The Chinese remainder theorem
and sheaf representations

by

Willliam H. Cornish (Halifax, N. S.)

Abstract. Let 2% be a universal algebra whose congruence lattice contains a distributive upper
regular sublattice % which is compactly generated, consists of permuting congruences and such that
the intersection of two compact members of & is compact. Then U is representable as all the global
sections in a sheaf of algebras in which the base space is the set of prime members of £ endowed
with the dual hull-kernel topology. This representation includes Comer’s in which Boolean lattices
of factor congruences are employed and is particularly applicable to algebras which are “modules”
over semilattice-ordered semigroups and distributive lattices.

1. Introduction. Basically this paper is concerned with universal algebras which
have a bounded distributive lattice associated with them in such a way that the filters
of this lattice give rise to a sublattice of the lattice of congruences of the algebra for
which the Chinese remainder theorem holds, and thus enables the algebra to be
represented in a natural way as the algebra of all global sections in a certain sheaf.
Thus, in Section 2, we consider the general case which was described in the ac-
companying abstract. After discussing some examples, we move onto Section 3, wherein
we consider algebras which are acted on by a commutative semilattice-ordered semi-
group. We then consider special cases of this situation in the remaining two sections.

In general, our notation and terminclogy for universal algebra and lattice theory
follows that of [8] and [9]. For background on sheaf representations of universal
algebras, we refer to [3].

2. The general sheaf representation. Let 2 be a non-trivial universal algebra
with congruence lattice C(2). Let % be a subset of C(2A) such that the following
conditions hold.

(2.1) The bounds w and v of C() are in Z.

(2.2) For any @, L, 0ndbec .

(2.3) & is upper regular in C(X). That is, for any {0} =L, V0, exists in £ and
is equal to Veay©;.

(2.4) The lattice £ is distributive.

(2.5) £ consists of permuting congruences.
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(2.6) The lattice & is compactly generated in its own right.

(2.7) The intersection of two compact members of & is compact.

A member n of & is called prime if, for any @, $e ¥, 0 n dcn implies
Ocn or Pcm.

Before continuing, let us consider some of the connections and implications of
these conditions on &,

Of course, (2.1), (2.2) and (2.3) ensure that % is a complete lattice. However,
we emphasize that we are not assuming % to be a lower regular sublattice of c(n),
i.e. & need not be closed under arbitrary set-theoretic intersections. Conditions (2.3)
and (2.7) ensure that the compact members of % form a sublattice of C(). It is
not hard to see that (2.6), (2.7), (2.3) together with (2.4) and (2.5), postulated only
for the lattice of compact members of 2, ensure (2.2), (2.4) and (2.5) for &. In
view of (2.4), the prime members of & are nothing more than its meet-irreducible
elements. The following proposition sheds further light on (2.2); we will need part
of it subsequently.

PROPOSITION 2.1. Suppose & satisfies (2.1), (2.3) and (2.4) and yet the infimum
O AD of two members © and B of & may not be their set-theoretic intersection. Then
the following are equivalent. )

() For each 0,8 %,07® =0 r .

(ii) For each @€ £, 0 = (\{ne L: n is prime; Ocn).

Proof. ()=>(ii). Suppose x,y e 4 and x # y(®). Then,
' A ={PeZ: Ocb,x & y(®)}
is non-empty. Order £ by set inclusion and let # be a chain in 4. Then,
V=U{Sed: de#} ’

is in % by (2.3), and clearly it is the least upper bound of 5 in . By Zorn’s lemma,
there exist maximal elements in 2. Let x be such an element. As x #y(0), 7 #
Let ', $& % be such that O'¢z and dgn. Then, x = »((=vOY) A (nv b))
By (i) and the other conditions, we conclude that x = P(EV(O N ®)) and con-
sequently @' n @&n. Thus, 7 is prime. This and (2.1) immediately imply (ii), as
required.

iD= Of course ©@ N & is contained in @ A @. Assume that (ii) holds. Using
(ii) iy easily follows that @A ®<@, & and hence @ N & = OAD,

Levma 2.2. 4 sublattice £ of C () satisfies (2.4) and (2.5) if and only if it satisfies
the  Chinese remainder theorem, i.e., Jor any xy,%,,...x,€A4 and any
01,0;,..,0,e2, x;,=x0,v0) for all i,j=1,2, v, 1 implies that there
exists x € A such that x = x,(©;) for each j=1,2, .., n. ’

Proof. This is a generalization of [8], Chapter 5, Exercice 68 and has already
been explicitly observed in [7], Corollary 3.3.
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Let o be the distributive lattice of compact elements in .%. Of course (2.6)
ensures that & is isomorphic to the lattice of ideals of 2. Note that we have not
assumed ¢ to be in A,

Let (%, A) be the set of prime elements in #. Endow it with the dual hull-
kernel topology. That is, declare the sets 2(K) = {r e 2(£,W): Kcn}(Ke X)
to be open. Since h(K; V K;) = h(Ky) n A(K,) and (2, W) = Y {h(K): Ke X},
these “hulls” are a base for the open sets.

LemMA 2.3. The space P(£L,N) is- compact.

Proof. The set of prime ideals of any distributive lattice with 0, endowed with
the dual hull-kernel topology, is homeomorphic in a natural way to the set of prime
filters endowed with the hull-kernel topology. Hence, the lemma follows from the
dual of [9], Lemma 4, p. 119.

Let (%, M) = J {A/n: neP (£, W}, and for any x e 4, let £ be the Gel-
fand transform of x, i.e. £ is the function £: (¥, W (¥, A), defined by
() = [x]n, for each neP(Z,N).

Lemma 2.4. For any x,yed, the set €(x,y) = {ne (L, W: 2(n) = p(n)}
is open in P(L,N). »

Proof. Let e €(x,y). By (2.3) and (2.6), O(x,))=E = {Ke A : KSE}.
Hence, @ (x, y)< H for some H e A" such that H=E. Thus, if X e 2(Z, ) is such
that X e h(H) then ©(x, )Z, i.e. (%) = §(Z). Hence, Eec h(H)=E(x,y), and
C(x, y) is open.

From general considerations ([3], Lemma 3.3) Lemma 2.4 implies that if
F(Z, N is endowed with the finest topology making the Gelfand transforms con-
tinuous (i.e. S(Z,A) is given the topology whose base for the opens is
{£(h(K)): xe 4 and Ke A} then (#(Z,N),P (L, W) is a sheaf of algebras
of the same type as that of . Let I'(#(Z, ), # (&, W)) denote the algebra of all
global section of this sheaf. .

THEOREM 2.5. The map x—% is an isomorphism of U onto the algebra
(& (&, W), 2(L,NW).

Proof. By Proposition 2.1, ® = ( {ne &: ne P (¥, W)}. Hence the map is
an embedding of U onto the algebra of global sections. Let ¢ be any global section.
Because of the compactness of #(%, ) and the fact that global sections agree on
an open neighbourhood of a point where they agree, there exist Xy, ¥z, ..., ¥, € A
and X, K, ..., K, € A such that o(n) = $,(n) for allmw e h(K;), wheni = 1,2, .., n.
Then, £/(n) = £(n) for all w € h(K)) N h(K}) = h(K;Vv K}), whenever i,j = 1,2, .., 1.
By Proposition 2.1 once more, x; = x(K;v K)) for any i,j=1,2,..,n
By Lemma 2.2, there exists x € 4 such that x = x;(K)) for j = 1,2, ..., n. That is,
£(n) = £n) for all meh(K}), whenever j=1,2,..,n Thus, o(n) = £(n) for
all e 2(Z,N), and the proof is completed.

EXAMPLE 2.6, Suppose algebra 2 is such that its congruences permute and form

a distributive lattice in which the intersection of two compact congruences is compact.
2%
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Then, we may take £ to be C(2) to obtain a sheaf representation for 21, Of course,
this applies to Boolean rings. Due to a tecent result of Shores and Wiegand [13],
this last instance is capable of immense generalization. Indeed, in [13], Corollary 1.11,
it is established that if the lattice of ideals of a commutative ring with identity is
distributive (i.e. we are dealing with the so-called arithmetical rings) then the inter-
section of two finitely generated ideals is finitely generated. Since ideals and congruen-
ces of a ring rhay be identified, and in doing so finitely generated ideals correspond
to compact congruences, we have an example of our situation.

ExAMPLE 2.7. In [3], Comer generalized R. S. Pierce’s sheaf representation to
rings using central idempotents to a representation of a wide class of universal
algebras by using a well-behaved Boolean sublattice of all factor congruences, Our
situation can be applied to obtain Comer’s theorem ([3] Theorem 3.7). For,
Comer’s condition I and the equivalent of condition II given by [3], Proposition 2.3
implies that the ideals of his Boolean lattice of factor congruences satisfies 2.0
through to (2.7) inclusive.

3. Semilattice-ordered semigroup modules. By a semilattice-ordered  semi-
group S we mean an algebra (S; v, -) such that (S; -) is a commutative semigroup,
(S; v) is a semilattice and the equation x(yvz) = xpv xz is identically satisfied.
A semilattice-ordered semigroup, or more briefly a v -semigroup, is integral if (S -)
has an identity which is also the largest element of (S; V), while it is negatively-
ordered if xy<x for all x, y € § (here x<y if and only if xvy = y). Of course, § is
negatively-ordered if it is integral.

A filter F of a v -semigroup S is a (non-empty) subsemigroup of (S; *) such that
xeS, yeF and y<x imply xe F. Ordered by set-inclusion the filters on S form
a lattice & (S), where the infimum is set-theoretic intersection and the join of a col-
lection {F;} of filters is given by '

VE; ={aeS: azf,fs ..[,, fieF;and Fye{F} fori=1,2, s}

Note also that Fy n F, = {fivfy: fyeF, and f, € F,} for any Fy, F, e F(S).
For x €S, the smallest filter containing x is given by

[x) = {e S: x*<y for some k=1}.

ProposiTION 3.1. If S is a negatively ordered v -Semigroup then the lattice F(S)
of its filters is distributive.

Proof. Let xe F, n (FyVv Fy), where Fie #(S) for i =1,2,3. Then xe Fy
and f; f3<x for suitable f, € F,, f;e F;. Now

(V)(xVfy) = VXLV VL <xv i = x,

since S is negatively ordered. In addition, xv foeFinF, and xvfyeF, n Fy.
Hence, x e (F; n F))v(F, n F;) and the proposition follows.
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Since we are going to make use of & (S), Proposition 3.1 explains why we shall
henceforth assume that each v -semigroup is negatively ordered. ‘ )

An algebra (M; v, f,),<, is a module over a semilatiice-ordered semigroup S if
the following conditions hold.

(3.1) (M; v) is a semilattice.

(3.2) For each ae S and me M, there is a unique element, denoted by ma,
in M.

(3.3) For each ¢e S and m,ne M, (nvn)a = mav na.

(3.4) For each a,be S and me M, m(avb) = mav mb.

(3.5) For each a,be S and me M, m(ab) = (ma)b.

(3.6) For each ae S and me M, mavm = m, i.e. ma<m.

(3.7) Each f,(y<a) is admissible in the sense that either J, is a nullary operation
or if not then the following property holds:

if the arity of f, is k, and m,, m,, ..., m,e M, ng,n,, .., m, €M and ae S
satisfy m;a<n; and n;a<m; fori=1,2, ..., k,, then '

Sy, my, o, m)as g ny, ey )
and
Sy, g, s m a<fy(my, m;, ..., m).

It will be convenient to regard a v-semigroup module M as an algebra
Ms = (M; V[, gs)y<as<p of type <2; ..., ky, 51,1, .5, where k, is the arity of
the admissible operation f, and g, is the unary operation on M induced by multi-
plication by ;& S = {a,: 6<f}. We emphasize that any sheaf representation of:
Mg = (M; V, [, G5)y<as<p in a sheaf of modules of type ¢2;..., kysws 1,1, 00
induces a representation of the reduct (M; v, Si)y<o in a sheaf of algebras of type

{2; -5 Ky, ... In examples, we often wish to consider these reducts and there will
be no ambiguity if we omit to mention the type. -

Let -F be a filter in S. Define a binary relation on M.by: m = n(0(F))
(m,ne M) if and only if mf<n and nf<m for some fe F.

PROPOSITION 3.2. The following statements hold.

(i) For each Fe % (S), O(F) is a congruence on the algebra M.

(ii) For any two filters Fy, F, € #(S). ©(F,) permutes with O (F,).

(ii) For any two filters Fy, F, € F(S), O(F, 0 Fy) = O(F) n O(F,).

(iv) For any set {F}<Z(S), ®(VF) = v O(F).

Proof. (i) ©(F) is reflexive because of (3.6). It is symmetric by its definition and
transitive due to (3.3) and (3.5). It has the substitution property for the oper-
ation v because of (3.3). By (3.7), it has the substitution property for each Jy —of
course; (3.7) was postulated to ensure this. The substitution property holds for
each g; due to (3.3) and (3.5), and hence ®(F) is a congruence. '

(i) Suppose m = n(0(F;) - O(F,)) for given m, ne M. Then there is peM
such 'that m = p(@(F))) and p = n(O(F,)). There are f; € F; and f, e F, such
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iCﬂI©
that mf,<p, pfi<m and <, nfy<p. By (3.3) and (3.5), mf\ fo<pfa<n and
nfy fr<m. Hence, m = mvnf, f, and n-= nvmfify Let w = mfy v nfy. Then,

wfy = mfzzvnﬂfzsmvn/lfz =m,
while

mfy = (mvnfifo)fo = msz”flff<’;’f2VW‘l =Ww.

Similarly, wfy<n and nf<w. Thus, m = n(0 (F,) °O(F)), and @(F,) permutes
with @ (F,).

(iii) Let m,ne M be such that m = n(@(F;) n O(F,)), so that mfy<n
ofy <m, mfy <n, and nf, <m for suitable f, € Fyand £, € . By (3.4), m(/, sz)sr;
and n(f;vf)<m. Hence, m.= n(0(F, n F3)) and (iii) follows easily.

(v) It m = n(6(VF)) then (3.4) implies that

mfy fip S Sn nfi, Sy o finSm

for some f; e F, e {F}, foreach r =1, 2, -, k. Now for any filter F and me M
mf = m(©(F)) since (mf) f<m and mf<mf. Hence, ’

and

m = (O(F))mf, = @FNmf fry= ... = My Sy - Fi(@(F).
Thus m = mf,, f,, ... £;,(VO(F)). Similazly, n = Wiy S o [ {VO(F)). But,
(mfixfiz /ik)ﬁl "'fikgnfhf;z flk

and

i S S Fry wSwSmf fi, I
Hence,
iy, foo oo fio = 0fi £y ...f,k(V@(F,-))

and so m = n(VO(F)), and (iv) follows.

We say that S has a zero, 0, if (S; v) has a smallest element 0. Since we are
assuming jchat S is negatively ordered 0 is the zero of the semigroup (S -).

We v&'nll not be abl!e to get much further unless we ensure that the map :F =0 (F)
pf (8} into C(Ay) is an embedding. We also need to ensure that @([a)), a¢ S,
is a compact member‘of {0(F): Fe #(s)). ot course, we will also require @ = @(F)’
and ¢ = ©(G) for suitable filters F and G on §. Therefore, a module .# is said to
be well-behaved if the following conditions are satisfied. ‘

(3.8) S has 0 and 1.

(3.9) (M, v) has 0 and 1, and (S, v) is a subsemilatti

> \ : , » milattice of (A

the zeros and identities respectively coincide. (4 V) such that

(3.10) The 0 and 1 of M are considered as nullary admissible operations in M.

(3.11) Ay is unitary in the sense that ml =m for all me M.

Note that (3.11) implies (3.6). For,if me M and ae § then mavm =
=m(avl) =m Tt is clear that o) = o,
9([0)) = « In addition, (3.11) ensures that the map

mavml
m0 = 0 for all meM, and
F+ O(F) is one-to-one. Since

-
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the compact members of £ (S) are the joins of a finite number of principal filters
and [4) N [b) = [aV b) for any @, b € S, Proposition 3.1 implies that the intersection
of two compact members of & (S) is compact. These remarks and Proposition 3.2,
ensure that P (#g) = {O(F): Fe F(S)} satisfies each of the conditions
20,22, ..,2.7.

A filter Fis prime if avbe F(a, be S) implies ae F or beF, and F # S. Of
course, filter Fis prime if and only if @ (F) is prime in % (#j). Let 22(S) be the set
of prime filters of S endowed with the dual hull-kernel topology. Let

S (M) = ) {Ms|@(F): Fe 2(S)},

and endow it with the finest topology which makes the Gelfand transforms
Mm(me M and M: P(S) - P(My)) continuous. Clearly, if we take & = L(Ay)
and U = A5 we can identify the sheaf (#(Z, ), #(Z, M) of Section 2, with
the sheaf (& (), #(S)) and hence Theorem 2.5 implies.

ToEOREM 3.3. Let Mg be a well-behaved module over a v -semigroup S with 0
and 1. Then My is canonically isomorphic to I'(S (As), P(S)).

There is a slightly different version of Theorem 3.3 which we will now construct.
A non-empty subset J of Vv -semigroup S is called an ideal if it is a subsemigroup
of (S ) such that a, b eJ, ce S and e<avd imply ceJ. An ideal J is called prime
if J # S and ab e J implies either a € J or b eJ. Of course, an ideal J is prime if and
only if S\Jis a prime filter, and this ensures that the map J+ S\Jis a homeomorphism
of 2(S), the set of prime ideals of S endowed with the hull-kernel topology, onto
P(S). Let T (Ms) =) {Ms/O(S\NQ): Qe2(S)} and give it the usual topology.
Then, without difficulty, we obtain the following alternative form of Theorem 3.3.

THEOREM 3.4. Let M5 be a well-behaved module over a v -semigroup S with 0
and 1. Then, Mg is canonically isomorphic to I'(7 (Ms), 2(S)). .

Before leaving this general situation we would like to briefly discuss another
phenomenon which will also be specialized in the subsequent sections of this paper.

The reduct A4 = (M; V, f,)y<, of 2 “well-behaved” module 45 overa Vv -semi-
group § with 1 (i.e. we suppose S is integral but need not have a zero) is said to have
filter-determined congruences if & (M) = C(M), that is, if the map F—@O(F) is
onto. Using Propositions 3.1 and 3.2, we obtain

PROPOSITION 3.5, If the reduct # of a well-behaved module Mg over an integral
v -semigroup has filter-determined congruences then C (M) is distributive and consists
of permuting congruences.

4. Applications to v -semigroups and distributive lattices. A v -semigroup §
with 0 and 1 is said to residuated (pseudoresiduated) if for any a, b e S (a e S) there
exists a necessarily unique element denoted by a: b(a*) such that for any ce S,
cb<aif and only if ¢<a: b (ca = 0 if and only if c<a*). While S is an I-semigroup
or lattice ordered semigroup if (S; v) is in fact a lattice.

We will regard a v -semigroup S with 0 and 1 which is (i) residuated, or (ii)
pseudoresiduated, or (iii) an /-semigroup as an algebra (a) (S; v, -, :, 0, 1) of type
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<2,2,2,0,0y0r (b) (S; v, -, *, 0, 1) of type (2,2, 1, 0,0), or ©WS;v, -, A,01

of type.<2, 2,2,0,0), respectively. We also regard pseudoresiduatcdf l-;ef;xi ;o )
and residuated /-semigroups as algebras of the appropriate type. Of course gweu-p :
gar'd S as a reduct of the module Sy which is certainly well—Behaved In '1::ldit’ o
a distributive lattice (S} v, A, 0, 1> will be regarded as a v~semigroup. WitI; A i(’f'l:
and t'he. clas.s of all such lattices is a subvariety of the variety of v ~semi§roups Trc o
are similar Lut.erpretations for distributive pseudocomplementod lattices in the vm:gie
of pseudoresllduated Vv -semigroups, and pseudo-Boolean algebras (in the ser 'y
of [12]; .Heytmg algebras, implicative lattices, relatively pseudocomplemented l'tLLi::Se
are egulvalfent terminologies) in the variety of residuated v-semigroups Th;s e X
the viewpoint of [5]. The following facts are mentioned and exploited i.n [5] s

Lemva 4.1. The operations: (residuati *
. : : luation), *(pseudoresiduatior )
infimum in a lattice-order) are admissible in t/';e sense of (3.7) (e

S'is reduced (dense) it av b = 1 (ab = 0) impli '

_ = = 0)impliesa = lord = 1 (a = 0 or b = ()
for any a, b € S. We say that S is local if it has a unique maximal ( o
see -t.haf S is reduced if it is local. Reduced v -semigroups arose i
specialize Theorem 3.4 to- obtain

ideal. It is easy to
n [5]. We can now

THEOREM 4.2. Let S be a v -semigroup with 0 and 1. Then, (7 (S), 2(S)) is a sheaf

of local v-semigroups with 0 and L, which is a sheaf of residuated (pseudoresiduated,

lattice-ordered, etc.) v -semigroups if Sis resi
, etc. ps if S is residuated (pseudoresiduated, lattice-orde
etc). In al{ cases, S Is isomorphic to I (7(S), 2(9)). Hetieesordered,
. :I‘he-specia.l.ization of Theorem 4.2, which'gives a sheaf represent
distributive lattices as the lattice of global sections in a sheaf of 1
already been established by Brezuleanu
different from ours.
From Theorem 4.2 and [5], Theorem 4.4, we obtain

@ b())(\)/R(C;L.LAm: 4.3.' A4 resz‘duate.ad Vv -semigroup (I-semigroup) satisfies the equatfon
: 1a) = 1if and only if the sheaf 776y, 2(8S)) of Theorem 4.2 is ¢ she
of totally ordered I-semigroups. . v

ation of bounded
( h ocal lattices, has
;Lnd Diaconescu in [2]; their approach is

Using [5), Theorem 4.2, we obtain in a similar manner

CoRrOLLARY 4.4. A pseudoresiduated vV -semigroup (I-semigroup) satisfies the

equation a*v a** = 1 if and only if the sheaf (7 )) i
> 2 )
dense v -semigroups (I-semigroups). 4 ( @ (S)) o shedf of reduceda

Ston?fa&?:rse, forollary 4,3 and Corollary 4.4 have specializations to relative
es and Stone lattices, respectively. They also give pleasant sheaf-theoretic

Interpretations of the sub-direct representations of [5]. Corollary 4.3 can also be

specialized to describe the nth variety Z,(1<n<w) of relative Stone lattices con-

saliered i;l?he v:jtie:y of pseudo-Boolean algebras (see [11]); for 1<n<eo the stalks
m-chains with 1<m<n ([11], Theorems 2, 3 and Secti . ] "y

ains w , , ection 2). We omit t i
The specialization of Corollary 4.4 to distributive lattices can oo senanli

describe the associated stalks whe i, Eenemlized to

0 Sis in Z,(1<n<w), the nth variety of distributive

icm®
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pseudocomplemented lattices. In this case the stalks are m-dense for 1<m<n,
where lattice S'with 0 is z- dense if (0] is the intersection of 2 prime ideals (of course .S
is dense if and only if it is 1-dense). Again we omit details; for some information on
congruences in this case see [6].

We now consider another type of specialization of Theorem 3.4. Let S be
a v-semigroup with 0 and 1 and let E(S) = {aeS: a* = a}.

PROPOSTTION 4.5. Order E(S) by: a<b (a,beE(S)) if and only if a = ab.
Then E(S) is a distributive lattice and subsemilattice of (S; V). Moreover, S is a well-
behaved E(S)-module. ' '

Proof. We omit the easy computations.

Thus, Proposition 4.5 yields a sheaf representation of v-semigroup S which
might be fruitful in certain cases.

Let D(S) = {ae §: ab = Oand av b = 1 for some (necessarily unique) & in S}.
Regarding S as a special case of a semiring, D(S) is nothing more than 'the set of
(central) complemented elements of S, in the sense of [4]. Thus, the following result
is clear. . . _

PROPOSITION 4.6. D(S) is a Boolean sublattice of E(S) and S is'a well-behaved
E(S)-module.

Of course, the sheaf representation which is yielded by Proposition 4.6 is a special
case of Comer’s theorem (as in Section 2). This follows from the relationship between
direct summands and central complemented elements as explored in [4].

5, Lattices which are modules over a distributive sublattice. Let L be a lattice
with 0 and 1. Recall that an element se L is called standard (neutral) if, for any
x,veL, xA(svY) = (xA5) v (xAY) (the sublaitice of L generated by {5, x, y} is dis-
tributive). An element is central if it is neutral and complemented. Dual-standard
elements are defined in a dual manner. Let SA(L), N(L) and Z(L), respectively denote
the set of all dual-standard elements, neutral elements, and central elements. Z(L) is
the centre of L and each is a distributive sublattice of the lattice. Also, Z(L)=N(L}
=8d(L), and Z(L) is Boolean. For information, the reader can do no better than
refer to Gritzer and Schmidt [10].

PROPOSITION 5.1. A lattice L with O and 1 is a well-behaved module over each of
the disiributive sublattices Sd(L), N(L) and Z(L).

Proof. Here the main point that must be checked is the satisfaction of (3.3)
and (3.4) for Sd(L). But these follow from the duals of Theorem 2 (3'()) and The-
orem 5 of [10]. )

Thus Proposition 5.1 yields sheaf-representations of an arbitrary bounded
lattice. The Z(L)}-module case is once more an instance of Comer’s Theorem.

There is one final specialization which we wish to describe briefly. Let S be
a bounded distributive lattice and let J(S) be its lattice of ideals. Of course J(S) can
be regarded as a well-behaved module over S. Let F be a filter in S and let
F = {JeJ($): J2(f]{for some fe F}. Thus, F is the filter in J(S), generated by F.
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Here, ©(F), as described in Section 2, is ¥(F), the smallest congruence on J(S)
-which has F as a congruence class (this notation is in line with that of [14]). Also,
for a prime ideal P in S, it is not hard to show that [J]1O(INP) = J®, where J® is
“the extension of J to S/¥(S\P)” so that J* = {[s] W (S\P): s €J} (again we use
the notation of [14] and ¥ (S\/P) is the smallest congruence on S having the prime
filter S\P as a congruence class). Hence, the sheaf representation of the S-module
J(S) yields

THEOREM 5.2 (The principle of localization). Let S be a distributive lattice with O
.and 1 and let J and K be ideals in S. Then, J = K if and only if, for each prime ideal
P e (S), the extensions J and K to the local lattice S|¥(S\P) are equal.

Proof. Two global sections are equal if and only if they agree at each point of
‘the base space.

The “localization” S/P(S\P) has been studied in [2] and [14]. Theorem 5.2
‘has never been formally stated in the literature. Of course, it is the analogue of the
familiar technique used in the ideal theory of commutative rings.

Recently, Swamy [15] has given a different type of sheaf representation for
aniversal algebras 2 such that C() is distributive and consists of permuting con-
.gruences. Theorem 5.2 shows in forcible manner that the type of representation
-arising from Theorem 2.5 is of a different nature.

6. Modules with filter-determined congruences. In conclusion, we would like to
‘point out that many interesting modules with filter-determined congruences exist.
In [5], Theorem 3.1, the author showed that a Vv -semigroup. (I-semigroup) with 0
and 1 has filter-determined congruences if and only if it is a Boolean lattice. This
-generalized a well-known theorem of J. Hashimoto in the theoty of distributive lattices.

From Theorem 8 of Blyth’s paper [1], it follows that residualed V -semigroups
-and I-semigroups have filter-determined congruences. This result had already been
-established for pseudo-Boolean algebras by Rasiowa and Sikorski [12]. Thus, in
this situation, Proposition 3.5 applies and the sheaf representation of Example 2.6 is
thus illustrated once more.
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