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The shape of a map
by

David A. Edwards and Patricia Tulley McAuley (Binghamton, N. Y.)

Abstract. The concept of the shape of a map is defined using an adaptation of a similar notion
in etale homotopy theory. Cech and Vietoris constructions yield two functors C and VU from TOPmaps
to pro-CWmaps and pro-JC—CWm,,ps, respectively. Here J& CWaps denotes an appropriate homo-
topy category of maps of CW-complexes and, for any category #, pro-# is an appropriate and well
known category of inverse systems. Preliminaries on definitions and notation are given. An equiv-
alence result of Dowker is extended to relate C and V. Applications include the definitions of two
functors from (TOPy)maps (pointed maps) to LES (pro-8), long exact sequences of pro-groups.
They use a pro-adaptations of mapping cylinder and fiber resolution techniques and involve the
pro-homotopy groups of the varjous spaces. The shape theoretic fiber of a map fis defined and an
example shows that it is not, in general, shape equivalent to the shape of the homotopy theoretic
fiber of f. Examples and applications to movable maps are given. *

1. Introduction. The usual techniques and theorems of algebraic topology work
well when applied to spaces having the homotopy type of a CW-complex. For more
pathological spaces difficulties arise.

For example, consider the Warsaw citcle Sy:

Globally Sy looks like the standard circle S but it has “local pathology” and,
as is well known, this causes the homotopy and singular homology groups of Sy to.
vanish. In particular, m,(S) = 0, while on the other hansthe Cech fundamental
group 7,(Sy) is equal to Z, the group of integers. In fact, F(Sy) = F(S) for every
functor F from 2, the homotopy category of CW-complexes, to the category of
groups, where F(Sy) = im{F(N)}, N denotes a nerve of an open covering of Sy
and the inverse limit is taken over all such N. To see this; observe that the Cech
a*
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tower (inverse system) of nerves of coverings of Sy has a cofinal subtower in which
each element is a circle and the bonding maps have degree one.

Thus, in Cech theory one approximates a space by its “tower of nerves.” Applying
the homology and cohomology functors to this tower and then passing to the limit
yields the Cech homology and cohomology groups. The inverse limit functor is not
exact and it is known that Cech homology theory is not, in general, exact. One way
to circumvent such problems is to work with the towers rather than just with the
limits. One forms a category of towers in which cofinal towers are isomorphic. Such
a construction has been discovered and rediscovered over the years: see, for example,
Christie [51, Grothendieck [15], and Fox [L1]. In Section II we give a brief descrip-
tion of this construction which associates with any category & a category pro-«Z.
The Cech construction yields a functor 4: TOP—pro-# and leads to Cech homo-
topy theory [21], [8] which is just one form of shape theory [3], [11], [8].

Just as a space X can be approximated by a tower of CW-complexes, a map
f: X— Y can be approximated by a tower of maps between CW-complexes. The
notion of the shape of a map is explained in Section IIL It is adapted from a similar
notion in etale homotopy theory [12] and gives a functor #: TOP p—Pro-3#-CWip,p
where TOP,,p and #-CW,,,, are the appropriate categories of maps. We use
both Cech and Vietoris constructions and relate these by extending an equivalence

- result of Dowker [6]. . )

In Section IV we give applications: In IV.1 we show that any map induces a long

exact sequence of pro-groups,

s pro-my( X)—pro-n( Y)—=pro-m(f)— ... ;

~ relating the pro-homotopy groups of X and Y and pro-groups pro-m,(f), which
we define. In IV.2 we define the shape theoretic fiber of a map. An example shows
that it is not shape equivalent to the shape of the homotopy theoretic fiber. We
associate a second long exact sequence with a map. For certain maps F—»X—1Y
(shape quasi-fibrations) it yields an exact sequence,

o 3pro-n(F)—pro-r(X)—pro-n(¥)—...,

of pro-homotopy groups. Both parts of Section IV include applications to movable
maps.

II. Pro-categories. If 2 is any category, one can form a new category pro-2
whose objects are inverse systems {X,},.4 of objects of 2 indexed by directed sets 4.
The set of morphisms in pro-2 from {X,Jues to {¥p}pep is denoted by
pro-2({X.}eea, { ¥Ya}pen) and equals lﬂi_r?’(lil%(.@(X,, Yp)) where 2(X,, ¥ is the

€ aE.
set of morphisms from X, to ¥, in 2. As this definition is somewhat opaque and does
not yield a simple definition of composition, we shall make use of the following equiv-
alent definition: A morphism in pro-2 from {X,},c4 to {¥3}sc5 is an equivalence
class of pairs (@, {f3}pes) Where (i) © is a function from B t6 4 (not necessatily

o
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order preserving), (if) for each f € B, f;: X~ Yy is a morphism in 2 and (iii) for
B, B in B with ' f there is an a € 4 for which the following diagram commutes:

The pairs (@, { fz}ep) and (0, {f,;}ﬂsn) are said to be equivalent if, for each f € B,
there is an o e A with a0 () and ¢260'(f) such that the following diagram
commutes:

X
/1 o \
/ {

AN fﬂ/’/

N /
Xop

X, Yy

(Tn the above diagrams the unmarked maps are the bonding maps in the inverse
systems.) - . ’

Tt is not hard to see that (i) 2 can be embedded in pro-2 by regarding an object
of 2 as an inverse system over a one element directed set and (ii) any functor
T: 2,-+8, induces a natural functor pro-T: pro-2;—+pro-2;. At times we use T for
pro-T. ’

An account of pro-categories can be found in the Artin-Mazur Nortes [1].
They allow A to be a “filtering category” (more general than a directed set). The
definition of pro-2 given here is taken from [2].

The pro-object {X,}.e4 € pro-2 contains much more information about the
inverse system than does the inverse limit limX,, even if this inverse limit exists
in 2. The relationship between the pro-object {X;},. 4 and l_i_r_liX is analogous to that

o®E

between the germ of a function at a point p and the value of f at p. The following
basic proposition show that {X,},c4 is “the germ at o0” of the inverse system
{Xm}rst'

PROPOSITION I1.1. Let A be a directed set and B a cofinal directed subset of 4.
If (X} seu is an object of pro-2, then it is isomorphic in pro-2 to the object {X,}uen-

Proof. See [I], p. 150.

Let {X,},q4 be an object of pro-2 where 2 is any category. The object is said to
be movable if, for each « € A, there is a f & A with fza such that for any y >« there
is a morphism Iyt X~ X, making the following diagram commute:

Xp—— X,
|

X

(The unmarked maps are the bonding maps of {X Y ae)-
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If 2 is the category of groups, then it is clear that a movable pro-group satisfies
the Mittag-Leffler Condition (ML).

(ML): For each « € 4, there is a f & 4 such that o and for all y > f§ the bond-
ing homomorphisms p,,: X,—X, have the same image.
’ The following properties ‘of movability are obvious: (i) If B is confinal in 4,
then {X,},c4is movable if and only if {X},cp is movable; (ii) If 7: 2,2, is a func-
tor then pro-T maps movable objects in pro-2; to movable objects in pro-2,;
(ili) If, in (ii), 2, is the category of groups, then pro-T maps movable objects in
pro-2, to pro-groups satisfying (ML).

It is known ([4], p. 256) that the inverse limit functor is exact on countable pro-
groups satisfying (ML). In Ssction IV.1 we give a precise statement of the version
of this result which we need.

HI. The shape of a map.

HIL1. The basic categories. In this section we introduce the categories which
we need. We start with the following:

TOP, the category of topological spaces and continuous maps,

CW, the category of CW-complexes and continuous maps,

&,  the category of simplicial sets and simplicial maps ([19]),
#, the homotopy category associated with CW,

A, the extended homotopy category associated with & ([19]).

Here, the objects of 5# are the objects of CW and the morphisms of #° are the
usval homotopy classes of morphisms in CW. The objects of 4" are the objects of &
and inf" the set of morphisms from X to Y is the set [X, Y] which denotes the
homotopy classes of morphisms from X to Ex® Y. In addition, we will let TOP,,
H# o, etc. denote the obvious categories of pointed connected objects.

The above categories yield the mapping categories which are our main objects
of study. In general, for any category 2 we will use Diaps Lo denote the well known

mapping category whose objects are the morphisms of 2 and whose morphisms are
given by commutative squares:

I
X >y
|, b
P
X — Y

ﬁere, fr X=Y and f': X' ¥’ are objects in Zrnaps and (oty, o0y} is & morphism
10 2,y from fto 7. Following this we have now TOPapss CWinanss P mapss H maps
and A, In addition, we have associated “homotopy” categories H-CW s
anfi H'-% aps- The objects of these are, respectively, the objects of CWoaps (mor-
phisms of CW) and the objects of & maps (morphisms of &), The morpl1i§ms are
“ho»mot‘opy” classes of morphisms in CW paps and & o, respectively, where “homo-
topic” is appropriately defined. In CWonaps two morphisms (x,, «;) and (B> Ba)

©
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from f: X— Y to f': X'~Y" are homotopic if there is a morphism (8, @,) from
Fxly: XxI-»YxItof's X'—Y' such that @, is a homotopy from o, to §; and @,
is a homotopy from a; to f,. In &y, “homotopic” for morphisms is similarly
defined using the notion of morphism in extended homotopy category .

We emphasize that the objects of H'-CWy,s and A - . are dactual maps
in CW and &, respectively, not homotopy classes of maps, as is the case in H#pqps
and A paps- We have natural functors as follows:

Cwmnps""#'cwmnps_*”mups 5
'yn\nps—"%r“'ymnps_)‘%‘mups -

Applying pro yields categories pro-&, pro-% maps, Pro-# - paps, etc. and the induced
pro functors. ‘

We conclude this section by giving some remarks about morphisms in

Sy Ay P rmaps 80d A~ 0. For a morphism o in &, [o] will denote the image of o

_ under the natural functor &—2. For contiguous morphisms o and ¢’ in &,

To] = [«]. Similarly, for a morphism u = (i, fiy) I Frnapes [, 42)] Will denote

the image of x under the natural functor & ups—# - maps+ And, if p' = (S

is such that p, and p] are contiguous for i =1 and 2, then [(u;, )] = [(ut, o)l

YIL2. The functors % and . If X is a topological space, then the set Cov(X)
of all open coverings of X forms a directed set partially ordered by refinement.
If o is an open cover of X, then the Cech complex-of X with respect to o, C(X; )
is that simplicial ser with typical n-simplex an ordered (n+D-tuple (U, .., Up>

n
of open sets such that () V; # @. If B is a refinement of « and v: B—u is a refining
i=0
map, then v induces a simplicial map v4: C(X; f)—C(X; ) and any other reﬁni-ng
map §: f—o induces ¥, which is contiguous to v,. Hence, v and ¥, are “homotopic”
and thus define the same element, [v:] in [C(X;B), C(X;a)]. So we have
{C(X; ®)}uccov (x)y 1S a0 inverse system in A or, equivalently, an object in pro—:if .
We denote it by #(X). Next, for a map f: X—Y and oe Cov(Y), therflls
the natural simplicial map f,: C(X; f “14)»C(Y;a) and with @@)=f "o,
{0, {f "}secovqry} is the morphism in #" induced by f. In this manner the usual
Cech construction yields a functor @i TOP-pro-# . )

" Porter [21] has used the Vietoris construction to obtain_ a funcl:or
. TOP—pro-&. If o is an open cover of X, then V(X; o) is that simphclallset with
typical n-simplex an (14 1)-tuple {¥g, Xy, ..., X,» of points of X all belonging to at
least one U e «. If p refines o then there is a canonical simplicial map from V(X. 3 B)
to V(X;u) given by x—x for a vertex of V(X; f). This fact @termmes
{V(X; )}eecorcry = ¥ (X) as an object in pro-& rtather than pro-#". Having % X)
in pro-& rather than pro-o" has many advantages. By results of Dowker [6], C(X)
and #°(X) are canonically isomorphic in pro-# . ] .

Now we proceed to extending ¥~ and € to mapping categories and to giving
an extension of Dowker’s result.
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Definition of ¥": TOP 055> DI0-% maps'

Let f: X— Y be a continuous map, & an open cover of ¥ and B an open covering
of X with B refining f~lo. Then f. induces a canonical simplicial map
fupt VX BY=V(Y; o) given by fop(x) = f(x) for each vertex x of V(X f). The set
of all such pairs (x, ) with p=f '« forms a directed set Cov(f) where
(e, B)=(a, P) if and only if §'>f and o’ > In this case, as before, x—x and y—y
will yield a canonical morphism from fyp 10 fyp il & maps- Thus we obtain an inverse
system {fp: V(X3 B)=V(Y; D}covcry I Prnapss OF a0 element of pro-F iy We
denote it by ¥"(f). A morphism g = (g, ¢,) from /" to fin TOP 5 yields a mor-
phism ¥ (g) from #°(f*) to ¥ (f) in pro-Ppups by the following definitions. Let
@: Cov(f)—Cov(f") be given by O (x, f) = (g7 %, g1 ' By (91)ep(x) = g4(x) and
(92)us(¥) = ga(y) for vertices x and y of ¥(C; p) and V(Y, a), respectively, and let
9op = ((9a5> (92)eg)- Ther ¥ () = (€, {gup}apyecavin)}-

Deﬁxiition Of B: TOP yps—>PrO-H & pyaps’

Let Cov(f) be the set of all triples («, §,) such that (x, f)e Cov(f) and
v: B—f 1ais a refining map. The map v determines a simplicial map f,5,: C(X’; f5)
—C(Y; o) given by fop(W) = fov(W) for Wep, a vertex of C(X; f). A refining
map from (', B, V) to (x, §,V) is a pair (ug, 4p) With py: B'—=pB, pyt o' —a, such
that the following diagram commutes:

- B '*v;f“la
‘uxl ) iuz
B =1

A refining map (i, f1) induces a map (Uyy, fhax) I Praps a5 follows:
Targrvr
Cx; By =55 o )
ik } Bk
Sapv
CX; P —>C(Y;0)

Also, if (], u3) is another refining map from (¢, B, v') to (¢, B, V), then (i}, Hax)
?md (B Hox) are conflguous in Sf’mps and, hence, induce the same map [(iy, Lz 4)]
in A ?Sﬁmpvi. We pa:rnally order Cov(f) by the possibility of refinement. With this
ordering, Cov(f') is a directed set and, hence,

Tapy -
{CQG B = C(T; )}y ebovir

is an element of pro-A-%,,, which we denote by #(f). For a morphism
g =1(91,95) : 7 =f thve induced ‘morphism % (g) is defined in the obvious w;ly
A map 0: Cov(f)—~Cov(f") is given by O(x, #,%) = (97w, g7 B, g (v))hwhere‘
9 V(W) = f'~" g3 fog, (W) for We g7 fand we set €(g) = {@ i[g } o
With Gupt foeprTaps defined by g, = (@00 (0.
By composing % and ¥ with the geometric realization functor |"]: ¥—>CW

we can pass back to topology and might consider ¥ and € as functors l"ronla TOP,

maps

e E“‘ov (j‘)}

©
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into pro-CWepss Dro-A-CWigys, O Pro-#pgps, a3 appropriate. We can also define:
functors

v (TOPO)mups""1)r0’(y0)mnps and %: (TOPO)mnps"’pro"}f’(yo)mapsz

using pointed coverings.

‘We conclude with. the extension of Dowker’s result.

PrOPOSITION 111.2.1. The functors € and ¥ from TOPyp, 10 Pro- s are
naturally equivalent.

(In this statement, the functors % and ¥~ are those actually defined above com-
posed with the natural functors from pro-&pmeps and. pro=-#-Fmaps, respectively,
into pro=A ) '

Proofl. For an object K in &, K" will denote the first barycentric subdivision
of K; for g: KL, g": K" L? will be the usual simplicial map induced by g; and
and ¢g: KK will be given by ¢(x') = x where x is the first vertex of that simplex
of which x’ is the barycenter relative to some ordering of all of the vertices of K.
Then [¢g] is an equivalence in 2 and [g"1[ex] ™" = [pL]"*g] since g(pKrv(pLgb
with ~ denoting contiguity.

Using this notation (with slight modification) yields ¢,: C(X; a)P—C(X; o)
and 3, V(X; 0 -V (X; ) foranyae Cov(X). Also, if f: X—X"and o’ € Cov(X")
with a>f~te!, then the ¢’s are natural in that fu@,~@x 2 and FaBu~@ufa .

Dowker’s work yields maps ¥,: C(X; @)’ V(X; @) and ¥,: V(X; o)’ - C(X; ).
And, he shows that they are natural in that flr,~. f % and [~y J° (Lemma 3
of [6)).

Next, following Dowker we define 1, = [¥.] [~ t and 7, = [¥.] [#.J°*. The
facts that 5.7, = 1 and 7,n, = 1 follow from the various contiguity statements given
in Lemmas 5 and 6 of [6].

Finally, let ©: Cov(f)-Cov(f) be givenby 0, f) = (e, B, vap) for any choice
of v,y and 8: Cov(f)~Cov(f), by B, B,¥) = (e, B). The maps

I”(f) = (@7 {’11#}(u,ﬂ)55nv(f))

from % (f) to ¥ (f) and #i(f) = (B, (ape} oy eBoviry) from ¥7(f) to @(f) where
Hep = (g, 7)) and fiypy = (ps #.) yield the required natural equivalence. That they
are well defined and natural follows easily from the naturality conditions given

above on the ¢ and y maps.

1V. Applications.

IV.1. The homotopy exact sequence of a map. For each 7, =, will denote the usual
homotopy functor from the various appropriate categories to ¥, the category of
groups and homomorphisms. As indicated above, for m;: #'o—¥, pro-m; composed
with @ gives a functor from TOP, to pro-4. Suppressing the %, we have pro-it,(X; Xo)»
the ith pro-homotopy group of (X, x0). ({211, [11D)-
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Let £+ (K, K)=(L, 1) be a map in &, and M, jts mapping cylinder (see [19],
Pp. 53). Then the diagram

K AN L
N S
i\ /r
Mf

commutes, where i is inclusion and 7 is a retraction such that L is a strong deformation
retract of M;. We define n,(f) = n(M,, K) and obtain the usual long exact se-
quence

e (K) = (L) ).

The association of this sequence to f defines a functor ! H'-(F p)meps— LES(%),
the category of long exact sequences in ¥. Applying pro yields a functor

pro-m: pro-A (% o)mups—Pro-(LES(9)) .
Composing with € yields a functor
pro-m o € (TOPy)pn,ps—pro-(LES(9)) .

In view of Proposition III.2.1, by factoring through (# o). it is easy to show that
composing with ¥, instead of ¥, yields an equivalent functor. Again we omit % and
write

pro-m: (TOPg)pyps—pro-(LES(9)) .

For each map f: (X, x0)—(Y, y,) we wish to obtain a long exact sequence of
pro-groups. To do this we need the category LES(pro-#¢) and a natural functor
%: pro-(LES(#))—LES(pro(%)). This requires the appropriate notion of exactness
in pro-¢. Here we follow Mardesié as in [18]: In any category with zero-objects
and kernels one can define exactness. The sequence EN:2Yq at H is said to be
exact at H if and only if (1) gof = 0 and (2) if i1 N—H is the kernel of g and
J': G-N is that unique morphism with i o f* = £, then f* is an epimorphism. Since
Pro-éi is a category with zero-objects and Kernels (see, e.g., [18], [20]), exactness
is defined in the manner just described. The obvious definition of long exact sequence
n pro-4 can now be nade. Thus, one obtains the category LES(pro-%).

Certain simple morphisms play an important role in pro-catcgoriés and are in-
Yolve.din our consideration here. Specifically, in pro-2 for any 2, S AX S waa={ Y5}
is said to be special morphism, [18], provided that A = B, and f ;a(al Ao {‘/'/}{mm;
where 14 is the identity on 4, and whenever <o/, the ‘l"ollowir‘lg diagf&nﬁ mcaczng-

mutes: P
fn:’ l St

Y
Y, <— ¥,

im© The shape of a map
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(The unmarked maps are the appropriate bonding maps.) These maps are im-
portant in that every map in pro-2 can be “replaced up to isomorphism” by a special
morphism [18]. This is useful in showing that pro-# is a category with kernels.

Returning now to pro-#¢ we state without proof a fact given and proved by

Marde¥ié in [18]:

Proposition IV.LL If fi {Gluca={Hplgen and g: {Hypen— (K lyec are
special morphisms in pro-4, then {()’u}us 4 {Ho}ee AL{K,X}D,e 4 Is exact in pro-4 at
{H,}xan provided that for each o€ 4, G“;Haﬁ]{a is exact at H, in 4.

We now have our desired result as a corollary:

CoroLtary IV.1.1. There is a natural functor

y: pro-(LES(#))—LES (pro-¥) .

We indicate the definition of y as follows: Let {8,},c 4 be an object of pro-(LES (%))

with s, denoting the sequence
-
..,—»Gr“aGL—‘:foj—n.
for ie Z, the set of integers. Then P({s,}ac4) is the sequence
W
”'—*{G:t"-1}uGA'+{Gi}zeA—){G; 1}«5‘4_)"'

where it = (14, {Al}se). The exactness of this sequence in pro-# is an immediate
consequence of Proposition IV.1.1. Other details in defining y are left to.the reader.

An object in LES(pro-#) with the property that all of the morphisms of the
sequence are special morphisms will be called a special exact sequence of Pro-groups.
Note that the images under y of objects in pro-(LES(¥)) are such sequences. For
completeness, we give here a “special” version of the known exactness result men-
tioned in Section 1T.

ProrosiTioN 1V.1.2. If

. Kt hi .
"'—>{G:!+ [}asA - {GL}MEA—){G'H 1}meA~)"‘

is a special exact sequence of pro-groups each satisfying (ML) and 4 is countable,”

then the limit sequence, .
4 Lim ki

Tim
s SR H iy —>
e Illﬂ{Gm+1}aﬁA“ > th_{GafaEA -

is exact,
Indication of proof. It is well know
ness will hold provided that
lim {1 (GL™)} = (lm A" H(lim (G2
“the limit of the images is contained in the image of

1 to a finite portion of the sequence and
it may be assumed that 4 is the set of

1 that in this situation the desired exact-

holds for each 7. That is, that
the limit”. For this one can restrict aftentio
show that there, without loss of generality,
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natural numbers with the usual order and (from the (ML) condition) that cach of
the bonding maps is onto. The result then follows easily using indu‘ction and stan-
dard -diagram chasing to obtain an appropriate element in lim {G,**}.

Now, returning to the functor pro-n and composing with y we get

(pro-m) o y: (TOPp)maps—LES (pro-4) .
‘We omit the y and for each f: (X, xo)—~(Y, yo) have pro-z( 1), a long exact sequence
of pro-groups, where it is easy to see that those pro-groups appearing are the pro-
homotopy-groups of (X, x,) and (Y, y,) and a third set of pro-groups which we will
define to be the pro-homotopy-groups of f. That is, we let ‘
pro-m( f) = {m:(fapn) s eor (1)

and then summarize our results as follows:

THEOREM IV.1.1. There is a functor pro-m from (TOPg)y, s~ LES(pro-#) which
associates the sequence

e pro-m X, xg)—pro-n ¥, yo)—pro-m(f)—...

to the map f: (X, xo)—(Y, yo).

Remark. The same techniques could be used to obtain pro-anzlogs of other
familiar long exact and spectral sequences.

A map f: (X, x5)—(Y, y,) is said to be movable if and only if ¥(f) is movable
in Pro-A-(&¢)maps- For certain of these we get a limit exact sequence as follows:

THEOREM IV.1.2. If /1 (X, x0)—>(Y, ;) is @ movable map in TOP, and X and ¥
are compact metric spaces, then there is a long exact sequence

. T, X0) STV, Yo) ).
where 7(X, xo) = limpro-m,(X, x,), efc.
Proof. Since X and Y are compact metric spaces, Cov(f) has a countable

cofinal subset. Using this we may assume that each pro-group in the special long
exact sequence

w2 Pro-m(X,, x0)—pro-n(Y, yg)->pro-m(f)—...
is indexed by a countable set. Since 4(f) is movable pro-m (%(f)) is movable in
pro-(LES(%)). It is easy to see that y takes a movable object in pro-(LES (%)) to
a sequence of movable pro-groups. Thus each term of our sequence satisfies (ML)
and Proposition IV.1.2 applies to show that the limit scquence is exact,

Marde3ié has proved the following Whitehead Theorem in shape theory:

TrEOREM IV.1.3. If f: (X, x0)—(Y, y¢) is a map in TOPy, X and Y are finite
dimensional and '

Jat pro-my(X, xg)—pro-m (Y, y,)

the appropriate induced map is an isomorphism for each i, then f is a shape equiv-
alence [18).

This theorem, combined with Theorem IV.1.2 yields:

° .
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TueoReM IV LA Iff1 (X, x0)~(Y, yo) is a movable map in TOPy, X and Y are
compuct finite dimensional meiric spaces, and f = limfi: X, %0)~>m(Y, %)
is an isomorphism for each i, then f is a shape equivalence.

Proof. From the exact sequence of Theorem IV.1.2, m(f) =0 for each i.
Furthermore, as in the prool of Theorem IV.1.2, pro-m,(f) satisfies (ML) and has
a countable cofinal subset whose limit is 0. It follows that pro-m(f) is isomorphic
to the trivial pro-group. Now, from the exactness of the pro-sequence, Jfy is an iso-

‘morphism for each I and Mardeié’s Theorem applies to show that fis a shape equi-

valence.

Remark. Keesling [17] has shown that one can weaken the hypothesis of
Theorem 1V.1.4 to only assuming that X and Y are movable, There are non-movable
maps between movable spaces. We give an example of one such map using the con-
struction described by Draper and Keesling in [7] but starting with simpler spaces.
Our example will show that the condition of “movable map” in Theorem IV.1.2
cannot be replaced with the assumption that X and ¥ are movable.

ExameLe IV.1.1. Let Sy... ,,~1i‘fS,‘<~... be the non-movable inverse system
of circles which has the dyadic solencid D as its limit. That is, let .each S, =8,
the unit circle in the complex plane and 1a(2) = 2. Apply the construction of Draper

and Keesling to obtain Xj«-.. . ,,_14‘:'X,,+—... where X, = S{VSV..VS,, th(;
wedge of n-circles at the point 8, v,(2) = z for z & §; with 1<ig<n—1 and 'v,,(z) =z
for z € S,. This system is movable. The space X = limX, is B U D where Bisa count-
able bouquet of circles, B n D is the wedge point of the bo1.1q.uct, and the circles
converge to D. Continuing the construction, consider the trivial system

on
Sl(—'... Sn—l‘—Sn‘-"‘

where ,(2) = s for each z and augment as before to obtain ¥i.. Yoy Yo
with ¥, = X, and 7,() = z for z¢5, and 1,(z) = s for zeS,. Next,l for each
neN, define f,: (Xyys 5)—(¥,,5) by f,(2) = 7 for z ¢S, and £,(2) =s forze S,.
We will consider the object { /ey int Pro- (% o)maps Where the bonding maps are
the obvious pairs (V. y» To)- 7 . )

The space Y = lim ¥, is a countable bouquet of circles converging .to a point
and with f = lim, we have fi (X, %0)—=(Y, yo) in (TOP ) maps With & yleldn?g the
points x, and y, and B(f) = {fi}ran- It remains to show that (1) flé’(f) is not
movable and (2) for this £, the long limit sequence of Theorem IV.1.2 is not exact.

For both (1) and (2) we have F(xyx; ... %) = 1y (X, 8) = 1y(¥s, ), tfhe free
group with n generator, with x; representing a generator of 7(S;) and consider the
following diagram which we will call “d”.

Flotga) 5 F(uyxas) = o 1% s Fpsa) o
Jin S Trge

oo

F(xy) s F%y %) . o F(x X5 00 X) ooe
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For (1), careful consideration of the “d” will show that it represents a non-
movable object in pro-(%)maps. But, then €(f) is not movable, for otherwise, the
functor pro-m; would take a movable object pro-#'-(¥g)mips t0 a non-movable
one in pro-(%)maps-

For (2), note that the exactness in Theorem IV.1.2 can and should be interpreted
to inclide exactness of

. 7. .
—74(X, %)~ 73 (Y, yo)=my(f)—0 .

This is the case because we restrict ourselves to connected spaces and have exactness

Sepve

-1, (CX; B)) — n(C(Y, 0))>m,( fopy) = Wl(Mf,,,,‘,, of0.¢ @))—0

for each («, 8, v) € Cov(f).

Now, for the f of this vexemuple, (Xt 15 8)—=71( Yy, 8) is surjective and hence’
7y f,Q = 0. It follows that m;(f) = 0. However, consideration of “d” shows easily
“that f = lim{f,,} is not a surjection. :

IV.2. The shape theoretic fiber of a map. For each map f in (TOPg),qps We will
determine, functorially, three objects in pro-%#, each of which is, in some sense,
a shape fiber of f. We will use the Vietoris functor together with' the functors fib’
and # described as follows:

The functor fib: (&) maps—F 0 (0T (TOPg)qps—>TOP) : Here for f: (X, x)—(Y, y),
fib(f) = (f*(3), x). As usual we denote fib(f) by f*.
i The functor F: (Lodmaps=(Fo)maps called fiber resolution and described
in [13], VL. Here, for f: (K, k)—(L, I) one can associate to fin a functorial way the
commutative diagram:

(K, §) —> (K", k)

5\ /f/'
&,

&)

where i is a weak homotopy equivalence and f is a Kan fibration, Then & (f) = /"

and (#(f))™* is called the homotopy theoretic fiber of f, One has also the commuta-
tive diagram:

(FD, k) —— (& &)
@ (K, 1) l i \{‘
\ - v

(0, k) > &, 1y

(L 1)

It s easy to check that the maps g 4! ™= (#(f))™* define a natural transform-
ation from fib to fib 0'97 - We apply pro to obtain functors pro-fib and pro-# and
a natural transformation ¢: pro-fib—pro-(fib o #) = pro-fib r:j)x'o-.ﬁF .

icm
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Next, we consider the following diagram of categories and functors:

TOP,
N
AN
“/ N\
N
/ pl"o-l’lb
(3) (TOPO)mam e pro'('gﬂo)mnps — pTO-yo
pro-F pro-fib

Pro'('tfo)mnps

The three paths from (TOP )y, t0 pro-&, define the three “fibers” mentioned
above, For f: (X, x)=(Y, ¥) in (TOPg)sps We have the following, supressing the:
pro- an using —1 for fib:

1. ¥ (f~Y), the Vietoris type of the fiber of f.

2. (¥ (f))"*, the fiber of the Vietoris type of f.

3 (F( (S )))~*, the Vietoris theoretic fiber of f.

The first two of the above functors are naturally equivalent, that is, the “shape
of fiber” and the “fiber of the shape” coincide. There is a natural transformation
from the second functor to the third, but as one would expect, they do not coincide.
‘We have the following theorems:

TreoreM 1V.2.1. There is a canonical map yi: ¥ (f B (7 ()" which is
an isomorphism if Y is Hausdorff. :

TeporeM IV.2.2. There is a canonical map @: (¥ (f))™1=(F(# ()"

Proofs. For Theorem IV.2.2, we simply usethe natural transformation ¢ men-
tioned atove after first applying ¥,

For Theorem IV.2.1, we define morphisms

Y= m, Vapdapecov () "V(fwl)“’('y(f))_l
and .
0y = (1, Pyecorismion: (V) =7 (7.

The maps m: Cov(f)=Cov(f~'(3) is defined by m(, f) = (77X(B)) where
ji f7U(»)=X is inclusion. The map n: Cov(f™*(3))~Cov(f) is given by
i) = (¥}, {(X—=f~()} v B,) where for each Uey, U* is some open set in X with
U* A f~4(y) = U and B, = {U*| Uey}

1t is important to note that for any («, f) e Cov(f) and any y e Cov(F~* ()
the set of vertices for each of the simplicial sets £, *(¥) and (f7(); 7) is just the set
of points inf ~*(y). Also, the bonding maps in the inyerse systems {fir "1 Fapecorin
and {(f~2(); 7)%)}yecovr-10n 21¢ defined by the identities on vertices. o

We define ©;(w) = w and Y, 4(w) = w for each vertex w, It is easy to check that
these extend to the simplicial sets involved since £t and (F M0 7~Xp)) have

)
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‘the same simplexes and ( F7Y(»); y)and f,,?;)( ») have the same simplexes. Furthermore,
the nature of the bonding maps makes it easy to verify that each composition Yo®
and @ oy is equivalent to the appropriate identity morphism,

Remark. Analogous constructions can be carried out with the Cech functor @
replacing ¥~ and the & induced functor from (" 0)maps— (A 0)mups Teplacing .
Furthermore, it will follow from diagram (3) and Proposition I11.2.1, that the resulting
functors are equivalent in pro-o’y to those given here using ¥
 ExampLe IV.2.1 The fibers (¥(f))™! and (F(#"(/)))™" are not necessarily
-dsomorphic in pro-K,, even when f is assumed to be a Hurewicz fibration.

Let f: [0, 1)»Sy be the Hurewicz fibration pictured below: Since f is 1-1,

V()= ”If (f ) is. the trivial element of pro-K,. However, % (f ) has a cofinal,
‘subsystem which is equivalent in pro—(Ko)m,,?s to that system in which each term is
jct}}e m;P g: [;, 1))—+S1 defined by g(#) = ¢** and the bonding maps are the ident-
aties. Since F(g) is the universal covering of S, by the real lihe we see th
“\9) ) & ne, at
(#(#(£)))* is isomorphic to Z. ‘

Now, the functor Pro-f o %" maps (TOPy),,,.ps into FIB, the full subcategory of
Pro-(% o)mps Whose objects are Kan fibrations. We compose with the usual long
-exact sequence functor from FIB to pro-LES(%) and 1 from pro-LES (@) to
LES(pro-%). Thus, we obtain a second functor from (TOP()maps into LES (pro-#).

t THEZREM IV.2.3. There is a functor from (TOPg)maps to LES (pro-%) which associ-
-ates 1o the map f: (X, x)-(Y, y) the special long exact Sequence of pro-groups

"’Pro'nt((g*’ (“V(f))}_l) —pro-m,(X, x)ﬁpro-ni(Y, P

where the unmarked maps are appropri i
priately induced from thos 2
Jor the fibrations in the system & 7 (F). 7 vi8 o the et sepuence
) ‘We shall say that f; X'— Yi§ a shape-quasi-fibration if and only if, for each x € X
and fy = f: (X, x)=(¥,f(x)), it holds that the canonical map
As =912 01 V(ST ~(F (W (f))

is an isomorphism. That is, A} induces i i
F €S isomorphisms on the pro-homotopy-gr:
“Then, we have the following trivial corollaries: prerops
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CoroLLary IV.2.1 If f2 (X, X)-(Y, ) is a shape-quasi-fibration, then there is
g special long exact sequence of pro-homotopy-groups

- b Tu *
om0 £ 719, )~ pro-m (X, %) Spro-n Y, y) s

where Ay is appropriately induced by (A3 and i denotes inclusion.

COROLLARY IV.2.2. If f1 (X, x)-(Y, ») is a movable shape-quasi-fibration, then
there is a long exact limit sequence

w (70, ¥, X)-m(Y, P

obtained by taking the limit of the sequence of Corollary TV.2.1.

Thus, it remains to identify those fibrations (or maps) f for which A} is an iso-
morphism, We have noted in Example IV 2,1, that A7 is not necessarily an isomor-
phism in pro-c'y even when f is & fibration, This is not surprising since in that case
the maps in the system @ (f) fail to be fibrations. We might say such an f is not
a shape-fibration.

‘We conclude by raising the following natural questions for various sorts of
fibration:

(1) Which. fibrations are shape-fibrations?

(2) Which fibrations are shape-quasi-fibrations?

A version of (1) has been partially answered by Scharlemann [22]. Generalizing
work of Fox [11], he proves an extension theorem which shows that certain fiber
bundles with ANR structure group are shape-fiber bundles.

Acknowledgment, The authors are grateful to the referee for a correction and
helpful remarks concerning the notion of exactness in pro-4.
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Boolean matrices, subalgebras and automorphisms
of complete Boolean algebras

by

Bohuslav Balcar and Petr Stépanek (Prague)

Abstract. We shall prove several theorems on complete Boolean algebras motivated by the
theory of Boolean valued models. Section 1 deals with Boolean matrices that correspond to collapsing
mappings in Boolean extensions of the universe. An analogue of Cantor-Bernstein theorem for
Boolean matrices is proved. The notion of maximal subalgebras is introduced in Section 2. It is
shown that a complete Boolean algebra is rigid iff it does not contain any proper maximal subal-
gebra. The last Section is devoted to the problem of existence of rigid (non-complete) Boolean
algebras of power &;. It is shown that such algebras can exist independently on the Continuum
hypothesis (CH). Namely, the statement “1CH+there is a rigid Boolean algebra of power ¥, the
completion of which is rigid as well” is consistent relatively to ZFC. Only the proof of Lemma 3
Section 3 makes use of Boolean valued models explicitly, the other proofs are algebraical.

§ 0. Preliminaries. Standard set theoretical notation and terminology is used
through the paper. Ordinal numbers are denoted o, B, 7, ... and an ordinal coincides
with the set of all smaller ordinals. Infinite cardinals are denoted by x, 4, ... and are
identified with initial ordinals. The cardinality of a set x is denoted by |x|. A Boolean
algebra b is the structure (b, v, A, —, 0, 1) satisfying the usual axioms. We use
bold face letters to distinguish Boolean algebras from their universes. Every Boolean
algebra is partially ordered by < and 1 is the greatest and 0 the least element. It
should be noted that the operations are definable in terms of < and vice versa. We
say that b is a complete Boolean algebra if the operations v and A corresppnding
to supremum and infimum with respect to < can be extended to any subset of b.
As customary, these infinite operations are then denoted by \/, /\: For any Boolean
algebra b, let Spb denote the set of all subsets a of b such that supa exists. Thus b is
a complete Boolean algebra iff Sp b = P(b) (the power set of b).

Let b be a complete Boolean algebra. We say that b, is a (complete) subalgebra
of b if by is closed under infinite operations and under —. For any u € b define ,, ()
as follows

my, () = N\ {vebi;ozu}.
For any u € b, let b|u denote the partial algebra with the universe blu = {v & b; v<u}
and operations —,v =u—v, \/,a=ua\/a, \,a=/\a for any veblu and
asb|u. Clearly, b|u is a complete Boolean algebra.
-
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