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UNIVERSITY OF CONNECTICUT, Storrs, Connecticut Abstract. Let ZF be Zermelo-Fraenkel set theory without the axiom of choice and let ZF®

and be the modification which allows urelements or atoms. In this paper we show that there are many
MICHIGAN STATE UNIVERSITY, East. Lansing, Michigan ‘ forms of the axiom of choice and the axiom of multiple choice involving linearly ordered sets which
WAYNE STATE IVERSITY, Detroit, Michigan : ' : are equivalent to the axiom of choice in ZF but not in ZF’. The independence proofs use permu-

tation models of Fraenkel-Mostowski,

 Accepté par la Rédaction le 30. 6. 1975 v § 1. Introduction. The variants of the axiom of choice which we consider in

this paper are listed below.

The statements

A:  Antichain Principle. Every partially ordered set contains a maximal
antichain. (Le. a maximal subset of mutually incomparable elements.)
AC:  Axiom of Choice. For every family x of non-empty sets, there is a func-
5 tion f such that for each uex, f(u) ew
ACH:  Axiom of choice for a linearly ordered family of non-empty sets,
ACro: Axiom of choice for a family of non-empty sets each of which can be
linearly ordered.
(V) [(Yuex)@R,) (R, linearly orders u) - AC holds for x].
ACpro: Axiom of choice for a family of non-empty sets, each of which has
a defined linear ordering.
(V) [AR) (Yuex) (R, linearly orders #) -»AC holds for x].
ACH:  Axiom of choice for a linearly ordered family of non-empty sets, each
of which can be linearly ordered.
ACK0,:  Axiom of choice for a linearly ordered family of non-empty sets; each
of which has a defined linear ordering.
LW: Every linearly ordered set can be well ordered.
MC: Axiom of Multiple Choice. For every family x of non-empty sets, there
is a function f such that for each u € x, f(4) is a non-empty, finite sub-
set of u.
MCLC:  Axiom of multiple choice for a linearly ordered family of non—empty sets.
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MCio:  Axiom of multiple choice for a family of non-empty sets, each of which
can be linearly ordered.

MCpro:  Axiom of multiple choice for a famil 3
y of non-empty sets, each of whi
has a defined linear ordering. h of vhich

'LO_ - . .
MCio:  Axiom of multiple choice for a linearly ordered family of non-empty
" sets, each of which can be linearly ordered.
MCplo: Axiom of multiple choice for a linearly ordered family
sets, each of which has a defined linear ordering,.
PW:  The power set of each well ordered set can be well-ordered.
o In §.2 we show‘that %11 the implications and equivalences shown in the diagram
be ;\; (Fig. D -hold in ZF°, ZF with atoms. However, it is known [4], that PW—AC
in ZF. Thus, it follows that all the statements listed above are equivalent in ZF

of non-empty

ACHO—=MCLO

>N

AC—MC ACEE—MCE3—LW=>=MCK o~=ACKo—=PW

XKLL

ACLo—MCrLo~—>MCpLo=~ACpro
Fig. 1

"I‘heg, in § 3 we construct Fraenkel——Mostowski
non-implications. We show, with very few excep
. o . .
;ivse;s;‘?vl; 111111 ZZ;‘O ﬂa;n;i if there is no arrow between two statements then it cannot
at one implies the other. There are still
dus to the fact ther o i still some unsolved problems
not been able to construct i i
: ¢ an F-M model in whic
AC,, is true(t). However, all other questions have been resolved. (See Fig. 3 in § 31)1

. (F-M) models and prove the
tions that no arrow in Figure 1 is

§ 2. The implications. The following implications are clear.

ACHO—s Lo

A

AC—=M
MC ACE—=MCI8—=MCi,

ACLo—>MCLo—=MCh
Fig. 2

The proof that MC—A is gi i

given in [1], p.
gt S [1], . 80 and the proof that LW PW is given
(*) Added in proof, John Tross has. di;

/ sC {
ACLo is true and MCMO is false. overed & model due to R. 7, Gauntt in which

e ©
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LEMMA. 2.1. A_)'A-CDLO'

Proof. Let x be a set of non-empty sets. (There is no loss of generality if we
assume the sets in x are pairwise disjoint.) Suppose R is a relation which linearly
orders each set in x. Define a relation § on |Jx such that for each a, be [x, aSh
iff Auex)(a,beud aRb). S is a partial ordering on Jx and a maximal S-anti-
chain is a choice set for x.

It is clear that ACpLo—MCpro and ACHo-+MCho.

LEMMA 2.2, MCDLOQA’CDLO'

Proof. Let x be a set of non-empty pairwise disjoint sets, each of which is
lineasly ordered by R. Let F be a multiple choice function on x. Then {2: (Fu & x)
(@ is the R-first element of F(u))} is a choice set in x.

Lemma 2.3. LW—ACHs.

Proof. Suppose {x, R} is a linearly ordered set of non-empty pairwise disjoint
sets such that each set in x is linearly ordered by S. Then, (Jx can be linearly ordered
so LW implies that (Jx can be well-ordered. Using this well-ordering a choice
function on x can be defined.

The proof that MCE2o—ACEY, is similar to the proof of Lemma 2.2.

LemMMA 2.4. ACEo—LW.

~Proof. Let {(x, R) be a linearly ordered set. Define

y = {ux{S}: usx & S well-orders u} .
The set y can be linearly ordered by a relation T as follows:
(U x SN T x {S2)) Sy, 1<z, S
of [f: Cuy, Sy & {uy, Sp) &if a is the Sy-first element in {beuy: b3 f(b)}
then aRf(d)] where {u, S) is the ordinal number of <u, S and f: {uy, Sy

& (u,,S,> means f is the unique isomorphism from <uy, $;> onto {uy, So)-
The set '

z = {(x—w)x {S}: ucx & S well-orders u}

is a linearly ordered set (7" induces a linear ordering on z) of non-empty sets, each
of which is linearly ordered by R. Thus, ACE2, implies there is a choice function F,
on z. Then well-order x so that the oth element of x, @, = the first coordinate of
F((x~ U {ap)) x{<}) where < is the well-ordering OfplE) a; induced by o
< 3
Tlfe ;)roof that PW—AC in ZF is due to H. Rubin and can be found in [5],
p. 77. Thus, all the statements listed in Figure 1 are equivalent in ZF. We shall

show in § 3 that this is not the case in ZF°.
As a closing note for this section we show that AC"® is equivalent in ZF° to

the following maximal principle.
M: Every transitive and connected ordered set contains a maximal linearly
ordered subset.
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LemMMA 2.5. M—ACC,

Proof. Let <x, R) be a linearly ordered set of pairwise disjoint sets. Define Ky
on Jxsothatfora, be {Jx,whereaeue xandbevex, aShiff uRv. Sis a transi-
Five and connected relation on (Jx. An S-linearly ordered maximal subset of Ux
is a choice set for x.

LemMa 2.6. AC°—M. ;

Proof. Suppose {x, R) is a transitive and c'onnectcd set. Define a relation §

on x so that
uSv iff w=v or (WRv&VRY).

S is an equivalence relation: For each u ex, let [u] = {vex: uSv}. Let p = {[u]:
u € x}. Since R is transitive, we can define 2 relation T on ¥ so that [u] T'[v] iff uRv.
(If u' e [u] and v’ € [v], w'Rv’ iff uRp.) The relation T linearly orders y and a choice
set for y'is a maximal linearly ordered subset of =x. »

§ 3. The non-implications, Given a model M’ of ZF°+AC which has U as
the set of ur-elements, a permutation model M of ZF° is determined by a group G
of permutations of U and a filter I" of subgroups of G which satisfies

€8] (VaeU)@He (Vo e H)p(a) = a
and
@ (VoeG)(YHeNgHp e

Each permutation of U extends uniquely to a permutation of M’ by g-induction
ar.ld for any ¢ € G, we identify ¢ with its extension. The following notation from [2]
will be adopted: For xe M’, = |

fixg(x) = {peG: 0(¥) =y for all yex}.

When no confusion will arise, we will write fix (x) for fixg(x). Also it H is a sub- \

group of G, xe M’ and (Yo EH)((D () = x) we say H fixes x. It it is also the case
that (Ve eH}(Vy'E x)(@ () = ») we say that H fixes x pointwise,

4 TEIC permutation model'M determined by U, G and I consists of all those
,xhe M’ such that for every y in the transitive closure of x, there is some K e I' such
Z fa.tZ ; fixes y. We refer the reader to [2], p. 46 for the proof that M is a model

dEIaCh of the non-implicatlions is proved by using one of the six permulation
;no t<: ;1 M} . Mi’ -s M described below. In each case we describe M, by giving

set U; ol urelements, a group G, of permutati Glter I"
broups ot G P 1ons of U, and a filter I'; of sub-
Uy is'a countable set of urelements and < g a dense linear ordering of U,

without first or last element. G, is th,
N - Uy 18"the group of all aut iame of
and I is the filter gonerated by p utomorphisms of (U, <>

{fix(E): Eis a finite subset of Uy} .
(This is the linear ordered model of Mostowski [3].)
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U, is countable.and < is a partial ordering of U, such that (U,, <) is a count-
able, universal, homogeneous partially ordered set. G, is the group of all auto-
morphisms of <U,, <) and I'; is the filter generated by

{ﬁx(E)f E is a finite subset of U,}.
We refer the reader to [2], p. 101 for definitions.

. Uj is countable, G is the group of all permutations of U, and I’y is the filter
generated by v
{fix(E): E is a finite subset of U,}.

Uy = U {ay, b;} where a; and b; are atoms for all iew and i % j implies
o ‘

{a, b} 0 Faja b} = @,
Gy = {»: @4=w)(4 finite and (Yie 4)(p(a) = b, and ‘
o) = al) and (Vi ¢ 4) (49(‘11) =a; and @(b) = b;))}

and I'y is the filter generated by
{fix(E): E is a finite subset'of U,}. .

Us is a set of urelements of cardinality 8y, G5 is the group of all permutations
of Us and I's is the filter generated by '

{fix(E): E is a countable subset of Us} .

Us = (J C; where each C; is a countable set of urelements and # % j implies
C;n Cj =i EjnZoi, ) .
Gs = {p: (View)(p(C) = C;) and (AB) (B is a finite subset
of Us and (Ya ¢ B)(¢(a) = a))},

T is the filter generated by {fix(C): i e w}.

We note that if one prefers a countable set of atoms M could be replaced
by M3 where U/ is a countable set of atoms and < is a dense linear ordering of Us
without first or last element,

Gi = {p: AESU)(E is bounded and (Ya ¢ E)(p(a) = a))} .

and I'} is the filter generated by {iix(E): E is a bounded subset of Us}. All the
theorems which we prove concerning the model M; remain true if My is replaced
by M%. We summarize the results of this section (and of Sections 1 and 2) by the
following table. An — in a box indicates that the row label implies the column
label and a number i in a box indicates that the row label is true in M, and the
column label is false. An empty box indicates an open problem.

(See the footnote on p. 112 for additional results on AC.,.

We now look at the models one at a time beginning with M.
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AC AC® MC ACLo MC™® ACES A MCro MCLO MCpro LW PW

AC —_ — - - - —p - - - -3 — —
ACH® 5 | =] s 5 | =l s | 5] 5 =5 ]~|>
MC 4 4 -+ 4 — 4 — - — — — -
ACio — - - - - — -
Mc® | 4 4 | s 4 | > | 4] s o | 5 |-
LO
ACio 3 3 3 3 3 - 5 5 - 5 - -
A 3 3 3 3 3 4 - 6 6 PO R
MCro 3. 3 3 3 3 4 2 - - + = | -
LO
MCro 3 3 3 3 3 4 2 | 5 - 5 - | -
MCpro | 3 3 3 3 3 4 2. 6 6 - N
LW 3 3 3 3 3 4 5 5 6 5 - | -
PW 1 1 1 1 1 1 1 1 1 1 1] -
Fig. 3

By considering Figure 1 we see that to prove all of the claims made in Figure 3
about model M, the following theorem suffices:

TueoreM 3.1. In M,, PW is true and LW is false.

The proof can' be found in [2], p. 134 ff.

Before proceeding with the remaining models, it is convenient to prove the
following two lemmas.

Lemma 3.1. Suppose M is a permutation model determined by a set U of ur-
elements, a group G of permutations of U and a filter I' of subgroups of G. Suppose
that W is a set in M and H is a function defined on W such that:

1) He M,

2) G'eTI fixes H and

3) for each ze W, there is a y € H(z) such that

Voe@)(o@) = z-00) =).
Then there is a function Fe M defined on W such that
: (Vze W)(F(2) e H(2)).
Proof. Assume the hypotheses. Define the equivalence relation ~ on W by
U~ND & (aq) e G’)((D(u) = 1]) . ‘

e ©
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Let C be the set of equivalence classes and choose u, & ¢ for each ¢ e C. Then
choose t, & H(u.) such that

(Vo e &) (o) = u~o(t) = ).

(Neither of the functions u or ¢ need by in M), We then claim that

F= {(P(<uc’ ic>): CEC&(PEG,}

is a function with the required properties. We verify that F is a function. The other
properties are easily verified. Suppose that <(p(u0), (L)) and <o'(uys), @'(1.))
are in F, where ¢, ¢’ € C and ¢, ¢’ € G’ and suppose that ¢(u,) = ¢'(4.). Then

® o' o) =t

Hence u,~u, $0 4, = . and therefore ¢ = ¢’. Then by () we have o' " tou) =u,.
So by the choice of #,, @' ' @(t) =1, This gives ¢(t) = () = ¢'(t) and
therefore F is a function.

We prove Lemma 3.2 in model M;. However, with very little modification
the same proof holds in M,, and Ms. Mostowski ([3], p. 236 ff) gives a proof
for M;. ‘ .

LEMMA 3.2. If x € M5 and E; and E, are supports of x, then Ej 0 E, is a sup-
port of x.

Proof. Assume the hypotheses and suppose ¢ € fix(E; n E,). The first step
is to find a permutation ¢’ € fix(E; n E,) such that {ue Us: ¢'(w) # u} is fidite
and () = @(u) for all ue E,. (So that ¢(x) = ¢'(x).) @' is obtained as follows:
‘Write ¢ as a product of disjoint cycles and let Cy, Cs, ..., C, be those cycles which
have an element in common with E;. ¢’ will be a product of a finite number of
finite disjoint cycles C{, Cj, ..., C,, where

Cl=C; it C;is finite,

and
- Cl = (g, Uy s vy Ue—ys ) it C; Is infinite,

where C; = (..., tp, Uys voes Ug—g> Uiy +er) and all elements common to C; and E,

OCCUT AmONg Ug, Uy, s Yo
" The next step is to show that there are permutations o € fix(E;), 7 € fix(E,)

and ¢" e fix(E; L E,) such that ¢’ = ¢~ 'y '¢"no so that we can conclude
p(x) = ¢'(x) =o' o"Ma(x) = x

and the proof will be complete. o, # and ¢” are ‘constructed as follows: Let
C = {u: ¢'(u) # u} and let 4 and B be two disjcint subsets of U; such that each
is disjoint with E, U E, U C, 4 has the same cardinality as (E; U C)—E, and B has
the same cardinclity as E,—E;. (We note here that (E, v C)—E, and E,—E; are

5 — Fundamenta Mathematicae XCVIX
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disjoint.) Let f be a 1-1 correspondence between (E, U C)—E, and 4 and let g be
a 1-1 correspondence between E,—E; and B. Then ¢, 5 and ¢’ are defined by

Fi)) if ue(E; vC)-E,,
n@W =<f"'w if wued,
: u otherwise ,
9@ if wuekE,—E,,
o) =<g7'w) i ueB,
u otherwise ,

‘ 9" = nog’e (W)
It can be easily shown that ¢, 5 and ¢’ have the required properties. This completes
the proof of Lemma 3.2. .

Now, considering Figures 1 and 3 again, we see that. in order to verify the
claims concerning M,, it suffices to show:

THEOREM 3.2. In M,, MCyq is true and A is false.

. Proof. Itis proved in [1], p. 82 that 4 is false in M, . Hence it remains to prove
MC,, in M,.

SupPose W is a set of pairwise disjoint sets in M, each of which can be linearly
ordered in M,. It is shown in [1] that LW holds in M, so we also have that each
ele.ment of W can be well-ordered in M. Suppose that E is a support of W (i.e.
E is a finite subset of U, such that for every ¢ efix(E), o(W) = W.) For cacli
ze W, let

H(Z) = {t: ¢ is a non-empty finite subset of z}.

Fix(E) fixes H, therefore in view of Lemma 3.1, it suffices to find for each ze W
an element y e H(z) such that

(++) (Vo efix(B)) (¢(2) = 20 () = 3).
. Choose tez and let y = {p(D: ¢ € fix(E) and ¢(z)
satisfies (++). We complete the proof by showing that y is finite.
.Each elclzment of M, has a I?ﬁnimal support. (This follows from the fact that
the intersection of two supports is a support, Lemma 3.2.) Let E’ be the minimal

support of z and E’’ the minimal support of . We claim E" < 7' it
: . aim E" < E’. [, t
i1s some a€ E”'—E’. Then the set For if not, there

= z}. It is clear that y

B={e®): pefix((E" uE)—{a})}
is a subset of z and further the et
Ko 0@Y: g efx((E” U EY-{a)))

is a ;ne tolone function in M, from B to U,. One can easily show using Lemma 9.5
in [2], p. 137 that {p(a): @ efix(E" U E')~{a})} cannot be well-ordered in M,.

Therefore B cannot be well-ordered in M,, h
B c 2, hence z cann - red 1
A contradiction which proves the claim. °t be Well-ordered M

icm®
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Since E’ is a minimal support of z, any ¢ €fix(E) which fixes z must fix E’.
(Although not necessarily pointwise). Therefore

y={o®: ¢(z) =z and g efix(E)}={p(): ¢(E) = E' and ¢ efix(E)}
and in view of the fact that E'' < E’,

y<{e®: (E")SE’ and ¢ e fix(E)},
and this set is clearly finite since E” is the least support of ¢.

Alihough it is not necessary for Figure 3, we can also show that ACLS is true
in M, while ACro and MC™® are false. (The proof is similar to the proof of
Theorem 3.3.) From these latter results Figure 1 and Theorem 3.2 the truth and
falsity of all the statements is determined in M,. See Figure 4.

For the claims involving M, we need the following theorem:

THEOREM 3.3. In M5, A, ACLS and MCy, are true and AC, and MC™® are false.

Proof. The proof that A is true in M; was given by Halpern in his Ph. D.
Thesis 1962, For the proof see for example [2], p. 134 ff.

‘We now prove ACLS in M. By Lemma 3.2 each element of M; has a minimal
support. It also follows that if x € M5 and E is a minimal support of x, then

() o(x) = x>(E) = E
for any ¢ € G5. Further we claim that if

1) xe M,,

2) x can be linearly ordered in Mj,

3) E is minimal support of x,

4) E’ is a minimal support of y € x.

Then E’'<E. The proof of the claim is by contradiction. Suppose u € E'—E,
then the set of pairs

Ko, 0 @)>: @ efix((E" v B)—{u})}

is a one to one function in M. (By (*).) Further its domain is a subset of x (since
u ¢ E) and its range is U; — ((E v E)—{u}) which cannot be linearly ordered in Mj.

Now the proof that ACLS holds is as follows: Suppose that W is a linearly
ordered set of linearly orderable sets in M;. Suppose x € W and y € x. Suppose
further that E, E' and E’’ are minimal supports of W, x and y respectively. By the
claim, E' < E' < E hence fix(E) fixes a well-ordering of (J W and therefore a choice

function on W. .
The proof of MC,o in M, also makes use of the claim. Suppose W is a set

of linearly orderable sets in M. Let E be a support of W. For each ze W, let
H(z) = {y: ycz and y # O and y finite} .

E s also a support of H and therefore to prove MCy, using Lemma 3.1 it suffices
to find for each ze W a y € H(z) such that

(Vo efix(E)) (0@ = 200 =) -

5*
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So choose z € W, let E” be a support of z and let x, € z. By the claim if E”’ is a mini-
mal support of x,, then E’'<E’. Now let

¥ = {p(xy): ¢ efix(E) and ¢(z) = z}.
By (¥), ¢(2) = z—¢(E’) = E’, hence

Y‘E{(P(xo)f @ e fix(E) and ¢(E') = E'}
S{p(xp): ¢ efix(E) and @(E'")SE'}

which is finite since E' is a support of x,. So y is finite and further if ¥ e fix(F)
and Y(2) = z, then W(y) = y. Therefore y satisfies the required properties and
applying Lemma 3.1 gives a function F with domain W such that F(z) is a non-
empty finite subset of z for each ze W.

The set of non-empty finite subsets of U, provides an example of a set each
of whose elements can be linearly ordered but which has no choice function. There-
fore ACy is false in M;. ‘ .

To show that MC™© is false in M, we let z;={E: ECU, and E has cardi-
nalityi} andlet W = {z,: i€ w}. W is well-ordered in M; and we claim there is no
function f in M, such that for all i e w, f(z)) is a finite subset of z,. The existence
of such an fleads to a contradiction when one considers f(z)) where i is chosen to
be larger than the cardinal number of a support of f. This completes the proof
of Theorem 3.3.

TaeoReM 34. In M, MC is true and ACYS is false.

Proof. The proof in [2], p. 134 ff shows that MC is true in M,.
) The set {{a;, 5,}: iew} provides an example of a linearly ordered set of
linearly-orderable sets which has no choice function in M,.

THEOREM 3.5. In M5 AC™® is true and ACy,, is fulse.

Proof. We begin by proving AC° in M. A set ESUs is said to be a support
of xeMs if E is countable and (Vo € fix(E)) (p(x) = x).

First we shall show that LW holds in M. 5. Suppose X is linearly ordered in M. s
and that E is a support of a linear ordering of X. We claim that E is a support for
a well-ordering of X. If not then fix(E) does not fix X pointwise. That is, for some
yeX and ¢ efix(E), ¢(y) # y.

Our plan is to show that for some Y e fix(E), y(») # y but Y*(¥) = y. (This
will contradict the assumption. that E is a support of a linear ordering of X)) Sup-
pose that E' is a support of y where E'2E. Let C'be a subset of Us of the 'same
cardi_nality as E'—F # O such that C " B’ = @&, Let Y be the permutation of U,
that interchanges C and E'—E, Le., let f be a 1-1 function from E'—~E ont6 C ané
define

fla) if* aeE'-E,
V(@) =<7 if aecC,
) C e otherwise ,

e _© »
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Then y? is the identity so ¥*(») = p, ¥ € fix(E) and ¥ (») # y, for if Yy(y) =y,
then W (E’) is a support of ¥ () and hence a support of y so by Lemma 3.2, Y (E') n
n E’' = E is a support of y, a contradiction. So LW holds in M;: .

Now let X be a linearly ordered set of non-empty sets (in M;). Then X is well-
ordered in M5, so we let E be a support of a well-ordering of X. Then fix(E) fixes X'
pointwise. Let E’ be a countable subset of Us such that E'2 E and E'— E is count-
ably infinite,

Claim. For evety y € X, there is some z € y with support E’. (This will give
a choice function in My, for X.)Choose y € X and z € y. If E’ is a support of z then
we are done. Otherwise, suppose E’ is a support of z. Choose a permutation
¥ e fix(E) such that y(E”—E)cE'—E. Then Yy(z)ey and y(z) has support
W(E')SE’, hence has support E’. This proves AL*® in M.

To show that ACpyo is false in My, we let

W= {4dx{R}: A<Us, A = 8y, and R is a linear ordering of type 5
(the order type of the rationals)} .

W satisfies the hypothesis of ACpio. Suppose F is a choice function on W
and E is a support of F. Let E’ be a countably infinite subset of Us disjoint from E
and suppose R is a linear ordering of E’ of type #. Then E’ x {R} ¢ W s6 suppose
F(E'x{R}) = <a, R). Let ¢ efix(E) such that @(a) # a but ¢(E’) = E’ and
©(R) = R. (Le. shifts the elements of E’ preserving the linear ordering R). Then
we have the contradiction that ¢(F) = F, ¢(E'x{R}) = E'x{R}, but ¢({a, R))
# {a, R). The proof of Theorem 3.5 is therefore complete.

THEOREM 3.6. In Mg A is true and MCYLY is false.

Proof. To show that A holds in Mj, let (P, <) be a partially ordered set
in M. Suppose (P, <) is fixed by G’ € I'¢. Let B be an antichain maximal among
those fixed by G’ and suppose B is not maximal. Then for some xe P—B, By {x}
is an antichain. Further, B’ = B u {¢(x): ¢ € G’} fails to be an antichain since B’
is fixed by G and properly includes B. There are two ways B’ can fail to be an anti-
chain. Either ¢ (x)>y (or y> ¢ (x)) for some ¢ € G’ and y € B or for some ¢, ¢ € &,
¥ (x¥)>0 (). o » _

The first alternative is impossible since ¢(x)>y implies x>¢~'(y) which
contradicts the assumption that B u {x} is an antichain. (y>@(x) is treated simi-
larly.) The other alternative is also impossible. To show this we use the property
of the model M that each permutation in G permutes at most a finite number of
elements. Therefore, for every 5 € Gy, there is some ne @ such that 7" = e (the
identity permutation on Us). (x)>@(x)—-x>y (). So if we let 1=y ¢
and if we suppose 1" = e we get

x>n@)>X)> .>0"(x) = x

a contradiction. Therefore B is a maximal antichain and A is true in M.
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W= {C;: iew} is an example to show that MCE] is false in M. This
Cf)mplgcs the proof of Theorem 3.6 and therefore the proof of the non-implications
given in Figure 3.

To summarize the results of this section we include Figure 4. It shows for
each of the models M,-M, which of our statements are true (T) and which are

false (F).

w | | ] | |
AC F F F F F | F
AC™® F F F F T F
MC F F F T F F
ACro F F F F F F
mc-® F | F F T 7 F
ACES F T T F T F
A F F T T F ‘W;«_
MCro F T T T F F
MCis ' F T T T T F
MCpiro F T T T F 7
Lw F T T T T T
‘PW T T T T T T
Fig. 4
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The hereditary classes of mappings
by

T. Maékowiak (Wroctaw)

Abstract, If @ is an arbitrary class of mappings, then a mapping f: X—7Y is hereditarily ¢ if
for each continuum K c X the partial mapping f|X is in %.In the paper we study some properties
of hereditarily monotone, hereditarily confluent, hereditarily weakly confluent and hereditarily
atriodic mappings (for the definition see § 3). In particular, it is proved that a continuum X is
hereditarily unicoherent if and only if any monotone mapping of X is hereditarily monotone, We
give also other mapping characterizations of some classes of continua. Namely, we prove that
a continuum X is hereditarily indecomposable (atriodic) if and only if any confluent (atriodic)
mapping of a continuum onto X is hereditarily confluent (hereditarily atriodic). Using these results,
we characterize hereditarily decomposable snake-like continua and an arc by hereditarily weakly
conffuent mappings. These results are connected with the problem posed in [12], and imply some

partial solutions of this problem.
Further, it is proved that any (irreducible) hereditarily confluent mapping of an arcwise con-

nected continuum (onto a locally connected continuum, respectively) is monotone. We discuss
also some invariance properties of the above mappings. In particular, we show that if a continuum
X is hereditarily decomposable, then the hereditary unicoherence of X as well as the atriodicity
of X is an invariant under hereditarily weakly confluent mappings. '

§ 1. Introduction. The topological spaces under consideration are assumed
to be metric and compact, and the mappings—to be continuous and surjective.
A continuum means a compact connected space.

Psendo-monotone mappings have been introduced in [20], p. 13, by L. E. Ward,
Jr. Namely, we call a mapping f: X— Y pseudo-monotone if, for each pair of closed
connected sets A<=X and B<f(4), some component of 4 nf ~1(B) is mapped
by f onto B. Simple examples show that the pseudo-monotoneity of f neither implies
nor is implied by its monotoneity. We describe below a monotone mapping which
is not pseudo-monotone. This example will be used in further considerations.

(1.1) ExampLE. There exists a monotone mapping f of a circle S onto itself
such that f is not pseudo-monotone.

Let (, ¢) denote a point of the Euclidean plane having r and ¢ as its polar
coordinates. Take the unit circle S = {(r, ¢): r =1 and 0<p<2n}. We define

r,2¢) if
f(ra(P):’{(r,O) if

Observe that a mapping f: S—S is monotone but it is not pseudo-monotone.

0<Lp<m,
T<P<S2T.
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