non
.decreasing and continuous in (a, b).
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Decomposition spaces and shape in the sense of Fox
by

Yukihiro Kodama (Tokyo)

Abstract. It is proved in the paper that if X, ¥ are finite dimensional metrizable spaces,
f: X—Y is a closed continuous map such that £7'(y) is approximatively k-connected for y ¢ ¥
and k£ =0, 1, ..., dim¥, then Sh(X)=Sh(¥) (in the sense of Fox [5]). By applying the theorem
it is shown that for every finite dimensional locally compact metric space X there exists a A-space ¥
such that dimX = dim¥, Shy(X) = Shyy(Y) and Sh(X) = Sh(Y).

§ 1. Introduction. In [5] Fox introduced the notion of shape for metric spaces
and proved that for compacta this notion coincides with the notion of shape in
the sense of Borsuk [4]. In the previous paper [9] we proved that a certain de-
composition map induces a weak shape equivalence. The purpose of this paper
is to prove that a similar theorem holds for shape in the sense of Fox. Let X be
a finite dimensional metric spaces and let 9 be an upper semicontinuous decompo-
sition of X each element of which is a closed set being approximatively %-connected
fork=0,1, .., max(dim X, dim ¥). Then we shall show that the equality Sh(X)
= Sh(Xy) holds, where X, is the decomposition space of X by & and Sh(X) is
the shape of X in the sense of Fox. As an application of this theorem we can obtain
a generalization of Ball’s theorem [1]. Finally, we shall prove that for every finite
dimensional and locally compact metric space X there is a 4-space Y such that
dimX = dim ¥, Sh(¥X) = Sh(Y) and Shy(X) = Shy(Y), where Shy(X) is the
weak shape of X defined by Borsuk [3].

Throughout this paper all of spaces are metrizable and maps are continuous.
By an AR-space and an ANR-space we mean always those for metric spaces and
by dimension we mean the covering dimension.

§ 2. The shape in the sense of Fox. We first recall the basic notions introduced
by Fox [5]. Let X and ¥ be metric spaces and let M and N be AR-spaces contain-
ing X and ¥ as closed sets respectively. By U(X, M) we mean the inverse system
consisting of open neighborhoods U of X in M and all inclusion maps u: U'—U,
U'cU. Similarly, by V(Y, N) denote the inverse system of open neighborhoods
of Uin N. A mutation f: U(X, M)~ V(Y, N) from U (X, M) to V(Y, N) is defined
as a collection of maps f: UV, Ue U(X, M), Ve V(Y, N), such that
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