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Abstract. Denote the class of real valued functions whose graph is of linear measure 0 on sets
of Lebesgue measure 0 by N. Then Baire functions in N are shown to have o-finite length graphs.
¥f G is generalized Lipschitz and F belongs to N, then F-+G, F-G, and F o G belong to N. Examples
are given which show that the first result can not be improved to include all functions in N and that
the second can not be improved to include absolutely continuous functions G.

Let N denote the class of real valued functions whose graph on any set of
Lebesgue measure 0 is of linear measure 0. In this paper the class N is compared to
the class of functions which satisfy Lusin’s condition (N), i.e., functlons for which
the image of any set of measure 0 is of measure 0.

On can readily observe that functions in N satisfy Lusin’s condition (N). For
let Fe N, let Z be a set of measure 0, and let B(F; Z) denote the graph of F on the
set Z. Then given any e>0 there exists a sequence of planar sets {4;} such that
B(F;Z) = U 4; and Y diam4;<e. Hence F(Z)cProjy4; and

[FZ)< Y| Projydi< Y, diam(Projy4;) <e.

Thus |F(Z)| = 0 and, since Z is an arbitrary set of measure 0, F satisfies Lusin’s
condition (N).

Since functions in N satisfy condition (N), continuous functions in N are
differentiable on a set which has positive measure in every interval (cf. [4], p. 286).
An important class of continuous functions which belong to N are the generalized
absolutely continuous (ACG) functions, the primitives for the Denjoy integral.
A continuous function Fis ACG if the line is a countable union of sets E, on each
of which Fis absolutely continuous. To see that ACG functions belong to N, let E,
be aset of real numbers and suppose that F is absolutely continuous on E,; i.e.,
Ve>0, 36>0 such that ¥ |F(x)—F(x")|<e whenever {[x;,x;]} is any sequence
of pairwise non-overlapping intervals with end points in E, and ), |x;—xi| <d.
Let 6>0 be given and Z be any set of measure 0. Cover Z N E, with a sequence of
non-overlapping intervals [x;, x7] with end points in E, such that . |x;—xi| <8,
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where §<¢ is determined by the definition of absolute continuity of F on E,. Then
. B(F; E, n Z) can be covered by the sequence of sets A, = [x;, x}] x [y;, yi] where y,
and y; are respectively the infimum and supremum of F(x) on the set [x,, x;] N E, N Z,
It follows that

2 diamd; < ) % —x{+3 |y—yil <2

Since ¢ is arbitrary, the graph of F on E, n Z is of linear measure 0. Consequently,
provided that F is ACG, the graph of F on Z is of linear meastre 0 and, since
Z is arbitrary, FeN.

Theorems 1 and 2 indicate properties which hold for functions in N, The the-
orems are followed by examples that limit the possibilities of further generalization.

TreorREM 1. If F is a Baire function and Fe N then the graph of F is of o-finite
linear measure; i.e., the graph is the countable union of sets of finite linear measure.

Proof. Baire functions are characterized by the fact that their graphs are Borel
sets (cf. [2], p. 300). Davies [1] showed that every analytic set of positive linear
measure contains a closed subset of finite (non-zero) linear measure. Consequently,
if Fis a Baire function and B(F), the graph of F, is not of g-finite measure, there is
a closed set Eo<B(F) such that 0<.4(Ey)<co. Suppose that for each y with
O0<y<a<wm,; a closed set E,cB(F) has been chosen such that 0<A(E,) <o and
such that for every i<y, E, N Eg = @. Then since B(F)— ) E, is a Borel set

. y<a .
and B(F) is not of o-finite measure, it follows that ABE) - U E,) = o and
y<a
that there is a closed set E,=B(F)— (J E, such that 0 < A(E,)< co. In this manner
<a

Y
one chooses an uncountable collection of sets {E.}a<w, Which are closed, pairwise
disjoint, contained in B(F), and satisfy 0< A(E)<oco. Let E, = Projx(E,). Since
the line is not the union of uncountably many pairwise disjoint measurable sets of
positive measure, (if it were, some interval [%, k+1]would be the union of uncount-
ably many measurable sets of measure >1/n) it follows that one of the E, is of

measure 0., But [E,| = 0 and A(E,)>0 contradicts the fact that Fe N and thus the
theorem is proved.

~EXAMJ?LE 1. Assuming the continnum hypothesis, there exists a function
feN whose graph is not of ¢-finite linear measure.

Proof. Let Gy, Gy, ..., G, ..., a<w; bea well-ordering of the G measure 0 sub-
sets of the reals. Let H, = G,— U G,. Let F,, F,, s Fpy oy By be a well-

V'<y
ordering of the closed subsets of the plane whose projection on the x-axis is of
positive measure. Let E, be the first closed subset to occur in the well-ordering,
{Fs1 G, O Projg Fy # @}, Select (x,, Yo) € Ey such that x, € G, N ProjyE,. For
each x & Gy define f(x) = y,. Suppose that for every y<o<w,, if H, # @, then E,
has been selected as the first closed subset of the well ordering

{Fs|Fy # E,Vy'<y and H, A ProjF, # @} .
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Suppose further that (x,,,) € E,.' has been chosen with x,e H, n ProjyE, and
that for every x € H,, the function f has been defined with f(x) = y,. Then for
a<wy, if Hy # @, it follows that the well-ordering,

{F;| Fy # E,Vy<a and H, nProjF; # @}

is not empty. This is so because from the uncountable collection of Fj; whose
projection intersects H,, an at most countable collection of E, have been removed.
Let E, be the first member of the well-ordering and select (x,, »,) € E, so ‘that
x, € H,. For x € H,, define f(x) = y,. Thus the function f(x) is defined inductively
for all real numbers x.

To see that f& N, let Z be a set of measure 0 on the line and let G, be a G, subset
which contains Z. Since B(f;Z)<B(f; G%)cvguflyx{yy} and since |H,| =0

0

for each yp, it follows that B(f;Z) is of linear measure O.

To see that B(f) is not of ¢-finite linear measure let F = F; be a closed set
of positive planar measure. Since ProjyF contains uncountably many G, subsets
of measure 0 and yet {F,},<, is at most countable, it follows that Fj was selected
as some E,, and consequently (x,g,¥y,) € B(f) n F,. Since this is true for‘every
closed set of positive planar measure, the complement of B(f) does not f:ontam any
closed set of positive planar measure, Thus B(f) is of full outer measure in the plane
and thus is not of o-finite linear measure because sets of o-finite linear measure
are of planar measure 0,

TrrorEM 2. If G is a generalized Lipschitz function (i.e., if the line can be written
as a countable union of sets on each of which G is Lipschitz) and F € N, then Gj—F eN,
G FeN, and GoFeN.

Proof. Let G be a generalized Lipschitz function, let F e N, and let Z be any set
of measure 0. Then the line can be written as the union of a sequence of sets {E.}
such that |G(x)| <k on E, |[F(x)|<k on E,, and |G(x)—G(y)1<k|x—.y[ for each
x,yeE,. Since FeN it follows that A(B(F;Z n E)) = 0. Thus, given k and
¢>0, thers is a sequence of sets {4,} such that B(F;Z n E)= U4, and
Y diamd,<e. Let 4, = Projxy4,. Then

Y diamd,<z and |G)-GQ)| <klx—y| for cach x,y€A;.
Co:xcerning the sum, G-F, it follows that
BG+F;ZAE) = U BG+F; 4D
and
Y. diam B(G+F; 4,) |
" < 3 (sup, F(x)+sup, G(x )—inf,,F(x)—jnfnG(x))+Zn‘, diam4,,,

]
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where sup, and inf, are the supremum and infimum taken on the sets A4,. Thus
Y diam B(G+F; 4;)
< Y (sup, F(x)—inf, F(x))+ 3 (sup, G(x)—inf, G(x)) + Y, diam A4,
n n n
< ¥ diamd, +k Y, diamd,+ 3, diam 4,
n n n
<2e+ks.
Concerning the product, G-F, it is sufficient to consider the set E; = E, O
A (G20) A (F=0). Similar arguments hold for the cases where Gz0 and F<0,
G<0 and Fz0, G<0 and F<0. Then
B(G-F;Z N E) = \UB(GF; 4; n Ep)
n :
and
Y diam B(G+F; Z  Ey)
< Y, (sup, F(x)sup, G(x) —inf, F(x)inf, G (x)) + ). diam 4, ,
n n

where sup, and inf, are the supremum and infimum taken on the sets 4, N E,.
Thus

Y. diam B(G-F; 4, n Ep)
< Y. sup, F(x)(sup, G(x)—inf, G (x)) + z": inf, G (x) (sup, F(x) — inf, F()) +
+ Y diamd4,
<k Y diam 4, +k- ; diam4,+ ¥ diam 4,
<Kk’stkete. '

Concerning the composition, G < F, it follows thzlt
B(GoF;ZnE) = )B(Ge-F;4d,)

and
Y, diamB(G o F; A< Y, (diam G(F(4,)) +diam 4;)

2
< 3, (k-diam F(d,)+diam 4,)
<ke+e.

. Since £>0 is arbitrary, the linear measure of the graphs of G+F, G-F, and
G o Fon Z n E,is 0 and, this being true for each &, the linear measure of the graphs
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of these functions on Z is also 0. Since Z was an arbitrary set of measure 0, it follows
that G+F, G-F, and G o F all belong to N and the theorem is proved.

In neither of the three cases of Theorem 2 can generalized Lipschitz be improved
to include absolutely continuous functions. This is true even if the Fe N are restricted
to continuous functions. Mazurkiewicz [3] constructed a continuous function f(x)
on [0, 1] such that for b # O the function f(x)+bx does not satisfy Lusin’s con-
dition (N). Thus it follows from Theorem 2 that Mazurkiewicz function does not
belong to N. However, this function does satisfy Banach’s condition S and hence is
the composition of two absolutely continuous functions (cf. [4], p. 288). Since
absolutely continuous functions belong to N it follows that Theorem 2 can not be
improved to include the composition of absolutely continuous functions with con-
tinuous functions belonging to N.

The lemma that follows is preliminary to the construction of an increasing
absolutely continuous function ¥ and a continuous function ¢ € N such that their
sum does not satisfy condition (N). Then Theorem 2 implies that F(x) = ¢*® ¢ N.
But G(x) = ¢*™ is then an increasing function which satisfies condition N) and
hence G(x) is absolutely continuous. Clearly, F-G(x) = e*™*?® does not satisfy
condition (N). It follows that Theorem 2 can not be improved to include the sum or
product of absolutely continuous functions with continuous functions belong-
ing to N.

Lemma 1. Let F(x) be a continuous function which satisfies Lusin’s condition
(N) on an interval I. Let P<] be a perfect set of measure 0. Then there exists
a strictly increasing function G(x) defined on I such that G and G™* are absolutely
continuous and A(B(Fo G™'; G(P))} = 0.

Proof. Since F(P) is a compact set of measure 0, there is a perfect set P’ such
that P’ x F(P) is of linear measure 0. For example, P’ can be constructed as follows:
Let Q = F(P), g, = diam Q, and n; = 1. Since Q is a compact set of measure 0,
&;+4 and n;,, can be defined inductively so that Q can be covered by n;,, intervals
of equal length ¢;, ; such that n;  , -&;,; <g;/2"* 1. Let P’ be the set of all numbers x of
the form Y @;-8;; @, = 0 or 1. Then P’ can be covered by 2*! intervals of length

1

g4y and hence P'x O can be covered by n.s-2"** squares of diameter e;,,./2.
Since 1y, 421 6,44 /2 <e;/2 and since g, tends to 0, it follows that P'x Q is of
linear measure 0. ~

Since P’ is a perfect set, there is a strictly increasing function G(x) such that
G(P) = P’ and such that G(x) is linear on intervals contiguous to P, Then, since G
and G are strictly increasing and satisfy condition (N), both G and G~ are ab-
solutely continuous. Since B(Fo G™*; G(P)) is contained in P’'x F(P) it follows
that A(B(Fe G; G(P))) = 0 and the lemma is proved.

Mazurkiewicz function f(x) is linear on the intervals contiguous to a perfect
set P of measure 0 and f(x) +x fails to satisfy condition (N) on P. Lemma 1 applied
to f(x) and P yields a function g(x). Let ¥ = g™! and @ = fog~%. Then V is in-
éreasing and absolutely continuous. Since A(B((p;P’)) = 0 and ¢ is linear on the
3
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intervals contiguous to P, it follows that ¢ e N Xt uep' u.nd g7 W) = xeP,
then (f+@)(w) = ¢~ '0)+f{(g ™ @) = x+f(x). But then the image of Y+¢ on
the set P is the same as the image of f(¥)-+x on the set P. Since P " is of measure O and
F(x)+x fails to satisfy condition (N) on 2, it follows that (f + @) (P? is a set of posi-
tive measure, Y +¢ does not satisfy condition (N), and thus y+¢ ¢N.
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Demi-groupes, espaces affines et categories gauches

- - par

André Batbedat (Montpellier)

Résumé. On étudie la structure déterminée sur un ensemble par une loi de composition binaire:
(a, b)—ab, qui vérifie: (ab)c = b(ac) pour tous a, b, c.

Propriétés duales pour: (ab)c = a(cb).

Application aux notions d’espace affine gauche et de catégorie gauchs.

Introduction. On sait qu’une loi de composition binaire est associative si elle
vérifie pour tous a, b, ¢: :

(A): (ab)c = a(bc).

Dans [7], V. G. Lemlein a considéré le cas:
(AM): (ab)c = c(ba).

Nous nous plagons ici dans ’hypothése d’associativité gauche:
(AQ): (ab)e = b(ac).

Les résultats se transposent dualement pour I'associativité droite:
(AD): (ab)c = a(cb).

Mathématiquement une telle étude présente un grand intérét car (A), (AG)
et (AD) sont les seuls cas ol les applications qui 2 un élément associent ses transla-
tions intérieures au sens de [4] sont chacune un morphisme ou un antimorphisme.

En pratique nous verrons que bien souvent ’associativité gauche implique
I'associativité.

Dans ce contexle nous précisons les concepts d’espace affine gauche et de
catégoric gauche.

1. Généralités. Nous présentons succinctement dans ce chapitre quelques
définitions et propriéiés dont nous aurons besoin par la suite (pour plus de détails,
consulter [1], [2], [3], [4] ou [8]).

L1, Un binaire ([1] ou [2]) est un ensemble muni d’une loi de composition
binaire: (a, b)—>ab. On note sans parenthéses le composé dans Pordre écrit de
gauche & droite (c’est ainsi que: (ab)c est simplement noté: abc).

Un demi-groupe est un binaire associatif (introduction).
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