

On a certain condition of the monotonicity of functions

by

Maria Mastalerz-Wawrzyńczak (Warszawa)

Abstract. The generalized derivative (Khintchine's derivative) of a real valued function of a real variable is investigated. The sufficient condition of monotonicity of a function is given.

The classical theorem about the monotonicity of a differentiable function with a non-negative derivative has been generalized in many ways. For example:

TOLSTOV'S THEOREM [5]. Let f be a function satisfying in the interval (a, b) the following conditions:

- (a) f is approximately continuous,
- (b) f'_{ap} exist except perhaps at a countable set of points (i.e. nearly everywhere),
- (c) $f'_{ap} \ge 0$ a.e.

Then f is continuous and non-decreasing in (a, b).

ZAHORSKI'S THEOREM [6]. Let f be a function satisfying in the interval (a, b) the following conditions:

- (a) f is a Darboux function,
- (β) f' exists n.e.,
- $(\gamma) f' \geqslant 0$ a.e.,

Then f is continuous and non-decreasing in (a, b).

In both of these theorems it is assumed, directly or indirectly, that the function f is a Darboux function of the first class of Baire. In connection with this Zahorski asks in [6] whether the following hypothesis is true.

Zahorski's hypothesis. Let f be a function satisfying in (a, b) the following conditions:

- 1) f is a Darboux function of the first class of Baire,
- 2) f'_{ap} exists n.e.,
- 3) $f'_{ap} \ge 0$ *a.e.*

Then f is continuous and non-decreasing in (a, b).

Bruckner ([1]) and Świątkowski ([3]) give an affirmative answer to this question.

The three above-mentioned theorems give the characterizations of the same class of functions, namely: the class of continuous and non-decreasing functions which have ordinary derivatives n.e. This follows from Khintchine's theorem ([2]), which says that every point at which a monotonic function f is approximatively differentiable is a point at which that function has an ordinary derivative. This remark suggests the possibility of replacing the ordinary derivative by a generalized derivative which for monotonic function coincides (in the sense of existence and value) with the ordinary derivative. The main theorem (Theorem 2) of this paper is such a generalization of Zahorski's theorem.

Suppose that to every point x of the interval (a, b) there is attached a family T(x) of subsets of (a, b) which satisfies the following conditions:

- (a) $x \in E$ for each $E \in T(x)$,
- (b) if $E_1 \in T(x)$ and $E_2 \in T(x)$, then $E_1 \cap E_2 \in T(x)$,
- (c) if $\delta > 0$ and $E \in T(x)$, then the sets $E \cap (x \delta, x)$ and $E \cap (x, x + \delta)$ are non-empty,
 - (d) if $\delta > 0$, then $(x \delta, x + \delta) \in T(x)$.

The sets of the family T(x) will be called T-neighbourhoods of the point x.

DEFINITION 1. A point x will be called a T-accumulation point of the set $A \subset (a,b)$ if each T-neighbourhood of x contains points of the set $A-\{x\}$.

The set of T-accumulation points of A will be denoted by A'_T .

DEFINITION 2. A number g is called the T-limit of the function f at the point x_0 if for every e>0 there exists an $E\in T(x_0)$ such that for every point $x\in E-\{x_0\}$ the following inequality is satisfied:

$$|f(x)-g|<\varepsilon$$
.

 $T - \lim_{x \to a} f(x)$ means the T-limit of f at x_0 .

Analogously we define $T - \lim_{x \to x_0} f(x) = \pm \infty$.

DEFINITION 3. The T-derivative of a function f at the point x_0 is the T-limit

$$f'_T(x_0) = T - \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0}$$
.

One proves that under some additional conditions on T(x), the T-derivative of a monotonic function is its ordinary derivative.

DEFINITION 4. $T(x_0)$ satisfies Khintchine's condition if the conditions

$$\lim_{n\to\infty}x_n=x_0\,,$$

$$\delta_n \downarrow 0$$

imply that $x_0 \in (\bigcup_{n=1}^{\infty} (x_n - \delta_n, x_n + \delta_n))_T'$.

REMARK 1. If conditions (1)-(3) are satisfied, then we have also $x_0 \in (\bigcup_{k=1}^{\infty} (x_{n_k} - \delta_{n_k}, x_{n_k} + \delta_{n_k}))_T'$, where $\{n_k\}$ is any subsequence of the sequence of natural numbers.

REMARK 2. If T(x) is the family of the sets containing x for which x is a density point, then $f'_T(x) = f'_{ab}(x)$.

THEOREM (Świątkowski, [4]). $T(x_0)$ satisfies the condition of Khintchine if and only if for every function f which is monotonic in some neighbourhood of x_0 the existence of $f'_T(x_0)$ implies the existence of $f'(x_0)$.

It will be convenient in the sequel to have

DEFINITION 5. We shall say that the function f and the family $T = \{T(x)\}$ satisfy condition (W) in the interval (a, b) if

- (1) f is a Darboux function,
- (2) f is n.e. continuous,
- (3) T(x) satisfies Khintchine's condition for nearly every point $x \in (a, b)$,
- (4) f_T' exists n.e.

Furthermore $\{p_n: n \in N\}$ will denote the set of points with the exception of which f is continuous, T satisfies Khintchine's condition and f_T' exists.

LEMMA 1. Let f and T satisfy condition (W) in the interval (a, b) and let α, β be numbers such that $\alpha > \beta$. Then at most one of the sets

$$A = \{x: f_T'(x) > \alpha\}, \quad B = \{x: f_T'(x) < \beta\}$$

can be dense in (a, b).

Proof. Without loss of generality we may assume that $\alpha > 0 > \beta$. Now suppose, on the contrary, that $\overline{A} = \overline{B} = \langle a, b \rangle$. Then there exists an $x_1 \in A - \{p_1\}$. Since $f'_T(x_1) > \alpha$, there is a T-neighbourhood $E_1 \in T(x_1)$ such that

$$\frac{f(x)-f(x_1)}{x-x_1} > \alpha \quad \text{for all } x \in E_1 - \{x_1\} .$$

Let δ_1 be such a positive number that $p_1 \notin \langle x_1 - \delta_1, x_1 + \delta_1 \rangle$ and let $x \in E_1 \cap (x_1 - \delta_1, x_1)$. Hence (x, f(x)) lies under the line $y = \alpha(x - x_1) + f(x_1)$. Because f is a Darboux function in (x, x_1) , there is a non-denumerable set of such points z that $f(z) < \alpha(z - x_1) + f(x_1)$. Let x_1' be such a point in $(x, x_1) - \{p_n : n \in N\}$.

The continuity of the function f in x'_1 implies the existence of such a number $d'_1 > 0$ that

$$f(x) < \alpha(x - x_1) + f(x_1)$$
 for all $x \in \langle x_1' - d_1', x_1' + d_1' \rangle$.

Put

$$a'_1 = \sup\{x: f(t) \leq \alpha(t-x_1) + f(x_1) \text{ for all } t \in \langle x'_1 - d'_1, x \rangle\}.$$

We have of course $a_1' \leq x_1$. Let be $0 < \sigma_1 < \frac{1}{2}(a_1' - x_1' + d_1')$. In the interval $(a_1', a_1' + \sigma_1)$ there are uncountably many points z such that $f(z) > \alpha(z - x_1) + f(x_1)$. Let $x_1'' \notin \{p_n : n \in N\}$ be one of them. Since the function f is continuous at x_1'' , there is a positive number d_1'' such that

$$f(x) > \alpha(x - x_1) + f(x_1)$$
 for all $x \in \langle x_1'' - d_1'', x_1'' + d_1'' \rangle$.

Put

$$b_1 = x_1'' - d_1''$$
, $a_1 = b - \delta_1'$ where $0 < \delta_1' < \frac{1}{2}d_1''$ and $b_1 - \delta_1' > a_1'$,
 $A_1 = (x_1' - d_1', a_1')$, $B_1 = (b_1, x_1'' + d_1')$.

Then we have

$$\frac{f(x') - f(x'')}{x' - x''} \ge \alpha \quad \text{for } x' \in A_1 \text{ and } x'' \in B_1.$$

Now, since it was assumed that $\overline{B} = \langle a, b \rangle$, we can find $x_2 \in (a_1, b_1) \cap B - \{p_2\}$. As before, there is an $E_2 \in T\{x_2\}$ such that

$$\frac{f(x)-f(x_2)}{x-x_2} < \beta$$
 for $x \in E_2 - \{x_2\}$.

Let δ_2 be such a positive number that $p_2 \notin \langle x_2 - \delta_2, x_2 + \delta_2 \rangle$. Because f is a Darboux function, we can find a point $x_2 \in (x_2 - \delta_2, x_2) - \{p_n : n \in N\}$ such that

$$\frac{f(x_2') - f(x_2)}{x_2' - x_2} < \beta.$$

Since f is continuous at x'_2 , there is a $d'_2 > 0$ such that

$$f(x) > \beta(x - x_2) + f(x_2)$$
 for all $x \in \langle x_2' - d_2', x_2' + d_2' \rangle$.

Put

$$a_2' = \sup\{x: f(t) \geqslant \beta(t - x_2) + f(x_2) \quad \text{for all } t \in \langle x_2' - d_2', x \rangle\}.$$

It is obvious that $a_2 \le x_2$ and in every interval $(a_2', a_2' + \eta)$ where $\eta > 0$, there are points x such that corresponding points of the graph of the function f lie below the line $y = \beta(x-x_2) + f(x_2)$.

Let

$$0 < \sigma_2 < \frac{a_2' - x_2' + d_2'}{2^2}$$
.

In the interval $(a'_2, a'_2 + \sigma_2)$ there are uncountably many points x for which the inequality $f(x) < \beta(x - x_2) + f(x_2)$ holds. Let x''_2 be such a point not belonging to

 $\{p_n\colon n\in N\}$. Because of the continuity of f at x_2'' there is a positive number d_2'' such that

$$f(x) < \beta(x - x_2) + f(x_2)$$
 for all $x \in (x_2'' - d_2'', x_2'' + d_2'')$.

Put

$$b_2 = x_2^{\prime\prime} - d_2^{\prime\prime}, \ a_2 = b_2 - \delta_2^{\prime}, \quad \text{where} \quad 0 < \delta_2^{\prime} < \frac{d_2^{\prime\prime}}{2^2}, \ b_2 - \delta_2^{\prime} \geqslant a_2^{\prime}$$

and

$$A_2 = (x_2' - d_2', a_2'), \quad B = (b_2, x_2'' + d_2'').$$

Then we have

$$\frac{f(x')-f(x'')}{x'-x''} < \beta \quad \text{for} \quad x' \in A_2 \text{ and } x'' \in B_2.$$

Repeating the above argument, we obtain sequences of numbers $\{x'_n\}$, $\{x''_n\}$, $\{d''_n\}$, $\{a_n\}$, $\{b_n\}$, $\{a'_n\}$ and sequences of intervals $\{A_n\}$, $\{B_n\}$ such that

(1)
$$a_0 = a$$
, $b_0 = b$ and for $n \ge 1$

$$a_{n-1} < x'_n - d'_n < x'_n + d'_n \le a'_n \le a_n < b_n = x''_n - d''_n < x''_n < x''_n + d''_n < b_{n-1}$$

(2)
$$x_n'' - a_n' < \frac{a_n' - (x_n' - d_n')}{2^n}$$
 and $b_n - a_n < \frac{x_n'' + d_n'' - b_n}{2^n}$,

$$(3) p_n \notin \langle a_n, b_n \rangle,$$

(4)
$$\langle a_n, b_n \rangle \supset \langle a_{n+1}, b_{n+1} \rangle$$
 and $b_n - a_n < \frac{b-a}{2^n}$,

(5)
$$A_n = (x'_n - d'_n, a'_n), \quad B_n = (b_n, x''_n + d''_n),$$

(6)
$$\frac{f(x') - f(x'')}{x' - x''} > \alpha \quad \text{for} \quad x' \in A_{2n-1} \quad \text{and} \quad x'' \in B_{2n-1},$$

(7)
$$\frac{f(x') - f(x'')}{x' - x''} < \beta \quad \text{for} \quad x' \in A_{2n} \quad \text{and} \quad x'' \in B_{2n}.$$

Let $\{x_0\} = \bigcap_{n=1}^{\infty} \langle a_n, b_n \rangle$. From (3) it follows that $x_0 \notin \{p_n : n \in N\}$. Hence $f'_T(x_0)$ exists. But

$$x_n = \frac{1}{2}(x'_n - d'_n + a'_n) \in \langle a_{n-1}, b_{n-1} \rangle$$

so $x_n \rightarrow x_0$ and $y_n = x_n'' \in \langle a_{n-1}, b_{n-1} \rangle$ and so $y_n \rightarrow x_0$ too. Furthermore

$$\alpha_n = \frac{1}{2}(a'_n - x'_n + d'_n) \downarrow 0$$
 and $d''_n \downarrow 0$

as well as

$$\frac{\alpha_n}{|x_n - x_0|} \to 1$$
 and $\frac{d_n''}{|y_n - x_0|} \to 1$.

From this, and because

$$A_n = (x_n - \alpha_n, x_n + \alpha_n), \quad B_n = (y_n - d_n'', y_n + d_n''),$$

it follows that for every subsequence $\{n_k\}$ of the sequence of natural numbers we have

(8)
$$x_0 \in (\bigcup_{k=1}^{\infty} A_{2n_k-1})_T'$$
 and $x_0 \in (\bigcup_{k=1}^{\infty} B_{2n_k-1})_T'$

and

(9)
$$x_0 \in (\bigcup_{k=1}^{\infty} A_{2n_k})_T' \quad \text{and} \quad x_0 \in (\bigcup_{k=1}^{\infty} B_{2n_k})_T'.$$

Hence for every set $E \in T(x_0)$ there exist such numbers n, m that none of the four sets $A_{2n-1} \cap E$, $B_{2n-1} \cap E$, $A_{2m} \cap E$, $B_{2m} \cap E$ is empty. This implies, by (6) and (7), that $f'_T(x_0)$ does not exist. This contradiction proves the lemma.

COROLLARY 1. Under the assumptions of Lemma 1 at most one of the sets

$$A = \{x: f'_T(x) \ge \alpha\}, \quad B = \{x: f'_T(x) \le \beta\}$$

can be dense in the interval (a, b).

LEMMA 2. Let f and T satisfy condition (W) in the interval (a, b) and $f'_T(x) \ge M > 0$ n.e. in (a, b). Then there exists a non-empty interval $(\alpha, \beta) \subset (a, b)$ such that $f|_{(\alpha, \beta)}$ is continuous and non-decreasing.

Proof. Suppose, on the contrary, that there is no interval $(\alpha, \beta) = (a, b)$ in which f is non-decreasing. Put $a_1 = a$, $b_1 = b$. Then there are in (a_1, b_1) two points x'_1, x''_1 such that

$$a_1 < x_1' < x_1'' < b_1$$
 and $f(x_1') > f(x_1'')$.

We can assume that $p_1 \notin \langle x_1', x_1'' \rangle$ and $x_1' \notin \{p_n: n \in N\}$. (Indeed, if $p_1 \in \langle x_1', x_1'' \rangle$, then either $f(x_1') > f(p_1)$ or $f(p_1) > f(x_1'')$. If, for example, $f(p_1) > f(x_1'')$, then, since f is a Darboux function, in the interval (p_1, x_1'') there are uncountably many points x satisfying the inequality $f(x) > f(x_1'')$. We can choose one that is different from all p_n and substitute it for x_1' . In the case $f(p_1) < f(x_1')$ the proof proceeds analogously).

Let $0 < \varepsilon_1 < \frac{1}{2} [f(x_1') - f(x_1')]$. By the continuity of f in x_1' we have a $d_1 > 0$ such that

$$f(x) > f(x_1') - \varepsilon_1$$
 for all $x \in \langle x_1', x_1' + d_1 \rangle$.

Let us put

$$a_2' = \sup\{x : f(t) \ge f(x_1') - \varepsilon_1 \text{ for all } t \in \langle x_1' + d_1, x \rangle \}$$
.

It is evident that $a_2' < x_1''$ and in every interval $(a_2', a_2' + \delta)$ $(\delta > 0)$ there are uncountably many points x such that $f(x) < f(x_1') - \varepsilon_1$. Let x_1''' denote one of them.

such that $x_1''' \notin \{p_n: n \in N\}$ and $a_2' < x_1''' < \min[x_1'', a_2' + \frac{1}{4}(a_2' - x_1')]$. Hence for every positive number $\varepsilon_1' < \frac{1}{2}[f(x_1') - \varepsilon_1 - f(x_1''')]$ there exists a $d_1' > 0$ such that

$$f(x) < f(x_1^{\prime\prime\prime}) + \varepsilon_1^{\prime}$$
 for all $x \in \langle x_1^{\prime\prime\prime} - d_1^{\prime}, x_1^{\prime\prime\prime} \rangle$.

Setting

$$\begin{split} b_2 &= \inf\{x\colon f(t) \!\leqslant\! f(x_1''') \!+\! \varepsilon_1' \quad \text{ for all } t \!\in\! \langle x, x_1''' \!-\! d_1' \rangle \} \;, \\ a_2 &= \max[a_2', \; b_2 \!-\! \frac{1}{8}(x_1''' \!-\! b_2)] \;, \end{split}$$

$$A_1 = (x_1', a_2'), \quad B_1 = (b_2, x_1'''),$$

we have

$$b_2 > a'_2$$
, $p_1 \notin \langle a_2, b_2 \rangle \subset (x'_1, x''_1)$

and

$$f(x') > f(x'')$$
 for $x' \in A_1$ and $x'' \in B_1$

because

$$f(x'') \leq f(x_1''') + \varepsilon_1' < f(x_1') - \varepsilon_1' - \varepsilon_1 \leq f(x').$$

Since we have supposed that there is no interval in which f is non-decreasing, we can define recurrently sequences of numbers $\{x_n'\}$, $\{x_n''\}$, $\{a_n'\}$, $\{b_n\}$, $\{a_n\}$, and sequences of intervals $\{A_n\}$, $\{B_n\}$ such that

(1)
$$a_1 = a$$
, $b_1 = b$ and $a_{n-1} < x'_{n-1} < a'_n \le a_n < b_n < x''_{n-1} < b_{n-1}$
and $b_n - a_n < \frac{1}{2}(b_{n-1} - a_{n-1})$ for $n > 1$,

$$(2) p_n \notin \langle a_{n+1}, b_{n+1} \rangle,$$

(3)
$$A_n = (x'_n, a'_{n+1}) = (\overline{x}_n - \delta_n, \overline{x}_n + \delta_n)$$
 where $\overline{x}_n = \frac{1}{2}(a'_{n+1} + x'_n)$ and $\delta_n = \frac{1}{2}(a'_{n+1} - x'_n)$, $B_n = (b_{n+1}, x'_n) = (\overline{x}_n - \sigma_n, \overline{x}_n + \sigma_n)$ where $\overline{x}_n = \frac{1}{2}(b_{n+1} + x'_n)$ and $\sigma_n = \frac{1}{2}(x'_n - b_{n+1})$,

(4)
$$\delta_n \leqslant |\bar{x}_n - b_{n+1}| \leqslant \delta_n + \frac{\delta_n}{2^n}, \quad \sigma_n \leqslant |\bar{x}_n - a_{n+1}| \leqslant \sigma_n + \frac{\sigma_n}{2^n},$$

$$\delta_n \downarrow 0 , \quad \sigma_n \downarrow 0 ,$$

(6)
$$f(x') > f(x'')$$
 for $x' \in A_n$ and $x'' \in B_n$.

Conditions (1) and (2) imply the existence of such a point $x_0 \notin \{p_n : n \in N\}$ that $\{x_0\} = \bigcap_{n=1}^{\infty} \langle a_n, b_n \rangle$. Hence there is a *T*-neighbourhood *E* of the point x_0 such that for all $x \in E - \{x_0\}$ the following inequality holds:

(7)
$$\frac{f(x) - f(x_0)}{x - x_0} > \frac{1}{2} M.$$

On the other hand, since $\bar{x}_n \to x_0$ and $\bar{x}_n \to x_0$, from conditions (4), (5) it follows that

$$x_0 \in (\bigcup_{k=1}^{\infty} A_{n_k})_T'$$
 and $x_0 \in (\bigcup_{l=1}^{\infty} B_{n_l})_T'$

for all subsequences $\{n_k\}$, $\{n_l\}$ of the sequence of natural numbers. Hence there is a natural number n such that the sets $A_n \cap E$ and $B_n \cap E$ are non-empty. Thus (6) contradicts (7) and the lemma is proved.

COROLLARY 2. Under the assumption of Lemma 2, in the interval (a, b) there exists a dense set of intervals of monotonicity of the function f.

LEMMA 3. Let f and T satisfy condition (W) in (a, b) and $f'_T(x) \ge M > 0$ on a dense set in (a, b). Then there exists an interval $(\alpha, \beta) \subset (a, b)$ such that $f|_{(\alpha, \beta)}$ is non-decreasing.

Proof. Let $A = \{x: f'_T(x) \ge M\}$ and $B = \{x: f'_T(x) \le \frac{1}{2}M\}$. From Corollary 1 it follows that B is not dense in (a, b). Then there exists an interval $(a_1, b_1) \subset (a, b)$ which is disjoint with B. Thus the function $f|_{(a_1,b_1)}$ satisfies the assumptions of Lemma 2 in (a_1, b_1) , and so the existence of the interval (α, β) with the required property is proved.

COROLLARY 3. Under the assumptions of Lemma 3 there exists in (a, b) a dense set of intervals of monotonicity of the function f.

REMARK 3. If moreover $f_T' \ge M > 0$ holds almost everywhere, $\langle \alpha, \beta \rangle = (a, b)$ and the function f is monotonic on (α, β) , then f is continuous in (α, β) and $f(\beta) - f(\alpha) \ge M(\beta - \alpha)$.

LEMMA 4. Let f and T satisfy condition (W) in (a, b) and let $f'_T(x) \ge M > 0$ hold a.e. in (a, b). Let $\beta \in (a, b)$ be such a point that the function f is not monotonic in any interval which contains β as the left end-point. Then for every pair of positive numbers ϵ and δ there exists such a point x_0 that the following conditions hold:

$$(1) x_0 \in (\beta, \beta + \delta),$$

(2)
$$f(x_0) > f(\beta) - \varepsilon,$$

- (3) f is not monotonic in any interval $(x_0 h, x_0)$,
- (4) a) f is monotonic in the interval (x₀, x₀+h) for certain h>0 or
 b) x₀ is the point of continuity of f.

Proof. Suppose that there exist numbers $\varepsilon>0$ and $\delta>0$ such that there is no point x_0 satisfying conditions (1)-(4). Since f is a Darboux function, continuous in (a, b) except at most at a countable set of points, we have a point of continuity of $f x_1 \in (\beta, \beta+\delta)$ such that $f(x_1)>f(\beta)-\frac{1}{2}\varepsilon$. The point x_1 satisfies conditions (1), (2) and (4b) and so it can not satisfy (3). Hence x_1 is a left-end point of some interval of monotonicity of the function f. Of course f is non-decreasing in that interval because $f'_T \ge M>0$ a.e. Let (a_1, b_1) denote the maximal open interval of monotonicity of f contained in $(\beta, \beta+\delta)$ and containing x_1 . We have $f(b_1)>f(\beta)-\frac{1}{2}\varepsilon$.

Because a_1 satisfies conditions (1), (3) and (4a), it cannot satisfy (2), and so $f(a_1) \le f(\beta) - \varepsilon$.

Repeating this procedure, we conclude that there exists a sequence of intervals (a_n, b_n) such that

- (I) $\bigcup_{n=0}^{\infty} (a_n, b_n)$ in dense in $\langle \beta, b_1 \rangle$,
- (II) intervals $\langle a_n, b_n \rangle$ are mutually disjoint,
- (III) each interval $\langle a_n, b_n \rangle$ is maximal interval of monotonicity,
- (IV) $f(a_n) \le f(\beta) \varepsilon$, $f(b_n) > f(\beta) \frac{1}{2}\varepsilon$ for every $n \in N$,
- (V) the set $A = \langle \beta, a_1 \rangle \bigcup_{n=2}^{\infty} (a_n, b_n)$ is uncountable and each of its points is an accumulation point of the two sequences $\{a_n\}$ and $\{b_n\}$.

Conditions (IV) and (V) contradict the assumption that the function f is nearly everywhere continuous.

THEOREM 1. Let f and T satisfy condition (W) and $f'_T \geqslant M > 0$ a.e. in (a, b). Then f is non-decreasing in (a, b).

Proof. Let T satisfy Khintchine's condition and let f be continuous and f'_T exists in (a, b) except at the points of the set $\{p_n : n \in N\}$.

Suppose that f is not non-decreasing in (a, b). From Lemma 3 it follows that there exists a non-empty interval $(\alpha, \beta) \subset (a, b)$ such that $f|_{(\alpha, \beta)}$ is non-decreasing. Let (α_1, β_1) denote the maximal open interval of monotonicity of f containing (α, β) and contained in (a, b). Since we have supposed that f is not non-decreasing in (a, b), we must have $a \neq \alpha_1$ or $b \neq \beta_1$. Without loss of generality we can assume that $\beta_1 \neq b$. Let δ_1 be such a number that $0 < \delta_1 < \frac{1}{4}(\beta_1 - \alpha_1)$ and $p_1 \notin (\beta_1, \beta_1 + \delta_1)$. Then it follows from Lemma 4 that there exists such a point $x_1 \in (\beta_1, \beta_1 + \delta_1)$ that

(I)
$$f(x_1) > f(\beta_1) - \frac{1}{16} M(\beta_1 - \alpha_1)$$
,

- (II) the function f is not monotonic in any interval which has x_1 as the right end-point.
- (III) a) x_1 is the left end-point of some interval of monotonicity of f or b) f is continuous in x_1 .

From (III) it follows that there exists an $h_1 > 0$ such that for all point $x \in (x_1, x_1 + h_1) \subset (\beta_1, \beta_1 + \delta_1)$ the following inequality holds:

$$f(x) > f(\beta_1) - \frac{1}{16} [M(\beta_1 - \alpha_1)]$$
.

From (II) it follows that there are in the interval $(x_1 - \frac{1}{4}h_1, x_1) \cap (\beta_1, x_1)$ points x_1', x_1'' such that

$$x_1' < x_1''$$
 and $f(x_1') > f(x_1'')$.

Because f is a Darboux function, we can choose x_1'' in such a way that $x_1'' \notin \{p_n: n \in N\}$. Hence for $\varepsilon_1'' = \frac{1}{3}[f(x_1') - f(x_1'')]$ there exists a $\delta_1'' > 0$ such that

$$f(x) \leq f(x_1^{\prime\prime}) + \varepsilon_1^{\prime\prime}$$
 for $x \in \langle x_1^{\prime\prime} - \delta_1^{\prime\prime}, x_1^{\prime\prime} \rangle$.

Put

$$b'_1 = \inf\{x: f(t) \le f(x''_1) + \varepsilon''_1 \text{ for all } t \in \langle x, x''_1 - \delta''_1 \rangle\};$$

of course, $b_1' > x_1'$ and for an arbitrarily small interval $(b_1' - \delta, b_1')$ there are uncountably many points x such that $f(x) > f(x_1'') + \varepsilon_1''$. Let $x_1''' \in (b_1' - \delta, b_1') - \{p_n: n \in N\}$, where $0 < \delta < \frac{1}{4}\delta_1'$, be such a point. Then there is a $\delta_1''' > 0$ such that

$$f(x) > f(x_1''') - \frac{1}{3} [f(x_1''') - f(x_1'')]$$
 for $x \in (x_1''', x_1''' + \delta_1''')$.

Let us put

$$a_{1} = \sup \left\{ x: f(t) \geqslant f(x_{1}^{\prime\prime\prime}) - \frac{1}{3} [f(x_{1}^{\prime\prime\prime}) - f(x_{1}^{\prime\prime})] \right\} \quad \text{for } t \in \left\langle x_{1}^{\prime\prime\prime} + \delta_{1}^{\prime\prime\prime}, x \right\rangle ,$$

$$A_{1} = \left(\alpha_{1}, \frac{1}{2} (\alpha_{1} + \beta_{1}) \right) = \left(y_{1}^{\prime} - \sigma_{1}^{\prime}, y_{1}^{\prime} + \sigma_{1}^{\prime} \right) ,$$

$$B_{1} = \left(x_{1}, x_{1} + h_{1} \right) = \left(y_{1}^{\prime\prime} - \sigma_{1}, y_{1} + \sigma_{1} \right) ,$$

$$C_{1} = \left(b_{1}^{\prime}, x_{1}^{\prime\prime} \right) = \left(y_{1}^{\prime\prime\prime} - \sigma_{1}^{\prime\prime\prime}, y_{1}^{\prime\prime\prime} + \sigma_{1}^{\prime\prime\prime} \right) ,$$

$$D_{1} = \left(x_{1}^{\prime\prime\prime\prime}, a_{1} \right) = \left(y_{1}^{\prime\prime\prime} - \sigma_{1}^{\prime\prime\prime}, y_{1}^{\prime\prime\prime} + \sigma_{1}^{\prime\prime\prime} \right) ,$$

$$b_{1} = \min \left(b_{1}^{\prime}, a_{1} + \frac{1}{4} \sigma_{1}^{\prime\prime\prime} \right) .$$

Then we have

$$(1) p_1 \notin \langle a_1, b_1 \rangle,$$

(2) for every point $x \in \langle a_1, b_1 \rangle$ the following inequalities hold: $|x-y_1'| \leq 4\sigma_1', \quad |x-y_1'| \leq \frac{3}{2}\sigma_1', \quad |x-y_1''| \leq \frac{3}{2}\sigma_1'', \quad |x-y_1'''| \leq \frac{3}{2}\sigma_1''',$

(3) for all points x', x'' such that $x' \in A_1, x'' \in B_1$ we have

$$\frac{f(x')-f(x'')}{x'-x''}\geqslant \frac{1}{2}M \quad \left(\text{because } \frac{f(x')-f\left(\frac{1}{2}(\alpha_1+\beta_1)\right)}{x'-\frac{1}{2}(\alpha_1+\beta_1)}\geqslant M\right),$$

(4)
$$\frac{f(x')-f(x'')}{x'-x''} < 0 \quad \text{whenever} \quad x' \in C_1 \text{ and } x'' \in D_1.$$

Let us notice that (a_1, b_1) is not the interval of monotonicity of f. Hence the same arguments allow us to define recurrently sequences of numbers $\{y_n\}$, $\{y_n'\}$, $\{y_n''\}$, $\{y_n''\}$, $\{\sigma_n\}$, $\{\sigma_n'\}$, $\{\sigma_n''\}$, $\{\sigma_n''\}$, $\{a_n\}$, $\{b_n\}$ and sequences of intervals $\{A_n\}$, $\{B_n\}$, $\{C_n\}$, $\{D_n\}$ such that

(1')
$$A_{n} = (y'_{n} - \sigma'_{n}, y'_{n} + \sigma'_{n}), \qquad B_{n} = (y_{n} - \sigma_{n}, y_{n} + \sigma_{n}), C_{n} = (y''_{n} - \sigma''_{n}, y''_{n} + \sigma''_{n}), \qquad D_{n} = (y'''_{n} - \sigma'''_{n}, y'''_{n} + \sigma'''_{n}),$$

(2') $a_{n} < y'_{n+1} - \sigma'_{n+1} < y'_{n+1} + \sigma'_{n+1} < y'''_{n+1} - \sigma'''_{n+1} < y'''_{n+1} + \sigma'''_{n+1}$ $\leq a_{n+1} < b_{n+1} \leq y''_{n+1} - \sigma''_{n+1} < y''_{n+1} + \sigma'''_{n+1} < y_{n+1} - \sigma_{n+1}$ $< y_{n+1} + \sigma_{n+1} < b_{n} ,$

 $(3') p_n \notin \langle a_n, b_n \rangle,$

(4') If $x \in \langle a_n, b_n \rangle$, then $|x - y_n'| \le 4\sigma_n'$, $|x - y_n'| \le \frac{3}{2}\sigma_n$, $|x - y_n''| < \frac{3}{2}\sigma_n''$, $|x - y_n'''| \le \frac{3}{2}\sigma_n'''$,

(5')
$$\frac{f(x') - f(x'')}{x' - x''} \geqslant \frac{1}{2}M \quad \text{whenever} \quad x' \in A_n \text{ and } x'' \in B_n,$$

(6')
$$\frac{f(x')-f(x'')}{x'-x''}<0 \quad \text{whenever} \quad x'\in C_n \text{ and } x''\in D_n.$$

Let $\{x_0\} = \bigcap_{n=1}^{\infty} \langle a_n, b_n \rangle$. From condition (3') it follows that $f_T'(x_0)$ exists. On the other hand, from condition (4') it follows that x_0 is a T-accumulation point of each of the sets $\bigcup_{k=1}^{\infty} A_{n_k}$, $\bigcup_{k=1}^{\infty} B_{n_k}$, $\bigcup_{k=1}^{\infty} C_{n_k}$, $\bigcup_{k=1}^{\infty} D_{n_k}$, where $\{n_k\}$ denotes an arbitrary subsequence of N. Hence for every set $E \in T(x_0)$ there are sequences $\{n_k'\}$ and $\{n_k''\}$ such that

$$A_{nk} \cap E \neq 0 \neq B_{nk} \cap E$$
 and $C_{nk'} \cap E \neq 0 \neq D_{nk'} \cap E$.

But under conditions (5') and (6') this implies that $f'_T(x_0)$ does not exist. This contradiction proves the theorem.

THEOREM 2. If f and T satisfy condition (W) and $f'_T \ge 0$ a.e. in (a, b), then f is non-decreasing and continuous in (a, b).

Proof. If the function f were not non-decreasing, then there would exist points $x_1, x_2 \in (a, b)$ such that

$$2M = \frac{f(x_1) - f(x_2)}{x_2 - x_1} > 0.$$

Hence the function g(x) = f(x) + Mx will not be non-decreasing either, in spite of the fact that it fulfils the assumptions of Theorem 1.

REMARK 4. The assumption that the function f has the Darboux property seems to be too strong because in the proofs we only use the fact that every point of the set $\{x: f(x) > a\}$ (or $\{x: f(x) < b\}$) is its point of bilateral condensation. But, as was shown by Zahorski in [6], for Baire class 1 functions it is equivalent to the Darboux property.

REMARK 5. Theorem 2 is a generalization of Zahorski's theorem because the assumption (β) in Zahorski's theorem implies continuity nearly everywhere.

It is an interesting question whether the following generalization of the Bruckner-Swiatkowski theorem is true:

If a function f is a Baire class 1 function with the Darboux property, T satisfies Khintchine's condition n.e., f'_T exists n.e. and $f'_T \ge 0$ a.e. in (a, b), then f is non-decreasing and continuous in (a, b).

References

- [1] A. Brückner, A theorem on monotonicity and a solution to a problem of Zahorski, Bull. Amer. Math. Soc. 71 (1965), pp. 713-716.
- [2] A. Khintchine, Recherches sur la structure des fonctions mesurables, Fund. Math. 9 (1927), pp. 212-279.
- [3] T. Świątkowski, On the conditions of monotonicity of functions, Fund. Math. 59 (1966), pp. 189-201.
- [4] On a certain generalization of the notion of the derivative, in Polish, Zeszyty Naukowe Politechniki Łódzkiej 149, Matematyka 2.1 (1972), pp. 89-103.
- [5] G. Tolstoff, Sur quelques propriétés des fonctions approximativement continues, Mat. Sb. 5 (1939), pp. 637-645.
- [6] Z. Zahorski, Sur la première derivée, Trans. Amer. Math. Soc. 69 (1950), pp. 1-54.

Accepté par la Rédaction le 23. 6. 1975

Decomposition spaces and shape in the sense of Fox

by

Yukihiro Kodama (Tokyo)

Abstract. It is proved in the paper that if X, Y are finite dimensional metrizable spaces, $f: X \rightarrow Y$ is a closed continuous map such that $f^{-1}(y)$ is approximatively k-connected for $y \in Y$ and $k = 0, 1, ..., \dim Y$, then $\operatorname{Sh}(X) \geqslant \operatorname{Sh}(Y)$ (in the sense of Fox [5]). By applying the theorem it is shown that for every finite dimensional locally compact metric space X there exists a Δ -space Y such that $\dim X = \dim Y$, $\operatorname{Sh}_{W}(X) = \operatorname{Sh}_{W}(Y)$ and $\operatorname{Sh}(X) = \operatorname{Sh}(Y)$.

§ 1. Introduction. In [5] Fox introduced the notion of shape for metric spaces and proved that for compacta this notion coincides with the notion of shape in the sense of Borsuk [4]. In the previous paper [9] we proved that a certain decomposition map induces a weak shape equivalence. The purpose of this paper is to prove that a similar theorem holds for shape in the sense of Fox. Let X be a finite dimensional metric spaces and let \mathcal{D} be an upper semicontinuous decomposition of X each element of which is a closed set being approximatively k-connected for $k = 0, 1, ..., \max(\dim X, \dim Y)$. Then we shall show that the equality $\operatorname{Sh}(X) = \operatorname{Sh}(X_{\mathcal{D}})$ holds, where $X_{\mathcal{D}}$ is the decomposition space of X by \mathcal{D} and $\operatorname{Sh}(X)$ is the shape of X in the sense of Fox. As an application of this theorem we can obtain a generalization of Ball's theorem [1]. Finally, we shall prove that for every finite dimensional and locally compact metric space X there is a A-space Y such that $\dim X = \dim Y$, $\operatorname{Sh}(X) = \operatorname{Sh}(Y)$ and $\operatorname{Sh}_W(X) = \operatorname{Sh}_W(Y)$, where $\operatorname{Sh}_W(X)$ is the weak shape of X defined by Borsuk [3].

Throughout this paper all of spaces are metrizable and maps are continuous. By an AR-space and an ANR-space we mean always those for metric spaces and by dimension we mean the covering dimension.

§ 2. The shape in the sense of Fox. We first recall the basic notions introduced by Fox [5]. Let X and Y be metric spaces and let M and N be AR-spaces containing X and Y as closed sets respectively. By U(X, M) we mean the inverse system consisting of open neighborhoods U of X in M and all inclusion maps $u: U' \to U$, $U' \subset U$. Similarly, by V(Y, N) denote the inverse system of open neighborhoods of U in N. A mutation $f: U(X, M) \to V(Y, N)$ from U(X, M) to V(Y, N) is defined as a collection of maps $f: U \to V$, $U \in U(X, M)$, $V \in V(Y, N)$, such that

^{4 -} Fundamenta Mathematicae XCVII