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Boolean valued rings
by

E. Ellentuck * (New Brunswick, N. 1)

Abstract. We study Kaplansky rings from the viewpoint that it is sometimes more insightful
to understand them in terms of truth values taken from their idempotent algebra rather than in
terms of ordinaty truth values. The connection between these notions of truth is given exactly
by Feferman-Vaught, An illustration of these ideas is taken from the arithmetic isolic integers. We
show that they form an idempotent valued model of arithmetic and use this to derive the Nerode
metatheorems.

0. Introduction. Why is Nerode’s decision theorem for the arithmetic isolic
integers (cf. [3]) so similar to the Feferman—Vaught decision theorem for reduced
direct powers (cf. [1])? This question was asked (to us) by L. Hay in 1972. Our
approach to this question was keyed by a fact that we had known for some time
that the arithmetic isolic integers could be thought of as a Boolean valued model of
classical arithmetic. We were thus led to take a careful look at Boolean valued models,
and in particular, of Boolean valued rings.

In Section 1 we examine a model U which assumes values in a Boolean algebra 4.
Let B be a complete subalgebra of 4. How can we give a B-valued interpretation
to A2 If you like, how can we approximate 4 -truth by a coarser B-truth? Let B be
a model with the sameé universe as A, but whose truth values on atomic formula is
defined by

[0 = Blo = X2{x < Bl x<[o = bla}

What could be a more natural approximation? In Section 2 we determine [-]g in
terms of [[*Jy. The connection is exactly Nerode, is exactly Feferman—Vaught!
Section 3 gathers together some fairly well-known results. We define reduced
Boolean power generalizing Mansfield’s Boolean ultrapowers (cf. [2]). Finally
a connection is made between Boolean valuations and forcing.
In Section 4 we begin our study of rings. A special kind of ring due to Kaplansky
is singled out for study and it is shown how they can be considered to be Boolean

* At varioué times supported by: The Institute for Advanced Study, The New Jersey Research
Council, and The Rutgers Faculty Academic Study Program.
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68 E. Ellentuck

valued where the values are idempotents in the ring itself. Various examples are
given and these suggest that it is sometimes more insightful to understand a ring in
terms of its idempotent truth values rather than in terms of its 2-values. Note that
this claim is made on technical rather than philosophical grounds. The section con-
cludes with an application of our decision theorem to rings.

In Section 5 we apply our ring theory to the arithmetic isolic integers A*(4).
The section culminates in showing how to interpret A*(4) as an idempotent valued
model of the ordinary ring of integers. This view is exploited in Section 6 where we
derive most of the Nerode metatheorems by a uniform Boolean method. Tt will
then be the reader’s task to see how well we have answered the original question.

+ Finally we would like to acknowledge our special debt to L. Hay and R. Larson.
Not only were there many joint conversations, but Larson made available to us a set
of detailed notes explaining his own sheaf theoretic view of ring theory.

1. Reduced Boolean valued models. If 2 is a mathematical structure let Uy de-
note the universe of 2. Let us start with a Boolean algebra 4 = (U, +,+, —,0, 1).
The ingredients of an A-valued structure consist of a non-empty universe Uy; a collec-
tion Fy of functions, each of which maps some finite power of Uy into Uy; a collec-
tion Ry of A-valued relations, each of which maps some finite power of Uy into Uy;
and a distinguished binary 4-valued relation Ey which serves as the.4-valued equality.
Distingunished individuals are treated as 0-ary functions. When there is no ambiguity
we drop the subscript % from these symbols. U = (U, E, F, R, 4) is an A-valued
structure if for any a,b,ce U, feF, and re R we have

E(@,a) =1,

E(a, D<ED, a),

E(a, by E(b, )< E(a, ¢),
E(a, <ELf(@),f®),
E(a, b)-r(a)<r(d).

M

4

The last two conditions of (1) are only given for unary functions and relations. We
must also add conditions for the n-ary case. We ask the reader to be prepared for
other omissions of this kind. ‘ .

Let Ly be a first-order language with equality which is suitable for discussing 2.
It contains: Individual variables v;, vy, ...; an equality symbol =; a Tunction sym~
bol ffor each fo & Fy; and a relation symbol r for each relation ry & Ry. Ly is obtained
from Ly by adding an individual constant for each a € Uy. Unless there is ambiguity
we shall use the elements of Uy as their own names. The set of sentences of L(L) are
denoted by S(S) respectively. We evaluale each term 7 of S is 2 in the usual way
and denote its value by tyq. An A-valued structure U is an A-valued model if there
is a function [-Jy: Sy—Uy which satisfies ‘
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[[0 = T:ﬂ = E(‘Tﬂls T&H)?
[r@] = r (Tar)s
[evi] = [e]+[y1,
[~¢] = ~[¢],
[@v)0] = ZUA [o@],
ag bl

where o, T are terms, r is a relation symbol, ¢, y are sentences, and § has only v free.
Z" is the supremum operation of A, and part of our definition is that it exists under
the requirements of (2). [~y is unique and is called an d-valuation. Throughout the
rest of this paper 2 will at least be a structure; we shall specify when it is a model.

A model U is rich if for each formula 0 with only v free there is an g & Uy such
that [A0)0] = [@(@)]. Valuations are particularly easy to compute when 2 is rich,
We shall therefore give some sufficient conditions for richness, A partition of A is
a function p mapping some index set I into U, such that pip; =0 for i+ j, and

mzl pi= 1. An A-valued structure U is complete it A is a complete Boolean algebra

and for each index set I, each partition p: I-U,, and each I-termed sequence
a: I=Uy there is a b e Uy such that p,<E(a, b) for each iel

Tueorem L. If W is a complete A-valued structure then it is a rich A-valued
model.

Proof. The only bar to being a model is the last clause of (2); the sup might
ot exist. Thus 2 is a model by the completeness of 4. To prove richness we need
only find. b & Uy such that [(3v)0] <[0(5)]; the converse inequality follows from .
Let A be a cardinal number and let {ag] &<2} be'a well-ordering of Uy of type A.
For each o<1 let .

@

P = [0(a)] - ; [0(ag] -
. <a
Then [(@v)0] = :;& Dy By adding an extra element of U, to p we can convert it to

a partition of 4. By completeness there is a b € Uy such that pe<[a; = b] for each

{<d. Thus py<[ay = b]-[0(ay)]. By induction on the complexity of 0 we can
show that

€ [x = yI-[0GI<[00)]
Thus p<[0(b)]. Summation then gives ¥ p,<[0(H)]. @
F<A

for x,ye Uy.

When we come to deal with algebraic operations on structures it is useful to
call 9 discrete if y(a,b) = 1 il and only if a = b for every a, be Uy. We give
an example of such a structure, Let 4 be a Boolean algebra and let adb be the
symmetric difference ol a, b€ U,. There is a canonical way to interpret A4 itself as
an A4-valued structure 4. Namely let the universe and functions of 4 be the same as
those of 4 and for @, be U, define

(O] Eqa, b) = —(adb).
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70 E. Ellentuck

Tt is trivial to verify the first two clauses of (1) and the third and fourth follow from
the fact that (U, 4, ,0,1) is a Boolean ring. Discreteness immediately follows
from (4). An example illustrating all of our notions is given in

THEOREM 2. If A is a complete Boolean algebra then A is a complete discrete rich
A-valued model.

Proof. By Theorem I and our preliminary remarks we need only verify that 4 is
complete. Let I be an index set, p: I— U, a partition of 4, and a; I-» U, and I-termed
sequence of elements from Uy(= U,). Let b = ZIA a;p;. Then

1el

py(a;4b) = a,ij;; app; = qpydap; = 0.
€

Thus p;< —(a;4b) = E(a;, b) = [a; = b] for jel by (4 and (2). @

A Boolean algebra B is a complete subalgebra of a Boolean algebra 4 if B is
complete, is a subalgebra of 4, and Y'® is the restriction to B of Y. Note that 4
need not be complete in this definition. Now let B be a complete subalgebra of 4 and
let A be an A4-valued structure. We wish to approximate 2 as closely as possible
by a B-valued structure B = 2(B). The universe Uy and the functions Fy of B are
the same as those of 2. For each rye Ry and a, b e Uy define

Ey(a, b) = Y7 {x e Uyl x<Ey(a, B)},
ro(@) = Y2 {x e Uyl x<ra(a)},

and let Ry be the set of all such ry. It is easy to show that B is a B-valued structure;
we must only vetily (1). Even better, 8B is a B-valued model since B is complete,
Note that if U is a complete structure, then so is B, and that if 2 is discrete, then
50 is B. Let 2 be the Boolean algebra whose universe is {0, 1}. 2 is a complete subal-
gebra of every Boolean algebra so that 20(2) is always defined. 2 is written in boldface
because we can either think of it as an ordinary Boolean algebra or as the. discrete
2-valued structure given by (4). The process (5) is called reduction. It will be applied
to Boolean algebras themselves in the context of A(B). This means that we con-
sider 4 as an A4-valued structure 4 via (4) and then reduce by (5). The reader should
verify that

(6) A(2) is isomorphic to 4

€

in the obvious sense. This will be used later on.

2. Feferman-Vaught like results. Suppose that % is an A4-valued model and B is
a complete subalgebra of 4. We wish to compute I[-]]Q[(B). Theorem 3 does this under
certain additional assumptions about . A complete 2 will satisfy these assumptions,
but in general completeness will be much too strong for our applications, An 4-valued
structure A is pseudo-complete if for each finite index set I, each partition p: I-U,,
and each I-termed sequence a: I—Uy there is a b e Uy such that DiSE(ay, b) for
each iel. A model is perfect if it is rich and pseudo-complete. Throughout this
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section 20 will be a perfect A-valued-model and B will be a complete subalgebra of 4.
Note that we have not required 4 to be a complete Boolean algebra.

Let @ be the non-negative integers. An A-assignment is a function s: w— Uy.
If ¢ & Ly let @ (s) be obtained from ¢ by replacing each free variable v, which occurs
in ¢ by s,. ¢ € Ly is valid it [¢(s)]y = 1 for every model B (of the same similarity
type as A) and every B-assignment 5. Lower case letters @, 0 will range over
formulas in Ly and upper case letters &, ¥ will range over formulas of L,, We
use Xo, Xy, o for the variables of Ly, A finite sequence (&, 0o, ..., 0,,) is acceptable
it dely, cuch 0,&Ly, and the free variables of @ are among Xos eos Xy Tt is
a partitioning sequence if it is acceptable and 0y v ... v 6, and each of the formulas
~(0,A0)), i<, is valid, We are going to describe an effective method by which we
associate with cach formula @ &Ly a certain acceptable I'(g) = (3, O, e’ 6,)
such that a variable is free in ¢ if and only if it is free in some 8;. I' will be the same
as an association used by Nerode in [3]. The description of I' is quite messy, so in-
stead of defining it directly, we let its definition evolve from the proof of Theorem 3,
our Boolean formulation of the Feferman—Vaught result (cf. [1]).

TueorEM 3. Let % be a perfect A-valued model and let B be a complete subal-
gebra of 4. If ¢ € Ly, I'(p) = (®,0, ..., 0,), and s is any W-assignment, then

)] o Tueey = [2 [00()Tars -+ » [0n()Ter) ] acay -

Proof. The proof of (7) and the simultaneous definition of I" will be by induction
on the length of ¢. Our cases are only superficially different from those occurring
in Feferman—~Vaught [1] or Nerode [3].

Case 1. ¢ is ¢ = 7 where ¢ and © are terms of Ly. Let a, b & Uy respectively
be interpretations of ¢, = for the assignment s. Then

®) Lo ) luw) = Euwla, b) = 3 {x € Us| x<Eyla, b)}
=Y {x e Uyl x<[Eula, b) = 1]}
= [Byla, b) = 1y = [2([0 )]e)laca

where @ is X, = 1. The transition to line (8) is justified by the fact that [x = 1], = x
for any x & U,. Thus I'(p) = (X, = 1, ¢).

Case 2. ¢ is r(t). Thanks to (5) the same argument as above works with
I'(g) = (X =1, ).

Case 3. ¢ is vy, Let I'(Y) = (P, 0, ..., 6,) and let I'(Y) be written. in the
same form except that everything is primed. For each i<m’ replace the variable Xj
in @ by X114 and call the resulting formula ", Then it is easy to show (using
inductive hypotheses) that (7) holds for ¥ vy’ provided we define I'(y vy')
=(DVD, Oy eery O, 005 ers O

Case 4. ¢ is ~W. Just.as above we show that (7) holds if

T(~) = (~®, 00, .. 0,)
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72 E. Ellentuck
The most difficult case corresponds to quantifiers and for that we shall need
the following:

Lemuma 1. For each acceptable (9, 0y, ..., 0,,) we can effectively find a partitioning
(D, 8, ..., Op) such that a variable is free in some 0, if and only if it is free in some 0;
and such that both [®([06(D]es > [0:()]e)] s and [(15’([[(){)@)]]“, weos [0 ()N acy
have the same value (cf. {1]).

Proof. Let m'+1 = 2"*' and let ry, ..., r,, be an enumeration of all subsets
of m+1 = {0,..,m}. Let 0; be

A 0

iery

~0;
ia(m41)~ry
where stands for repeated conjunction. If j<m put g, = {k<m'| jer} and
P D { JEF

define @ to be ®(Y*X;, ..., 3" X;) where ¥'* denotes a formal summation. We

ieqo legy
leave it to the reader to verify that (¢, 05, ..., 6,,) is a pariitioning sequence, Our
result now follows because

.Z; [0:() ] = [0,()]uc -

We return to the proof of Theorem 3 with
Case 5. ¢ is Fu)r. Let I'(Y)) = (P, O, ..., 0,)). By Lemma 1 we may assume
that I'(y) is partitioning. Let 6; be (Jv,)0, and let &' be

©) @Y, s LI T V= 1A A\ Y Y= 04 A Vi<XiA D(Yp, ...
ism

i<j<m i<sm » Yw)
Let a; = [0,(s)]y. Then Z‘ ay=1and a;-a; = 0 for i<j<m since I'(y) is par-
i<m
titioning. Thus
[[Z* 4 = 1] 45 = Zu{x € Upl x<[ Z*ﬂa = 1]}
ism ism

= e Uyl x< Aa) = 1

ism

and
[e:6; = 0]4m) = 3" {x € Upl x<[a;q; = 0]}
=Y {x e Uy ¥<—(aa)} = 1
for i<j since for any xe Uy, [x = 0], = —x. Also

a; = [gi(s)]]‘n<[(3"1;)01(5‘)]]w = [04()]s -
Now our inductive hypothesis gives [ (Y arcmy = [9(a0; ..., @)] 4¢5). Thus
![w(s)]]mn)<|]:;*ai =1la /j\< a;a; = 0n /\ @ <[0{ DA D(ag, -evs @) lainy

< [[@'([[06 (S)]]Q!) ey [an(s)]]m)]]A(B)

icm°®
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by (9) since [x<y], = (—x)-+y for any x,ye U,. But [0:(s)]y is independent of
the value s since v, is not free in 0. Letting s, vary over Uy and summing gives

[0 ¥ () asemy <[ ([06 ()]t ... [0 )Lt -

Up to now we have not directly used the assumption that 9 is perfect. We use
i() b= a = 1n ady =0 <[0T,

(10) i[‘g:m i ‘<{\&"l ] AK/’} a4 <[0:()]u A B (ag, ..., @) acey -
Then
(11

because

bg ¥4 g,
ism

b[Y a = 1< a = 1], = T4 a,.
ism ism ism

Also b<[ayay = 0y <[ay ey = 0], = —(a-a) for i<j<m. Thus

(12) (@,0)(ab) =0  for i<j<m.
b<[a<[01(5)Julacwy <[ < [0/(s)]o]4 and thus
(13) arb<[@v)0,)]y  Ffor ism.

For any x-& Uy let 5, be that A-assignment which agrees with s except at k and as-
sumes the value x there, The richness of 2 gives an x; € Uy such that [@v)0.9)]a
= [0/(s:)]u. By (12) and pseudo-completeness there is an xe Uy such tha
a; bx = xJy for i<m. ap b<[0,(s,) o by (13) and so
(14) ;b [0)(s:)]u
by (3). If i,j<m and i # j then
;b [0, Jar<S (01050 - [0(8)]ee = O
by (14) and the fact that I'()) is partitioning. Thus
b0 = T4 apb[0s)]w = ap b [0(s) u<arb
Jam

for i<m

by .(1 1. (14) gives a;b = [0(s)]yb and hence b<E (a, [0i(s)]). But be Uy

giving

(15) by = [0,(s:)Tulacny -

Now b<[®B(ags vovs @)l by (10) and thus
bg[‘[’([[ao(ﬁ‘x)]]u, e [Onx(sx)]m>]]A(u) = [ )y

<[@vv (s:)uen = [QodY ()]
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74 E. Ellentuck
by (3), (15), and our inductive hypothesis. It follows from (9), (10) and the fact that
g, ..., @ Were arbitrary elements of U, that

[2"([06()]ats -+-» [0l Tar)] acmy < [AD Y () orem »

completiﬁg our induction.
It is now clear from Cases 1 thru 5 how to define I'. Perhaps the most uniform
way is to use Lemma 1 at each stage so that I'(¢) is always a partitioning sequence, &

3. Algebraic operations on structures. There ate several elementary operations on
Boolean valued structures which are needed for applications. Suppose that 4, B are
Boolean algebras, 2 is an A-valued structure, and % is a homomorphism of 4
onto B. With 2 we associate a B-valued “homomorphic image” B = A( ). The
universe Uy and the functions Fy of B are the same as those of 2. For each ry e Ry
and @, b € Uy define

Eyla, b) = hEy(a,b),

16
( ) rm(y) = hrm(a)9

and let Ry be the set of all such ryg. It is easy to see that B is a B-valued structure
since the inequalities of (1) are preserved under homomorphism, However, in gen~
eral, discreteness is not preserved under this operation.

THEOREM 4. If U is a perfect A-valued model and h is a homomorphism of A
onto B then B = h(¥) is a perfect B-valued model. Moreover, [¢]g = h[¢]y for
each ¢ € Sy.

Proof. We start by showing that B is pseudo-complete. Suppose that I is

a finite index set, p: I->Up is a partition of B, and a: I— Uy is an I-termed sequence.

For each iel we choose ¢;€ Uy such that k(g) = p,. Define ¢ = ¢,~ Yy q,.
iF

Then
h(g) = h(g)— ?;,I: h(qyaq;) = h(gq)) .

Since g;*g; = 0fori # j, we can extend ¢': I—U, to a finile partition of 4. But U is
pseudo-complete so there is a be Uy = Uy such that ¢] <Ey(a;, b) for ie I, Then
Pi = h(g))<hEy(a;, b) = Eyla;, b) and we are done,

Next we show that h[-Jy: Sy—~B is a function satisfying (2). This is done by
direct case by case computation. The atomic case is taken care of by (16) and the
propositional cases are trivial. Suppose v is the only free variable of 0. Since 2 is
rich, there is an a e Uy such that [@v)0] = [0(a)]. Then

an h[@9)8] = r[9@I<Y”, (RIOCO]| x € U} <h[@)0],

which takes care of the quantifier case. Define [-]y = h[-Jy. We have shown
that [-]g is a B-valuation. 8 is rich by a7n. =

I
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Having lost discreteness in the course of a homomorphism, we regain it by the
following general method. Suppose that 2 js not discrete, If @, b e Uy define a~5
if Fy(a, b) = 1 and then Vel'gfy that '~ is an equivalence relation; Let % be the
equivalence class containing x. We define an' 4-valued structure 8 = 9 as follows.
The universe Uy = {¥| x & Uy}. Show that a~b implies fy(a) ~fu(B) and ry(a) <ry(b)
for each fy € Ly, ry € Ry and then define
Ey(a, B) = Ey(a, b)),

So@) = ful@),

"m(a) = YQ(([L) . .
and let Fy(Ry) be the set of all such f(ry) respectively. The fol,l'o{w.ing result is ob-
vious. .

THEOREM 5. If  is a perfect A-valued model, then B = U is a discrete perfect
A-valued model. Moreover, [¢(@]y = [(@)]y for each ¢ € Ly with only one free
variable. ' . ‘

We have now! described all of the algebraic operations on structures that are
needed for our applications. They are i) reduction (5), ii) homomorphism (16),
and iii) discretization (18), Together they will be used in later sections to study the
theories of certain rings. We use them now to define the reduced Boolean power.
This notion will not be used in- our paper, but it seems quite natural and is included
here for the sake of completeness. Let 2 be a discrete 2-valued structure and let 4 be
a complete Boolean algebra. In [2] Mansfield defines the 4-power B = AX as
follows. The universe of B is the set of all functions g: Uy—U, such that
S4g(x)| x € Uy} = 1 and g(x)g(y) = 0 for distinct x, y € Uy, For each fy € Fy
and ry € Ry, both say unary, ae Uy and g € Uy define

(f m(g))(a) = ZA{Q @) fulx) = a},
re(9) = Z“'{g(x)| r(¥) = 1} .

Equality is treated as just another relation. Let Fy(Ry) be the set of all such Ju(re)
respectively, It is then shown that (19) can be extended to arbitrary formulas, i.e.,

Lo (@]s ==ZA{(J(35)I [[‘P(x)]]fu = 1} .
It for each a & Uy we define a* & Uy by a*(a) = 1 and a*(x) = O for x # a then (20))

(18)

(19

(20)

implies that * is an clementary embedding, i.e., [¢(@ ]y = [¢ (@*)]s. Further, 8 is,

complete, ‘ .
Our candidate for a reduced Boolean power of a discrete 2-valued structure U is

" obtaingd by successively taking a Boolean power of 2 (as in (19)), then a homo-

morphic image (as in (16)), then discretization (as in (18)), and finally reduction
(as in (5)) with B taken to'be 2. By (20) and Theorems 3, 4 and 5 there is a method
for keeping track of the first order theories of the various intermediate structures.
Recently Urquhart has generalized the notion of a Boolean power of a discrete
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2-valued structure to that of a discrete A-valued structure 2 (cf. [6]). Let B be
a complete Boolean algebra extending 4 such that Y4 is the restriction to 4 of ¥,
Our universe Uy is the set of all functions g: Uy— Uy S}lch that Y {g (x)] x € Uy} =1,
g(a)-Egla, B)<g(b), and g(a)-g(b)<Ey(a,b) for a,be Uy. The second of these
conditions says that g is a function (in a Boolean sense). Functions and relations are
then defined by (19) with 4 replaced by B, and we can also show that (20) holds with 4
replaced by B. This new Boolean power can then be combined with (16), (18),
and (5) to obtain a more general notion of reduced Boolean power.

An alternative way to handle Boolean valued structures is via “forcing”. Let 2 be
an 4-valued structure. Our forcing conditions is the set P = U4 —{0} partially ordered
by the Boolean <. Let ¢ € Sy and be P. I ¢ is atomic we say that b forces ¢ (in
symbols b I ¢) if b<[] (recall that [¢] is defined for atomic ¢). We complete our
definition with the standard clauses

bik~g if  (VO'sh)b’ not IFo,
bilrovy it (YE/H@EY'KH)D ko or b Iy,
bir@Ene if (V'<b)ED'<b)(Fae Uyd” I0(a).

Notice that forcing is defined for any structure. Its connection with [[ -] is given by

TaeoreM 6. If U is a model, then b \+ @ if and only if b<[¢].

Proof. By induction on the complexity of ¢. For atomic ¢ the result is true by
definition. ‘

Case 2. b IF ~¢ iff (Yo'’ not k¢ iff (Yb'<bYb'&[e] iff b<—[¢]
= [~o].

Case 3. blrovy iff (V'<B)@E@D'SHI” k@ or &' I iff (Vb'<h)
@<y <[] or b '<[Y] if b<[e]+[V] = [o vi].

Case 4. b IF @v)0 iff (Vb'<H)AL’'<H)Hae Uy)b"< [0(a)]
YHI6@]I ae Uy = [@v)6]. m

When 2 is a structure but not a model it is possible to assign the value {5| b I ¢}
to ¢. Indeed, this might be taken as our definition of a Boolean valuation: the only
trouble is that we have assigned a regular open subset of P to ¢ and not an element
of P. This regular open set does belong to a Boolean algebra, namely, the regular
open completion 4 of 4. In the next section we see that one objection to doing this
is that the nature of our theory requires A to be a definable object in .

iff b<

4. Rings with enough idempotents. Let 2 be a commutative ring with wnit, i.c.,
U is a discrete 2-valued structure (model) which satisfies the axioms of a commuta~
tive ring with unit. An idempotent is an element a'e Uy such that a* = a. Let I be
the set of all idempotents of 2. On I we define operation A, v, and ] by

anb =ab,
avb = a+b—ab,
la=1-a.
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By corpputation we can show that I is closed and is a Boolean algebra under these
operations. Call this algebra 4. It is the idempotent algebra of 9. We wish to inter-
pret % as an A4-valued structure.

We say that U has enough idempotents if there is a function e: Uy~ Uy such that
@ e =0,
(i) e(xy) = e(x)e(y),
(i) ¢(e(x)) = e(),

(iv) xe(x) = x.

@n

LeMMA 2. Let e defined on Uy satisfy (21). Then
(i) e(x)* = e(x),
(i) if x* = x then e(x) = x,
(i) xy = 0 if xe(y) = 0,
(iv) e(—x) = e(x),
) e(x+y)<e)ve®y

(2)

where < is the canonical inequality of A. .

Proof. (i) e(x) = e(x)e(e(x) = e(x)e(x) by (21) (iv), ().

(i) I x> =x then e(x)e(T1x) = e(x)e(l—x) = e(x—x% =e(0) =0 (21)
(i), (i) so that e(x)< Te(T1x). x<e(x), Tx<e(T1x) by (21) (iv) and thus x<e(x)
L Te(TIXN)< T x = x. .

(iii) If xp = 0 then e(x)e(y) = e(xy) = e(0) = 0 by (21) (i), (@) so that xe(y)
= xe(x)e(y) = 0 by (21) (iv). Conversely if xe(y) =0 then xy = xe(y)y =0
by (21) (iv).

(i) e()(Te() =0 so x(Te(x) =0 by (22) (iii). Thus (—x)(Te@®) =0

. and e(~x)(Tle(x)) = 0 by another use of (22) (iii) so that e(—x)< 1 Te(x) = e(x).

Replacing x by —x gives the converse inequality.

(M As in (22) (iv) we have x(Te(x))=0, y(TTe(»)=0. Thus
(e+p) (Te(x)) (Te() = 0 so that e(x+y)(Te(x))(Te(x) = 0 by (22)(ii). Taking
complements we obtain e(x+p)<e(x)ve(y). B .

CoroLLARY 1. If' U has enough idempotents, then the function e of (16) is unique
and called ey. . '

Proof. x(“1e(x)) =0 by (22)(iii) since e(x)(TTe(x)) =0. If ye U, and
xy = 0 then e(x)y = 0 by (22)(iii) so that y<e(x). Thus e(x) is the complement
in 4 of a maximal idempotent which kills x. &

It 2 has enough idempotents, we define B = A * as follows. The universe Uy and
the functions Fy of B are the same as those of 2. The valuation algebra A4 of B is

- the idempotent algebra of A, For a,be Uy let

(23) Ey(a, b) = "e(a—b) . °

In the following theorem we evaluate [¢]y for certain sentences ¢ even though B is
not a model. This can be done because the ¢ in question have no quantifiers.
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THEOREM 7. If U has enough idempotents, then B = W* is an d-valued structure
in which each axiom of an integral domain receives a value of 1. ‘

Proof. The verification that B is an A4-valued structure is trivial. 'We re-
mark that (22)(iv) is used to show E(z, H)<E(b, @) and (22)(v) is used to show
E(a, ))AE(b, )< E(a, ). Each of the commutative ring with unit axioms is an
identity and hence receives a value of 1. Finally we have the interesting fact that 90
becomes an integral domain in the A-sense because

fab = 0] = “Te(ad) = T1(e(@e(®) = (Te@)v(Te®) =[a =0vb = 0]y |

If A has enough idempotents, then ey is discrete in the sence that ey(x) =0
implies x = 0. We note that ey is discrete if and only if 2* is discrete. A simple
example can be constructed from a Boolean algebra A (with operation Vv, A, 7).
Convert A into a Boolean ring 4’ by defining x+y = x4y and x'y = xAy. The
identity function is witness to 4’ having enough idempotents by (22) (ii). and of course
is discrete. We can then form A’ * by (23), and then form an 4-valied structure 4* by
using the original operations of 4 with the equality of 4’¥, What we get is precisely 4
of Theorem 2 because i

E #(a, b) = Te(a—b) = "1(adb) = El(a, b).

If U has enough idempotents then B = A*(2) is a discrete 2-valued structure
and

(24)  A*(2) is isomorphic to A

because Ey(a, b) = 1 iff Ey#(a, b) = 1 iff ey(a~b) = 0 iff a = b. Thus U and B
have the same equality. Incidentally, this proves (6) since we have identificd A
with A*,

Any sentence in Sy is called parameter free. W is abmost 2-valued if it is a model
such that [¢]y & 2 for every parameter free ¢. The parameler free theory of W is
the set of all parameter free ¢ such that [p]y = 1. Almost 2-valued models are not
as rare as one might think. They most naturally arise when 2 can be represented
as a direct product.

THEOREM 8. For i<2 assume
1) W, is a commutative ring with unit,
ii) A; has enough idempotents,
iii) WF is an almost 2-valued perfect model,
" iV) A, the idempotent algebra of W, is atomless.

Conclusgon. IF UE and WF have the same Parameter free theory, then so do U,

and Ny, ie., W, and A, are elementarily equivalent.

Proof. It is well known that any -two atomless Boolean algebras have the
same (2-valued) parameter free theory. By (6) and (24) we have 4,(2) ~ A; and
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AF(2) = Q[,‘. Let ¢ be any parameter free sentence with I'(¢) = (&, 0, ..., 0,,).
It follows from Theorem 3 that

[l =‘|[‘P]]su,# 2
= [[@([[0011511(#’ ey [[Gm]mﬁ*):nmu)
= [[@([00]]31‘%: ey [[om]]su,#)]]m .

By our hypotheses, the last term in this chain is independent of i which proves our
theorem. H

Theorem 8 is used in the following way. For many rings which occur in “nature”,
i.e., function rings, the hypotheses of Theorem 8 are met and the parameter free
theory of 2* is much easier to understand than that of 2. Even when the idempotent
algebra of U is not atomless, Theorem 3 reduces questions about 2 to ones about A
and 4. Since the theory of any one Boolean algebra is decidable (cf. [5]), and since
we have assumed a fair amount of knowledge about ¥, a considerable simplification
has been achieved.

The function e was introduced by Kaplansky in his study of minimal prime
ideals. Let 2 be a commutative ring with unit, with idempotent algebra 4, with
enough idempotents witnessed by e, and let P< Uy be a minimal prime ideal. The
following lemma gives details to a sketch in [4].

Lemma 3 (Scott [4]). () e(P)=P,

(ii) e(P) is a prime ideal in A4,

(iil) e(P) umiquely determines P,

(@iv) e(P) is proper if and only if P is proper. ‘

Proof. Let Q = {x € Uy| e(x) € P}. Our plan is to show that Q is a prime
ideal contained in P. Let x € Q. Then x = xe(x) € P by (21)(iv) since e(x) € P. Thus
Q<P.If xye @ then e(x)e(y) =e(xy) e P by (21)(ii) and thus one of e(x), e(y) is in P.
This implies that either x oryisin Q. If x € Q and y & Uy then e(xy) = e(x)e(y) e P
and thus xy € Q. If x, y e Q then e(x—y) = e(x—»)[e(x) v e(3)] by (22) (iv), (V) and

“e(x)ve(y) = e(x)+e(y)—e(x)e(y) e P giving x—y € Q. Our plan complete, P = 0

by the minimality of P. This gives (i).

We start (ii) with the claim that e(P) = P () U,. By (i) e(P)S P and by (22) (i),
e(P)SU,. Conversely if xeP () Uy, then x = e(x) ee(P) by (22) (ii) and (0.
Our claim proven, it is easy to verify (i), We claim that P = Um-e(f'). If x € P then
x = xe(x) € Uy-e(P) by (21) (iv). Thus P<Uy-e(P) and the converse inclusion
follows from (i) and the fact that P is an ideal.

Our claim proven, (iii) is immediate. ‘ .

Finally, for (iv) notice that P is proper iff 1 ¢ P iff 1 ¢ e(P) iff e(P) is proper
because P () Uy = e(P). B ‘ '

Let /P be the usual quotient of a ring by an ideal and if x € Uy let x/P be the
element determined by x in. 2/P. Now [ét us assume that U has enough idempotents
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with witness e and that PS Uy is a minimal prime ideal. If 2 has idempotent al-
gebra A then by the proof of Lemma 3(ii) we know that e(P) = P (| Uy is a prime
ideal in 4. Let h: U,—2 be a homomorphism whose kernel is e(P), i.e., these are
the elements that % takes into 0. /P and h(gf—*) are both discrete 2-valued structures,
We claim that
(25)  A/P is isomorphic to A(UH*).
For if B = h(U*) it suffices 10 show that B and A/P have the same equality.
It a,be Uy then afP = b/P iff a~beP iff e(a—b)eP Ul "1Ey#(a, b) ee(P) iff
hEy#(a, b) = 1 iff Eg(a,b) = 1 iff Eg(a, b) = 1 iff & = b by (i) of Lemma 3, (23),
(16), and (18). Our claim is proven.

THEOREM 9. Assume that

() W is a commutative ring with unit and with enough idempotents,

(i) U* is an almost 2-valued perfect model,

(iii) P is a proper minimal prime ideal in .

Conclusion. U* and WA/P have the same parameter free theory. .

Proof. Let 4 be the idempotent algebra of 2, By Lemma 3 we know that
P} Uyis a proper prime ideal of 4. Let h: U,—2 be a homomorphism whose
kernel is P () Uy. If B = A(U*) then A/P = B by (25). Then for any parameter
free sentence @ we have [@]y# =1 iff h[ply+ = 1 iff [¢]ls = 1 iff [e]s =1 by
Theorems 4 and 3. The properness of P was used to justify the first “iff” in the pre-
ceding chain. B

5. The arithmetic isolic integers. The elaborate Boolean machinery developed
in the preceding sections would be quite useless were it not for some good examples.
An excellent one is the arithmetic isolic integers. For the reader who is unfamiliar
or uninterested in this example, we rest our case. However, the reader who pursues
this section will see that the example is a good one because (i) all of our methods
work, and (i) little is known about the structure of these integers. We begin with
a brief review. :

Let w* (sometimes written as Z) be the rational integers conceived of as a dis-
crete 2-valued structure whose functions are all the arithmetic functions and whose
relations are all the arithmetic relations. For this section A* (extending w*) is the
arithmetic isolic integers conceived of as a discrete 2-valued structure. Bach feFy
and r € Ry, both say unary, are canonically extended to fu: A*—A* and =Y/ AR
These are the functions and relations of A*. We follow the usual custom of writ-
ing w*(A*) to mean either the structure or its universe respectively. Let L = Ly
and § = Sz. We call these the parameter free formulas and parameter free sentences
of A* (note that both may contain parameters from *). We interpret ¢ ¢ S in @*
in the obvious way and ¢ in A* by replacing functions and relations occurring in ¢ by
their canonical extensions. When dealing with discrete 2-valued 9 we sometimes
write ke instead of [pJy = 1. An important technical feature of A* is (ef. [3D).

(26)  if ¢ € S is an arbitrarily quantified Florn sentence and w* k ¢ then A* E 0.
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The plus and times operations of w* are arithmetical functions. Use the same sym-
bols +, - to represent them as well as their canonical extensions 1o A*. Now each
of the commutative ring with unit axioms can be expressed as a Horn senterice
(in fact as an identity) and hence by (26) A* is a commutative ring with unit. Another
technical feature of A* is [cf. [3]) *

(27)  the idempotent algebra 4 of A* is atomless.

Let e: w*—o* be defined by ¢(0) = 0 and e(x) = 1 for x = 0. e satisfies 21) in w*,
and since each of the conditions in (21) is an identity, e 4. satisfies (21) in A* Thus A*
has enough idempotents. Now by Theorem 7 we may regard A* as an A-valued
structure 2. The universe of 2L is just A*, the functions of U are + and -, and its
equality is given by (23), that is, 9 is at least A**, We are still not done because we
want to interpret A* as an A-valued structure (in fact a model) with respect to all
of its functions and relations. Let f& F, and r e Rz, both say unary. With f we as-
sociate fy which by definition is f,s. Let ¢ be the characteristic function of r, i.e.,
¢” assumes the value 1 on r and the value 0 on its complement. Then for ae A*
define

(28) . rata) = chla).

An application of (26) shows that ry(a) e U, as it should be. Let Fy(Ry) be the set
of all such fy(ry) respectively. In order to justify 9 as an A-valued structure we
must verify (1). We defer this for 2 more general result. But first several observations
are in order. For the moment let r be a unary relation of w*, = is the equality of w*
considered as a binary relation, Ey is the ring theoretic equality of 2 given by (23),
and 4, be Uy = A*. In general we write ru(a) for ae r 4+ Then by several appli-
cations of (26) we obtain

r(@) = 1 iff ru(a),
(29 Ey(a, b) is =ya,b),
= o(a, b) iff a = b.

Combining these results implies that the equality of 9[ can be handled in exactly
the same way as any of its relations.

We are going to show that % admits an A-valuation. Lét @eL and §:-w— Uy.
Define ¢ (s) € Ly by replacing each function f (relation #) of ¢ by Julrey) respectively
and replacing each free v; of ¢ by s;. Let 7 be any number such that the free variables
of p arein {vy, ..., v,_;} and let r, = r(¢) be the n-ary arithmetic relation such that

(30) (ﬂ And rqz(vo; AR} nfl)
is valid in w* Finally, as a candidate for our valuation let

Lo @]y = r(@ulsos s Suv) -

§ — Fundamenta Mathematicae XCVI
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One of the first things we must check is that [ (s)]y is independent of »n (provided
the free variables of ¢ are in {v, ..., v,-4}). This is an easy consequence of (26).
Lemma 4. [+]g satisfies (2).
Proof. This is done by direct case Hy case computation.

Case 1. ¢ is p(7) where p is a unary relation symbol and ¢ is a term whose only
free variable is vo. Let f be an arithmetic function such that 7 = f(v,) is valid in w*.
Now by (30) we have p(f (1)) <> r,(vo) valid in @* and hence the composition
cPof=c"". In [3] it is shown that

(31)  the composition of arithmetic functions commutes with their extension to A%*.
If tg(s) is the denotation of 7 in U when s, is assigned to wv,, then (31) gives
To(s) = fuso) and
To @l = r(@)also) = P (s0) = i fasls0))
= Dy (f m(ﬁ'o)) = Py (TQ!(-S‘)) .

For the rest of this proof we use A, v, 71, < for the Boolean operations in the
idempotent algebra of either w* or A*. Whenever there is any danger of confusing
these symbols with those denoting logical operations we shall use boldtace for the
Boolean ones.

Case 2. Suppose that the free variables of ¢ vy are in {vgs «ee Byy}. Let
(@), r(p) and r(p vi) all be n-ary. Then (@) U r(¥) = (e vi¥) which implies that

Cr(m(”o: ey 011—1)\/0'('”)(“0, ey Upoy) = ey 'ﬂ)(”o, vy Ugmy)

is valid in ®* and hence by (26) in A*.
lo@la VIV &Iy = [o v @y
then follows from the definition of [-Jy.
Case 3. ~y is handled as in the preceding case.

. Qase 4. ¢ is (Fv,) . For ease in writing we suppose that the only free variable
in ¢ is v, and that k = 1. Take r, unary and r, binary. Then

(32) rdp(UO: Ul)""”rp(”O) E
(33) 7 o(g)~ (v,) ro(Vos v4)

are }(:x;th valid in w* and hence by (26) are also valid in A*. (32) gives ¢"®(vg, v,)
<c"P(vg) valid in A*. If x Uy let s, be that assignment which agrees with s except
at 1 and assumes the value x there. Then

I Glu<loGaly = [o )]y
since v, is not free in ¢. For the converse (33) gives

Evy) Cr(‘p)(l’o) < Cr(w)(”o > 1)
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valid in A* and hence there is an a e Uy such that [o(9)]y<[¥(5)]y. Then
[o@Ju< W la< TV Il x € Un}<[o@]x

and we are done. B

Tueorem 10. U is an almost 2-valued, discrete, perfect A-valued model. More-
over w* and W have the same parameter free theory.

Proof. By Lemma 4 U is a model, a fortiori 9 is a structure, If ¢ € S let »(¢)
be unary. If @* k ¢ then ¢"® is identically 1 so [@]y=1and if &* not k ¢ then ¢"®
is identically 0 so [@]y = 0, i.e., 2 is almost 2-valued and has the same parameter
free theory as @* (allowing parameters from »*). We have already seen that 2 is
discrete. It is rich by the last chain in the proof of Lemma 4. Finally, for pseudo-
completeness (in the case that I has 2 elements) note that

ud = ug A} = ug Ao Vg = 1)AQug Aty = 0)—>@w)uy < Te(vo—w) A
Ay < le(v —w)
is valid in * and hence in 4*. @ ‘

6. Romping through A* We obtain two important metatheorems of Nerode
(cf. [3]) as consequences of our Boolean valued ring theory. Let C be the filter of
cofinite subsets of w and let B be the reduced product (cf. [1]) (Z)%/C. A is as in
the last section.

COROLLARY 2. (i) A* and B have the same parameter free ring theory. Even beiter

(ii) A* and B, conceived of as models whose functions and relations are canonical
extensions of arithmetic functions and relations, have the same parameter free theory.

Proof sketch. (i) follows from Theorems 8 and 10. (i) follows in just about
the same way using an easy generalization of Theorem 8 readily provided by
Theorem 3. We discuss (i). By Theorem 10, A* satisfies the conditions for one of
the 9, of Theorem 8. We must show that B also satisfies these conditions. This is
fairly easy; e.g., to show that B* is an idempotent valued model of Z we simply
duplicate the E.o$ theorem for ultraproducts. Moreover, the idempotent algebra
of B is atomless since it is isomorphic to 2°/C. ®

COROLLARY 3. If P is a proper minimal prime ideal in A% then

(i) A*/P and Z (both discrete 2-valued models) have the same parameter free ring
theory. Even better

(i) A*/P and Z, conceived of as models whose functions and relations are canonical
extensions of arithmetic functions and relations, have the same parameter free theory.

Proof. (i) is immediate from Theorem 9 and (ii} is an easy consequence of
Theorems 4 and 10. &

Tn actual applications to A*, it is almost impossible to directly use Theorem 3.
Corollary 2 is better because we have some intuitive idea of what B is like. This
association would be perfect if we knew that B was isomorphic-to A*, Despite some

6%
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attempts we do not know if this is true. So instead of using B as a “thought guide”
to A*, we show by example the relevance of .

Let ¢ € § be a sentence written in prenex conjunctive form. By a metatheorem
(in the style of Nerode) we mean an assertion of the form “p holds in A* if and only
if some Horn reduct of ¢ holds in w*” (cf. [3] for the definition of Horn reduct).
Thus when we say that A* has a universal metatheorem, what we mean is that 2 meta-
theorem of the above sort holds for all universal sentences in S.

First consider the case where ¢ is a universal Horn sentence. As an illustration
let us suppose that it has the form

(V0) (r(v) A s (v)— £ (1))

where v is a variable and 7, s, ¢ are relations. If o* F @ then by Theorem 10 we have
[¢] = 1. Consequently [r(a)] A [s(2)] < [1(@)] for any a & A*. In particular if a & r 4
and ae sy then by (29), ry(@) = 1 and sy(@) = 1 making ty(@) =1, i.e., aety.
Thus A* k ¢ and we have shown that if a universal Horn sentence is true in @* then
it is true in A*. This has the consequence that if ¢ is any universal sentence having
a Horn reduct true in o* then ¢ is true in A*. We thus have proved one-half of the
universal metatheorem. '

For the converse suppose that ¢ is no longer Horn, but still universal. By the
preceding paragraph we lose no generality in assuming that ¢ has the form

(Vo) (r @-(s(@) v 1))

Suppose that both Horn reducts of ¢ fail in w*. Then w* k @A) (r@ A ~5@©)),
o* E Q) (r(v) A ~£(v)). Theorem 10 then gives [[EDIEOL ~s(®))] = 1 as well as
[@v) (1) A ~£(v))] = 1. Richness gives us elements dg, @y €A4* such that [r(a) A
A ~s(ag)] =1 and [r(a) A ~s(a;)] = 1. Now let bo, by be a partition of A, theidem-
potent algebra of A*, where neither b, nor b, is the zero of 4 (cf. (27)). Then by pseu-
do-completeness there is an x € A* such that b;<[a; = x]. Now [r(a)] =1 and
* hence b;<[r(ad] Alla; = x]<[r()] for i<2 by (3). Summing on i gives 1<[r(x)]
80 x €1 by (29). Also bo<[~5(20)] A2y = x]<[~s(x)] and so [s(x)] < ~ b,
Ls)] # 1, x ¢ 5. Similarly x ¢ 7, giving us a counterexample to ¢ in A*. We
have thus shown that A* has a universal metatheorem for sentences having a single
conjunct. The full result follows as soon as we recall that universal quantifications
distribute over conjunctions.

Say that ¢ is disjunctive if it is arbitrarily quantified and its matrix consists of
of a single conjunct. If in addition ¢ is a Horn sentence, we may suppose it is written
in the form ‘

(QV) (r(v) s (v))
where (Qu) is a string of quantified variables. If w* k ¢ then we can find a sequence
of arithmetic Skolem functions for @. Let  be the result of replacing existentially
quantified variables in ¢ by terms denoting these Skolem functions, Then o* Fy
s0 A* Ey/ by the universal metatheorem. Replacing terms by variables immediately
gives A* F . Thus we have shown that if a disjunctive Horn sentence is true in w*
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then it is true in A4*. This has the consequence that if ¢ is any disjunctive sentence
having a Horn reduct true in * then ¢ is true in A¥*, i.e., one-half of the. disjunctive
metatheorem. :

For the converse suppose that ¢ is no longer Horn, but still disjunctive. As an
illustration let us suppose that ¢ has the form

(Vo) @v,)(Qu) ("""»-‘f Vi)

where (Qu) is a string of quaﬁtiﬁed variables. Further, let us suppose that both Horn
reducts of ¢ fail in w*. Let by, by be a partition of 4 such that neither b, nor b, is
the zero of 4. Then by Theorem 10 we obtain in a trivial sense, that

bo <[@ve) (Vo) ~(Qu) (r—9] ,
by <[@ve) (Vo) ~ Q) (r—1)] .
Richness then gives ag, a; € A* such that
bo<[(Yo1)~(Qu) (r(ag)—s (a))] ,
by <[[(Vv1) ~(Qu) (r (‘11)“”(‘11)):[[ .

By pseudo-completeness there is an x e A* such that b;<[a; = x] for i<2. Then
proceed as in the universal case to show that

Bo<[(Yo)~(Qu) (r(M—=s(x))]
by < [(Vo )~ (Qu) (r(x) > 1(x))] .
Thus we have shown that there is an x e A* such that for all y e:/l*
Bo<[~(Qu) (r(x, »)=s(x, )] »
by <[~ (Qu) (r(x, »)~2(x, »)] -
Continuing this process which led from (34) to (35) we show that

(34)

(35)

@x e 4% (¥y € A% (Ex, € A%) ...
bo<[r(%, ¥, Xgs ) A ~8(x, ¥, X, )],
by <[r(x,y, xo, ) A ~1(x, ¥, %o, 1.

Then just as in the universal case these inequalities imply that
HAx e A¥)(Vy € A Axg € A¥) oo (X, ¥, Xp5 ) EFygus E S0, and ¢ Ly

showing that ¢ fails in A*. Thus we have shown that 4* has a disjunctive metatheo{em.

Another class of sentences for which we obtain a metatheorem is the positive
sentences. By noting that conjunctions such as r(v) A £(v) can be replaced by some t(‘v),
and using propositional distributive laws, we can rewrite the mat;ix of a posit%ve
sentence in disjunctive form. Thus the positive case is subsumed under the disjunctive
one. We have obtained metatheorems for the universal, the positive, and the disjunc-
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tive sentences. It is known from experience with (Z)®/C that this is about as far as
we can go. Note that in our proofs we used partitions of 4 into two pieces. This was
because our sentences had two positive disjuncts. Had there been more then we would
have had to partition 4 into more pieces. For the metatheorems to work we need
arbitrarily large finite partitions. However, this is incomparably weaker than the fact
that 4 is atomless.

This completes our Boolean valued theory of A*. We remark that an equivalent
treatment of A* could have been obtained by forcing together with Theorem 6.
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