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Scattered compactification for the Arens’ space S,
by

M. Jayachandran and M. Rajagopalan * (Memphis, Tenn.)

Abstract. We prove, using (CH), that the scattered Hausdorff space S,, introduced by R. Arens
1 1950, admits a scattered Hausdorff compactification. This gives an affirmative answer to a problem
aised by Z. Semadeni in 1959.

Introduction. The class of scattered spaces has been recently studied by several
mathematicians like V. Kannan [2], 8. Mréwka, M. Rajagopalan, T. Soundara-
rajan ([3], [5]), C. Ryll-Nardzewski, R. Telgarsky [6], Z. Semadeni [7] and W. Sier-
pinski [8]. It has been recently proved by P.J. Nyikos [4] and R. C. Solomon [9]
that there exists a completely regular scattered space which does not admit a scattered
compactification. However, the problem of deciding whether or not a given comple-
tely regular scattered space admits a scattered Hausdorff compactification is a non-
trivial one. In this connection, S.P. Franklin has raised the following question:
“Does the Aren’s space S, (definition follows) admit a Hausdorff scattered com-
pactification?” Z. Semadeni [7] has raised the question whether a particular sub-
space of S, has a scattered compactification. The aim of this paper is to give an
affirmative answer to these questions, by constructing a suitable quotient space X~
of BN, the Stone-Cech compactification of the set N of natural numbers, such
that X is scattered and X contains a homeomorph of S, as a dense subspace.

NotATION 1. N denotes the discrete space of natural numbets and ¥, its Stone—
Cech compactification. ¢ denotes the least infinite ordinal and Q denotes the first
uncountable ordinal, For any subset 4SN, 4* denotes the set

(clgwd) N (BN—=N) = (clgyd)—4 .

Depmrrion 2. We denote by Sy = N U {0}, the one-point compactification
of N. Sy is also called a convergent sequence and the only non-isolated point oo of S
is called its suspension point.

DepNITION 3. For each ne N, let X, denoto a homeomorphic copy of S,.
Let X, n X, = @ for all n, m & N such that n # m. Also, let x, € X, be the suspen-

. .
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sion point of X, for each ne N, Let C = {cy, 3, ..., Gy -} U {Cs} be a convergent
sequence such that ¢, is the suspensiox_l point of Cand CN X, = @ for all me N.

Let B denote the free union ( U X,,) UC of the spaces X, with C. Define a par-
n=1

tition 7 in B by declaring'{c,, x,} as a member of n for each n € N and {x} as a member
of m for all other x e B. The quotient space B/x is called the Arens’ space S, (see [1]).

ConNsTRUCTION 4 (CH). Take a sequence Ay, 4, ..., 4,, ... of mutually disjoint
countably infinite subsets of N whose union is N. Then each 4 is clopen in

. Let M = clyy( U A,,) and
- K=M- U AY. Then K is a non-empty closed set in SN—N and it is noL open in

n=1
BN—N. Let & = {SSNIS is infinite and § n 4, is finite Y = 1, 2, ...}. Then,
VS e, $* is clopen in fN—N and S* n AF = @ foralln = 1,2, ... Now, well
order #. Let us assume continuum hypothesis. Then % can be written as
F ={S,) ae[l, Q). Put T, = S for all ae[l, Q). For we[l, Q), defirie the sets
F,=BN—N as follows: Put F; = T;. Having chosen F;foreachi, 1<i<y,ye[l, Q),
choose F, such that F, is clopen in BN—N, F,nM = @, and F,2 |J F,uT,.

1Ki<y
This is possible, since the Boolean algebra of clopen sets in N — N is Dubois-Rey-
mond separable [10]. Our construction ends here.

ﬂN——Nand AfnAd, =0 for négmn,m=1,2,.

THEOREM 5. The space S, admits a scattered Hausdorff compactification.

Proof. Let the sets S, T,, F, (e [1, Q)), M, Kand 4, beas constructed above.
Then,

Cramv 1. ) F, = BN—=N—M.For, it is clear that |J F,cpN—-N-M.

aef1,02) cel[1,2)

To get the other inclusion, let x € fN—N— M. Now, SN—N is zero dimensional,
M is closed in BN—N and x, ¢ M. Therefore, there exists a clopen set ¥ in JN—N
such that xo € Vand ¥V n M = @. Also, ¥V = 4* for some infinite subset 4 of N
and ¥V~ A, = @foralln = 1,2, ... Hence, 4 N 4, is finite foralln = 1, 2, ... So,
A4 = 8, for some ae[l, Q) and hence, V = T,=F,. This implies x, & F, and our
claim is justified.

Cramv 2. There exists a compact, Hausdorff space X and a map ¢: pN—X
such that

(i) g is a quotient map and

(i) g(BN—N) is homeomorphic to the quotient space obtained by taking the free
unionof [1, w]and [1, Q] with their usual order topologies and identifying & and Q.

To justify this claim, we can assume, without loss of generality, that the sets F, of

our construction are all distinet. Now, put H; = F; and H, = F,— U F;for
15i<n
all o such that 2<a<@Q. Then U F,= | H,.Further, the disjoint collection
ae(1,9) | «e[1,9)

of sets {H,}oers,0 {4u}ns 1 {K} and {n}, ey, ne N gives a partition of BN by closed sets
in BN. Let the quotient space induced by this partition be denoted by X Let q: pN-X
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be the corresponding quotient map, Then, it is clear that X" is compact and Haus-
dorff. Let g(Ay) = {I,} for all ne N; g(K) = {I,)}; q(H,) = {I,} for all a e [L, Q).
Then, we have g(BN—N) = {l|,1,, .., [, ..} U {l,} U {L}icscn and it can be
verified that ¢ satisfies the conditions (i) and (i) of Claim 2.

Craim 3. If g(M w N) = 7, then Y is homeomorphic to S,. To justify this
claim, let us take A, = {a@,, &y, .., @, .} for all k = 1,2, ...; g(4,) = B, for all
néN and g(a,) = I, for all k,ne N. Then, each {/, }, m, ne N, is clopen in Y.
Also, we note that /,—/,, as n—co. Further, the compactness of ¢(4, U 4% 1mphes
that /, = I1m L, forallm=1,2,.

e

We w1[1 now show that an open set in ¥ containing /,, is an open set contain-
ing /,, in the topology of S, and vice versa. Let O be an open set in ¥ such that
1, €0. Since, /,~/, as n—co, there exist ny € N, such that , € 0 for all nn,. Since
ly~1, as k—oo, for all ne N, it follows that (Y—0) n B, is finite for all nzmn,.
Conversely, let S=g(N) be such that S n B, is finite for all n € N. Then ¢~ 1(S) A A,
is finite for all n & N. Therefore, 47*(S) = S, for some o & [1, ). Also S = T,=F,
and so

clyn(S, U F) = clyn(S) U F, = S, u Sy UF,=8,UF,

Therefore, S, U F, is closed in SN and hence ¢(S, U F,) is closed in X. Therefore,
(S v q(F)) n Y is closed relative to Y. But F, n M = @ for all w & [1, Q) implies
that g(F,)) n ¥ = @. Therefore, SN Y = § is closed relative to ¥. Hence, ¥ —S
is open in Y and I, € ¥ —S. Therefore, the relative topology of ¥ from X is homeo-
morphic to .S,.

Since N is dense in SN, we also have g(M U N) = Y is dense in X, Since, the

relati ology of ¢(N) from X is discrete and that of g(BN~N) is homeomorphic
to th » obtained by taking the free union of [1, w] and [1, Q] and identifying
and dm 2), it follows that X is scattered. This completes the proof of the
the
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The equivalence of absolute almost continuous
retracts and g-absolute retracts

by

Kenneth R. Kellum * (Birmingham, Ala.)

Abstract. In this paper we are concerned with types of generalized retracts and &-retracts
in which the retraction function may or may not be continuous. We first consider a generalized type
of retract in which the retraction function belongs to an arbitrary class of functions which is assumed
1o be closed under composition with continuous functions. Theorems are proved which are generaliz~
ations of well-known theorems about AR’s and eAR’s. These theorems hold if the class in question
is the class of the continuous functions, the class of the almost continuous functions, or a new class
of functions which we call weakly continuous. These results, together with the proof of the propo-

sition which is our title, lead to a number of other equivalences.

1, Tntroduction. In {111 T reported that an almost continuous retract of an-n-cube
need mot be compact. These spaces are of interest because they must posses the
fixed point property. The present paper is the result of studying the special case of
those almost continuous retracts which do happen to be compact. The main result
implies that a compact subset ¥ of an n-cube X is an almost continuous rettact

of X it and only if ¥ is an &-retract of X.

Suppose Y= X. That Y is-a retract of X means that there exists a continuous
function (called a retraction) r: X— ¥ such that x = r (%) for each x e Y. This import-
ant concept is due to Borsuk and has been studied extensively (see [1] and [9]).
Recently the notion of a retract has been generalized in two seemingly different ways.
First, Noguchi [16] and later Gmurczyk [4], [5] and Granas [6] studied &- (or. approxi-
mative) retracts in which the requirement that x = r(x) is weakened. Second, motiv-
ated by question 10 of Stallings [17], several authors have studied connectivity
and almost continuous retracts in which the requirement that the retraction function
be continuous is weakened (see [2], [3], [7], [10], [vll]‘and [12]). Here we show that

these two lines of research are in fact closely related.

We adopt the following conventions. All spaces, except the function spaces
considered below, are assumed to be separable metric. If x and y are' points of

a space X, d(x,y) denotes the distance from x to. y. I xe X, then

N(x, 8 = {yeX: d(x,y)<e}
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