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A generalization of the Vitali covering theorem
by

D. N. Sarkhel (Kalyani)

Abstract. Let z be an outer measure defined on the power-set of a set X endowed  with
a pseudo-metric ¢ such that p(E)< -+ co for bounded E. For EcX and r=0 let
S[E; r] = {x € X] o(x, y)<r for some y¢E}.

DeriNiTION. A sequence {V,} of subsets of X is a n-regular sequence converging fo a point

o]
X e X if the diameter d(V,)—0, x e ﬂ Vy and there exists p>0 such that
n=1

1V >pp(SIWi; (1+p)d(V])  for all n;

also then p is a parameter of regularity of the sequence { Va}. A family U of subsets of X is a Vitali

H-covering of a set E ¢ X if, for every x ¢ E, there exists a -regular sequence of sets from LY con-
verging to x.

The following theorem is proven: Les 1 be a metric outer measure and let a family U of closed

subsets of X be a Vitali l-covering of a set E C X. Then there exists a countable Jamily & of pairwise
disjoint sets in 0 such that u(EN ) = 0. .

Let (X, g) be a pseudo-metric space endowed with the pseudo-metric topology
induced by ¢, and let u be an outer measure defined on the power-set of X with
R(E) < 4+ co for every bounded subset Ec X (this condition implies that p is o-finite).

We denote the closure and the diameter of a subset E< X by E and d(E), respectively.
Given a subset EcX and a real number r=0, we write

S[E; 1] = {x: xe X, o(x, y)<r for some eE}.
‘We now introduce the following definition.

DerNiTION. A sequence {V,} of subsets of X is a u-regular sequence con-

@
verging to a point x € X it d(V,) >0, x e () ¥, and there exists a real number p>0
n=1
such that

H(V)>pu(SIV,; (L+p)d(V,)])

also then p is a parameter of regularity of the sequence {V,}. A family ¥ of sub-
sets of X' is a Vitali u-covering of a set EcX if, for every x € E, there exists
a p-regular sequence of sets from ¥° converging to x.
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-In the particular case when X is some Euclidean space, ¢ is the usual metric
for X and p is the outer Lebesgue measure in X, it can be easily verified that our
definition of - Vitali u-covering is equivalent to the classical one ({2], p. 109).

The purpose of this note is to prove the following generalization of the classical
Vitali covering theorem. In our proof we shall use a 'modification of the well-known
idea of Banach (cf. [2], p. 109-111).

Turorem. Let p be a metric outer measure and let a family ¥ of closed sub-
sets of X be a Vitali p-covering of a set E<X. Then there exists a countable family &
of pairwise digjoint sets from ¥ such that u(ENU #) = 0.

Proof. Note that the Borel subsets of X are measurable (cf. [2], p. 52, (7.4))
for the metric outer measure p. Now, first consider two particular cases.

Case I. In this case we additionally assume that (i) d(¥)>0 for every Ve ¥,
(ii) E is bounded, say Ec=G, where G is open and bounded, and (iii) for every x e E
there is a p-regular sequence of sets from ¥ converging to x with a parameter of

regularity exceeding a fixed p>0.
Suppose, to get a contradiction, that for every countable family & of pairwise

disjoint sets from ¥~ we have
1£3] RENU #)>0.
Let us write
Vo= (Vi VeV, V=G, u(V)>pa(SIV; +p)d(D} -

Then ¥7, is still a Vitali u-covering of E. We note, in particular, that u(¥)>0 for
every Ve, Let o

I, = sup{d(V): Ve ¥,}.
Then 0<l,<d(G)< +o0, and so we can choose a Vo€% with
dVe>1+m~, .

Now let B be an ordinal number such that 0 <f<Q ([1], p. 119). Suppose that we
have already determined, corresponding to each ordinal a< f, a set ¥, € ¥ subject
to the conditions (2)-(4):

o WENHBNH) =0, where H,= U Vi,
0€i<a

@ - V.nH,=@,

@ dVI>A+p) s

where ‘ .

) I, = swp{d(V): Ve ¥,V H, =0}

A generalization of the Vitali covering theorem 153

Now we shall show that (2) holds with « = B, that is

©® u(En 17,3\\H,,) =0.

If B has an immediate predecessor, y say,

in (2 and by noting ther b then (6) follows easily by taking o = e

IS CIOSCd. So let ﬁ be a Iimit number, and Supp()se that
6, P
( ) H‘E lljg\lig)>1).

Let {2,};2; be an enu i
= meration of t i R
brevity, 3 he ordinals less than g, and let us write, for

Sy =8V I+p)d(V,)] (m=1,2, )

Then, by the definition of ¥, and (3), we have

o0 L
-1 - *
2= By =p WU V) <p @< +oo.

Hence, by (6), there exists a positive integer N such that
o0
(7 Y u(S)<u(En HNH)) .
n=N+1
Since f is a limit number, there is an ordinal 1 such that

w<n<f m=1,2, o N).
Then we have ‘

)
® U S, U s,.
n<on<f n=N-+1

Taking « = # in (2) and using (7) and (8), we get

r({[E n BNHGINE A H NHIN U S§,)>0.

nSan<p

Therefore, there is at least one point y such that

® ve En HNH,

and

(10) yeH,0( U 8.
nSen<p

Since, by (10), y ¢ H,, there is a Ve ¥, such that

an VAaH,=@,
1

yeV.
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Since d(V)>0 and y ¢ H,, we can choose an open sphere B with centre y such that
(12) (2) d(B)<d(V) and (b)) BnH,=0.
Now, by..(9), y e Hy. So, for some a,, we shall have

(13) BAV, #0.

Then, by (12) (b), oz,,‘/r], and hence, by (10),

(14) Y €8, = SV, (l+p)d( Vel -
From (12) (), (13), (14) and (4) we deduce that

d(V)y=>d(B)>(1+p)d(V,)>1,

m

Consequently, by (5), ¥V n H, # @. Hence, for some a<uw,, V intersects V.
There exists, therefore, a smallest one, £ say, among the ordinals o for which we
have V n ¥V, # @. Now, by (11), £=7, and hence, by (10),

y¢SVe (+pd(F)] -

But V intersects ¥, and contains the point y. Hence it follows, using (4), that d(V)

> +p)d(Vy)>1,. On the other hand, by the definition of ¢, V' n H; = &, and
hence, by (5), d(V)<!,. Thus we arrive at a contradiction, proving the truth of (6).

Now, the family {¥,},<, being countable, (1) gives u(ENH)>0, Whence it
follows, by (6), that

B(ENH;INE n HpH))>0.

Since, moreover, [ENH;IN[E n H\NH;] = ENH,, there are sets Ve ¥ such that
V n Hy = @. So, if [; is obtained by taking « = f in (5), then 0</;<d(G)< + D,
and hence we can choose a ¥, e, satisfying conditions (3) and (4). Hence, by
transfinite induction, an uncountable family {V,},<q ([1], p. 120, Corollary) of
sets'in #7 is thus generated. This, however, contradicts the o-finiteness of u, and
hence the theorem is proved in this case. ‘

Case II (cf. [2], p. 110, b)). In this case we retain only the additional hypo-
thesis (i) of Case I. First choose a point x, € E, and denote, for any positive integer n,
by G, the open sphere of radiiis » and centre x,. Then denote by E, the set of the
points x € E n G, for which there exists a p-regular sequence of sets from ¥” con-
vergitg to x with a parameter of regularity exceeding n~*. 8ince E, =G, there
exists, by Case I, a countable family {V;} of pairwise disjoint sets in ¥~ such that

RENUYV) =0 and U V,=Gy.
i i
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It follows that
2u(r) = p(U V)<uGh<+o.

Therefore, given &>0, there is a positive integer N such that

N
ENU V) <e.
i=1

N . N
Then ExNU ¥ is contained in the bounded open set G\ |J ¥;. Now it is clear
i=1 i=1

that by simple induction we can define a sequence {&.} subject to the following
conditions:
n

(c4) U &, consists of a finite number of pairwise disjoint sets in ¥" (n = 1,2, ..);
i=1

(cz) if T; denotes the union of the sets in &;, then

n
PENUTY<n™ (n=1,2,.).
i=1

Since E,cE, ., for all n, it follows, by (c,), that

(15) u(E,,\G Ty =0 (m=1,2,.).

But E = U E,. Hence, by (15), it follows that

n=1

ENUT) =0,
which proves the theorem in this case.

For the general case, let E, denote the set of the points x € E for which there
is a u-regular sequence {V,} of sets from ¥ converging to x with d(V,)>0 for
all ». Then, by Case II, there is a countable family F, of pairwise dlSJOlnt sets
in ¥ such: that

MENU Fo) = 0.
Let

= (ENE)NU F 5

and let &, denote, under the equivalence relation @(x, y) = 0 defined on X, the
family of the equivalence sets which intersect E’. For every x € E’ there is a set
V.e¥" such that xe ¥, d(V,) = 0 and u(V,)>0. It is easy to see that ¥, is in
fact the equivalence sct containing x. Since closed sets are measurable (1), it follows
from the o-finiteness of p that the family %, is countable. Also, the sets in & o
being closed, no member of &, can intersect any member of &,. Therefore, the
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family & = #, U &, fulfils all the required conditions. This completes the proof
of the theorem.
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University, Calcutta, for his kind suggestions in the preparation of this note.
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On the categorical shape of a functor
by

Aristide Deleanu and Peter Hilton * (Syracuse, N. Y. and Seattle, Wa.)

Abstract. The concept of shape, first introduced by Borsuk in his study of the homotopy
theory of compacta, is extended to an abstract categorical setting. The shape of an arbitrary functor
K is defined, and it is proved that the Kan extension is shape-invariant. One then shows that many
of the categorical aspects of shape remain valid in this very general seiting; others require some
restriction on the functor X, and the notion of a rich functor is introduced, which is more general
than the notion of a full functor. In addition, it is proved that if K is rich, the iteration of the shape
construction produces the same shape category. Finally, the special case when X has a left adjoint
is discussed in some detail, and a relation with the categories of fractions is exhibited.

Introduction. Since Borsuk [1] first introduced the concept of shape in his
study of the homotopy theory of compacta many authors (e.g. [5], [6], [7], [11],
[12], [14], [15], [16], [17]) have contributed to the develepment of shape theory.
However the theory has remained almost exclusively confined to a topological
context, never very far removed from the setting in which it was originally cast
by Borsuk; and further, and arising from this restriction in the scope of the theory,
the concept has, in the work cited, related to some category of topological spaces T
and a full subcategory P of T. However, Holsztysiski [10] observed, scon after
Borsuk’s invention of the concept, that shape could be formulated as an abstract
limit, and was thus of more general applicability.

It is the principal purpose of this paper to free shape theory from its restricted
scope. Thus we replace the full embedding of a topological category P in aiopologi-
cal category T by an arbitrary functor K: P—T from the arbitrary category P to
the arbitrary category T. In so doing we are very much inspired by the point of
view adopted by LeVan in his thesis [12]. ' We then find that many of the categorical
aspects of shape theory (we do not speak of the fopological aspects) remain valid
in this very general setting. Others require some restriction on the functor K, but
a restriction far milder than that K should be a full embedding.

In Section 1 we define shape and the dual concept coshape. Indeed, for K: P—T,

* The first-named author was partially supported by NSF Grant GP38804, and the second-
named author by NSF Grant GP43703, during the preparation of this paper.
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