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Obtaining inverse sequences for certain continua
by
J. W. Rogers, Jr. (Auburn, Ala.)

Abstract, A well-known theorem states that every continuum (compact connected metric
space) is homeomorphic to the limit of an inverse sequence whose coordinate spaces are finite di-
mensional connected polyhedra and whose bonding maps are piecewise-linear, The usual proofs
of this theorem, however, give bonding maps which are rather complicated. Simpler bonding maps
are referred to in the literature for some special cases: if each coordinate space is the interval [0, 1]
and each bonding map is the identity, the limit is an arc; also a certain indecomposable continuum
may be obtained by using for each bonding map a function f: [0, 1]-> [0, 1] whose graph resembles
an inverted “V”.

The purpose of this paper is to provide, for a certain class of one-dimensional continua, general
methods for constructing relatively simple inverse sequences.

1. Obtaining inverse sequences. In this section we show that an inverse sequence
which follows the pattern (in a sense to be defined) of a sequence of finite open covers
of a one-dimensiopal continuum M has a limit homeomorphic to M. The bonding
maps obtained in this proof, however, are fully as complicated as those discussed
above, so in Sections 2 and 3 we turn to the problem of “smoothing” the bonding
maps. An example at the end of Section 3 provides an application of the method.
These results are then applied in Section 4 to certain chainable continua, where they
give particularly simple inverse limit sequences, as is shown by a number of
examples.

A map is a continuous function. We denote by (X, f) the inverse sequence
whose coordinate spaces form the sequence X' = X, X3, ... and whose bonding maps
form the sequence f = fi,fs, ., With fii X74,~X, for each i, and call (X, [)
proper if f(X,.,) = X, for each i. It L = lim(X,f), the limit of the inverse se-
quence (X, ), then we denote by =, the projection map from L into X and by f; the
composite f; ¢ ... o fj g1 X=Xy, if i<j. fy denotes the identity map on X;. The
metrics {d}{%, for the coordinate spaces of the inverse sequence (X, /) are always
assumed to be such that the diameter of the coordinate spaces are all <1, and the
metric for lim (X, f) is defined by

dx, y) = ’Zld,(n,(x), ()27
DEFINITION 1.1. If ¢ and D are finite collections of open sets then C is properly

embedded in D if and only if

'y
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(1) Cis a refinement of D,

(2) if c e C intersects ¢’ € C, then ¢ L ¢’ does not intersect three elements of D,
and )

(3) if d and d' are two intersecting elements of D, there exist intersecting ele-
ments ¢ and ¢’ of C such that c=d, ¢ intersects no element of D—«{d}, and ¢ in-
tersects d’.

DEFINITION 1.2. A defining sequence H for a one:diménsional continuum M
is a sequence H, H,, ... such that for some sequence e, , &, ... of positive numbers
converging to 0 and for each i,

(1) H, is a finite collection of open sets relative to M which covers M,

(2) H,. is properly embedded in H;, and

(3). the. mesh -of H, is- <g) (i.c. each element of H; has diameter <g).

DEernTION 1.3. Unless otherwise noted, we adopt the conventions of [3]. All
complexes used here are finite. If H is a finite collection of point sets we denote the
nerve.of H by N(H), and we identify the elements of H with the corresponding
vertices of N(H) and [N(H)|. Note that if H is a defining sequence fot a one-dimen-
sional continuum, then Conditions 1.2 (2) and 1.1 (2) imply that no point belb’ngs
to three elements of H; for any i; hence N(H,) is one—dlmenswnal for each i. The
barycentric subdivision of the simplicial complex K is. denoted. by Sd (K).

DEFINITION 1.4. The inverse sequence associated with the defining sequence H for
the one-d1mens1ona1 continuum M is the proper inverse sequence (X, S) such that

(1) forieach i, X; = |N(H)I,

(2 for each i, f: X;,1—~X; is the simplicial map relative to N(H;,. ) and
SA[N(H;)] which assigns to the vertex he H,,, of |[N(H,,,)| the point

(@) 2" of [SA[NCH)]|, if &' is the only element of H, that A intersects, and

(b) $h'+1h" of |SAINH)], if &' and k" are the - only two elements of H;
that A intersects.

Remarks 1.5. Several remarks are necessary to Justlfy this definition. First
note that conditions (22) and (2b) above define a vertex map o; relative to N(H,, )
and Sd [N(H,)]. Because of Définition 1.1 (2), ¢; maps the vertices of each 1-simplex
of N(H;.,) either to a point, or to the vertices of a 1-simplex of Sd[N(H}))], so ¢,
extends uniquely to a simplicial map f;: N(H;,.,)—Sd[N(H)]. Condition 1.1 (3)
guarantees thdt each simplex in Sd[N(H))] is the 1mage of a simplex of N(H,..,),
so that (X, f) is proper..

We now state the main theorem of thxs section. Its proof, using several lemmas,
occupies the remainder of this section. R

THEOREM 1.6. If the inverse sequence (X, f Y is asfociated with the defining se-
quence H for the one-dimensional continuum M, then 1im (X, f) is homeomorphic to M.

We will denote by K° the interior of the point set X and by K the closure of K.

Since each 1-simplex of N(H,, ) is thrown into half of a l-simplex of N(H)), we
have by induction:

icm°®
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Lemma 1.7. If i<j e; and e; are 1-simplexes of N(H,) and N(H}) respectively,
and fiy(e]) intersects e, then fy; is linear on ey, f(e)=e;, and
diam (fi(e))<2"/diam(ey) .

For each he H,;, st(h) denotes the open star of & in [N(H))| and k' denotes
7y 1(st(h)). Let G; denote the collection of all sets k', where h is in H;. Then
G, is an open cover of lim(X,f). L

Lovma 1.8, If i<j, g;€ H), hie H; and g,Sh,, then fi;(st(g))Sst(h); hence
gishi.

This follows easily once it is shown by induction that if i<j, g; e H;, hye Hj,
and g, intersects /i, then fi(st(g))Sst(h).

LevMa 1.9, If g, and hy are elements of H, for some i, then g, intersects h; if and
only if g} intersects hj. -

Proof. Bach of the following statements is clearly equivalent to the next:
(1) g} intersects hy, (2) st(g,) intersects st(h;), (3) g, and h; are vertices of a 1-simplex
of N(H;), and (4) g; and A, intersect.

Lemma 1.10. hm(mesh of G) = 0.

Proof. Supposc j is a positive integer, and z is an element of G;. Then = h j
for some element &; of Hj. So .

w0

diam(@)< Y, diam (my(2)-27"

=]

j R ©w
<y dmm ( ﬁj(st(h,)))-l"+i=2+11 27,

i=

since diam(X)) = 1 for every i. But if ¢; is one of the 1-sitplexes in st(hy), i</,
and e, is a 1-simplex of N(H;) that contains fifley), then by Lemma 17
° diam (f};(e) <2/~ diam(e) <277 .

Hence,

j . o -
diam(z)élz (2'214)'2”-[-1-%12 ,

N2~ = @+ 127,
which has limit 0.

If p € M, we will say that g determmes‘p if and only if ¢ is a sequence g, gz,

such that g, T =g, € H, forcach i,and p = ﬂ g;. If g determines p, let A(g) = ﬂ g:

(note that, by Lemma 1.8, g,ﬂ gi» and by Lemma 1.10, A(g) is degenerate)
LemMA 1.11. If p € M and g and h are sequences that determine p, then A(g) = A(h).
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Proof. Since pe g, n h; for each i, g and A; intersect for each / (Lemma 1 9)
By Lemma 1.10, limdiam(gj U Aj)) = 0. Hence -
im0

M= Nagi= (K=,
i=1 i=1

Lemma 1.12. If pe M, there is a sequence that determines p.
This follows easily from Lemma 1.10 and the fact that (1) for each n, there are
a; EDS; two elements of H, that contain p (Definition 1.2 (2)) and (2) each element ¢
of H, that contains p is the last term of a sequence g, 29,2 = ¢
for each 1<ign. * 9120320 = g ke g, e 1,
L.emm.as 1.11 and 1.12 allows us to define a transformation 8: M. ~lim.(X, f)
§uch that if p e M, then 0(p) = A(g) for any sequence g that determines p. ’
Lemma 1.13. If h;e H,, then 0(h)<h). '
Proof. If g determines p € ;, then for some j>i i
3 J>i,g,Sh;, by D i
Hence 0(p) e gj=h; by Lemma 18. 4SHs BY Deflnition L2 (3.

Lemma 1.14. 0 is a homeomorphism Sfrom M onio lim(X, f ).

Proof. 0 is one-to-ome, since if g determi i
: 0 is o A g determines p and 4 determines i
. Fhere 1s a positive integer i such that the mesh of H, <1d( P, q). Hence h,azda:] I:;"u?lls)r;
intersect, and by Lemma 1.9, 4] and g} do not intersect. But 0(p) = A(g)ei : '1 d
0(a) = A €K, 50 0(p) # (o). ne
0 is continuous, since if p e M, 0 is an o in li
: , , pen set in im (X, /) containi
and g determines p, then for some i, 0(g9)=gi<0, by Lemmasfl 10 anc;ninlgSOg’),
P€g;, and g, is open in M. . e
Finally, 0 maps M onto lim(X, f), since f j
2 : (X, 1), or each i, G; covers lim(X, f) and
each element of G, contains a point of 6(M) by Lemma 1.13, so that G(Zl(l ) }{3162186

in im(X, ) by Lemma 1.10. But M is ¢ : )
Hence (M) = Him(X, f). ompact, so 0(M) is closed in Lim (X, f).

?.. Modxfying bonding maps. Our object in this section is to show that certai
modlﬁcat19ns (?f the bonding maps in certain types of inverse sequences yi lcl; e
quenc_es with limits homeomorphic to the original. These results will all - S?'
simplify the bonding maps we obtain in the next section. e

PEFIN]TION 2.1. T is a wiongulation of the continuum M
a pair (7, K), where X is a simplicial complex and ¢ is a homeo
:).nto M. A simplex of T is the image under r of a simplex of K. A
inuum with a triangulation, and a graph is a one-di jona \
from the pol.yhedron X into the polyhegron Yis :1:11;1;;111:; ??easiop()liilclee ('1)1;0n- A map f
if and f)nly if there are triangulations T, = (t, K) and T, = .(f Kn)lsefmonawne)
rfespectlvely, a:r‘ld a map s: |K;[-|X,| such that f=tyst] 12and sz;estzric(; (-1X- ) e
snnplcyf of K, is a linear (resp. monotone) map onto some simplex of X, e i - 05}0h
case fis called simplicial (resp. DPiecewise monotone) relative to Ty, T i WhI'Ch
10 (K, K3) in case ¢, and 1, are identity maps). The noti o lative

if and only if T is
morphism from |K|
polyhedron is a con-

on of simplicial map between
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topological polyhedra used here coincides with that of [3], p. 60. If /= X~ ¥ and
g: X—Y are maps and T = (¢, K) is a triangulation of X, then f and g are similar
relative to T if and only if, for each simplex « of T, the set f(a) is the set g(«). The
triangulations Ty = (t;, K;) and T, = (#,, K,) of X are similar if and only if K, = K,
and ¢, and t, are similar relative to K, i.e. the subset o of X is a simplex of T, 'if
and only if o is a simplex of T,.

DEFINITION 2.2, (G, T, f) is a uniformly simplicial inverse sequence on graphs
it and only if (1) G is a sequence Gy, Gy, ... of graphs, (2) T'is a sequence T, Ty, ...
such that 77 is a triangulation of G, for each i, and (3) fis a sequence f;, /3, ... such
that for each 4, f; maps Gy, onto G, and f; is simplicial relative to (Tyyq, T).

TuEOREM 2.3. Suppose that (1) M and N are the limjts of the uniformly simplicial
inverse sequences (G, T, ¢) and (G, T, f), respectively, (2) for each i, T; = (t;, K})
is similar to T} = (1], K}), and (3) for euach i, g and f are similar relative to T;,;.
Then M and N are homeomorphic. )

Proof. By hypothesis, K; = K] and for each vertex v of K;,

$i0) = 17 guti1 ) = 7 fitis () = 47 fiti 4 (0) = 510)

where 5;: K1~ K, and 73 K.y =K, are simplicial maps so that g, = 1,865 and
fi= s t77+. But simplicial maps between complexes which agree on the vertices
are identical; so s, = 5} for each i. Thus ‘

b ’ -1 N ] -1
et gy = sy = Gsitiey = fitiea iy
Hence the homeomorphisms #r* induce a homeomorphism from M onto N.

THEOREM 2.4. Suppose that (G, g) is an inverse sequence on graphs and there is
a sequence T = Ty, Ty, ... of triangulations of the terms of G = Gy, Gy, ... such that
for each i and each simplex o of Ty, 9| o is either constant or a homeomorphism onto
a simplex of Ty. Then there is a sequence T' = T{, T3, ... such that (1) for each i, T; is
a triangulation of G, similar to T;, and (2) (G, T',9) is uniformly simplicial.

Proof. Wedefine Ty = (), Kj) (i =1, 2, ...) by first letting K| = K;foralli,and
then defining ¢, £3, ... recursively. Let #; = 1,. Suppose t], .., ty have been defined;
we define £,.4. Let §: K, ~K, denote the simplicial extension of the restriction
of £7%g,t,.q to the vertices of K., and suppose that o is a l-simplex of K4 q.
It g,t,0 |0 is constant, define fy|o’ = f4q|o. Otherwise let o denote the
L-simplex. #,4.,(0) of Ty and recall that g, o is a homeomorphism. So define
£orlas a/—a by feglal = (g,lo)" tys|a’. Thus #4. is defined on every 1-simplex
of K41 ‘ : '
Turorem 2.5, Suppose M is the limit of the uniformly simplicial inverse sequence
(G, T, g) on graphs and for each i, f; is a piecewise monotone map from Gy onto Gy
relative 10 (Ty..q, T7) which is similar to g, relative 1o Ty.,. Then M is homeomorphic

to lim(G, f).
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Proof. We first show that for each. 7, f; is a uniform limit of maps f; similat to £,
relative to T, With property (%): o )

*) f" restricted to every simplex of T}, is either constant or a homeomorphism
onto a simplex of T7;.

Suppose &0, and « is a 1-simplex of T, ,.If f;| o is constant, define ;' |& = f}| .
Otherwise, f;| o is a monotone map onto a 1-simplex # of T, and there is a homeo-
morphism 4 from o onto f so that d(h, f;|«) <& (see [2], p. 478, footnote 2). Define
S{ 1o = h. Thusf; is defined on every 1-simplex of T}, ;,and clearly f; has property ().

It now follows from Brown’s approximation theorem ([2], Theorem 3), that
there is an inverse sequence (G, f") such that for each 7, f; is similar to f; and has
property (x) and such that lim(G,f") is homeomorphic to lim(G,f ). Hence, by
Theorem 2.4, there is a sequence 7" of triangulations of the graphs G, , G,, ... so that
for each i, T} is similar to T} and (G, T, f*) is uniformly simplicial. So the hypothesis
of Theorem 2.3 is satisfied and lim(G, T", f*) is homeomorphic to lim(G, T, g),
completing the proof of the theorem.

3. Obtaining uniformly simplicial inverse sequences. In this section, we develop
a type of defining sequence which will allow us to construct simpler inverse sequences
than those obtained in Section 1. While not every one-dimensional continuum will
have such a defining sequence (it can be shown that any continuum with, such a de-
fining sequence contains an arc; hence the methods of this section will not provide
us with an inverse sequence for a pseudo-arc, for example) the methods of this section
apply to many of the one-dimensional continua commonly found in the literature.
The inverse sequences finally obtained in this section will be uniformly simplicial;
for more discussion of the continua which are limits of such sequences, see [5]
and [6].

A chain is a (possibly degenerate) sequence a = ¢y, ..., ¢, of open sets (called
links) such that two of them intersect if and only if they are adjacent in the sequence.
A subchain of a chain a is a subsequence of o which is also a chain. If & = ¢, ..., ¢y
is a chain, then «™* denotes the chain ,, ..., ¢,. The chain « goes straight through
the chain B if and only if
(1) o is properly embedded in B,

(2) the first (resp. last) link of « intersects only the first (resp. last) link of B,
and

(3) if @ and b are two links of « which intersect a link ¢ of B, then every link
of o ‘between a and & intersects c.

An order preserving subdivision of a chain a is a sequence 015 -5 %, Of subchains
of « each having at least three links such that

(1) The first (resp. last) link of o, (resp. ) is the first (resp. last) link of «, and

(2 if 1<<i<n then the last link of «; is the first link of Oy

. The chain « is-said to go straight through the sequence Bis s By of chains if
and only if there is an order preserving subdivision a, ..., o, of a such that o, goes
straight throught g, if 1<ign.

e ©
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A chain structure is a finite collection D of chains, each with at least three links,
such that if two elements, « and B, of D intersect then & ~ § consists of only one link,
and it is an endlink of both o and fi. The collection of all endlinks of chains in -D is

“denoted by V(D). If D is a chain structure, then D' is a subdivision of D if and only if

(1) D' is a chain structure,

(2) each chain in D’ is a subchain of a chain in D, and

(3) cach link of each chain in D is a link of some chain in D"

It D is a chain structure, then (1) D* denotes the collection of all the links of all
the chains of D; hence D* is a finite collection of open sets, and (2) D™ denotes
the collection of chains o™ for all chains o in D. o

DErNCTIoN 3.1, (D, h) is a chain structure sequence for a one-dimensional
continuom M if and only if D is a sequence Dy, .D,, .. and A is a sequence Ay, fz, ...
such that D%, D%, ... is a defining sequence for M and for each i

(1) D, is a chain struclure and

(2) hyis a tunction defined on Dy, such that for each element f of Djyy, Iz.i(ﬁ)
is a sequence By, ..., f, of chains in V(Dy) v D;u Dy ! such that § goes straight
through By, .., B, and no link of § intersects any element of D} not in one of the
chains By, .vv» By .

We will need some similar terminology concerning maps on arcs.

An order preserving subdivision of an ordered arc « is a sequence &, ..., &, of
subarcs of o with the induced order such that

(1) the first (resp. last) point of «; (resp. &,) is the first (resp. last) point of «,
and ‘

(2) it 1<i<n, then the last point of «; is the first point of oy

If f is a map defined on a directed arc o, then f goes straight through the se-
quence By, .., B, if and only if .

(1) for each. i, B, is either a point or an ordered arc, and ‘ '

(2) there is an order-preserving subdivision oy, ..., o, of o sucl} that if 1<i<n,
then (a) /| a; is an order-preserving homeomorphism onto B, if B, is an arc and (b)
flo) = B, if B, is a point. .

DrpNITION 3.2. An inverse sequence (G, g) on graphs follows t(ze pattern qf
a chain structure sequence (D, k) for a one-dimensional con inuum M if and oply if
there are sequences T = Ty, Ty, ... and @ = @y, @3, ... such that for each i,

(1) 7, = (4, K;) is an oriented triangulation of Gy, _ .

(2) @; is a one-to-one function from V(D)v D, on.to the collection f’f adl
simplexes of T; such that if f is a chain in D with first endlink ¢ and last endlink 4,
then @(B) is an oriented 1-simplex of T with first vertex ¢ (¢) and last vertex @ (d),
and ‘ )

(3) if pis a chain in Dy, and #(B) = By ., Bys then 1] @41(B) goes straight
through @,(B), .., @«B.)- ‘

THEOREM 3.3. If the inverse sequence (G, g) on graphs follow.'s the pattern of the
chain structure sequence (D, k) for a continuum M, then M is homeomorphic to
lim(G, g).
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For the proof of this theorem, we need three lemmas.

LemMa 3.4, Suppose the chain f = ¢y, ..., ¢, goes straight through the chain

B =dy,.,dy,andp; {1, ..,n}={1,1%, ...,m—%, m} is defined so that (1) if the
link c; of B intersects only the link d; of B', then p(i} = j and (2) If the link ¢, of B
intersects the links d; and d;,; of B', then p(i) = j+%. Then p is non-decreasing and
surjective.

Proof. That p is surjective follows quickly from Definition 1.1 (2), and the fact
that f and B’ are chains.

Suppose that p fails to be non-decreasing, i.e. there are integers #; <i, so that
p(@)>p(i,). Then there are integers k, <k, such that ¢;,intersects oy, for e =1, 2.
Since ¢; (resp. ¢,) intersects d; (resp. d,) there exist integers j, and j, such that
I jy<i; <ip <jy<nand¢;, intersects d, for e=1, 2. Since B goes straight through
J2<iy<i, and both¢;, and ¢;, intersect dy,, ¢;, must also intersect d,,. Since ¢;, already
interseots d, it follows from Definition 1.1 (2) that by = k,--1. Similarly, ¢;, inter-
sect§ both dy, and d,, . But now p(i;) = k,+% = p(i;), a contradiction.

LeMMA 3.5. Given the hypothesis of Theorem 3.3, if for each i and each element § of
Dyyy, k() has only one term, then M is homeomorphic to lim(G, g).

Proof. Let Ty, T,, ... and @y, ¢,, ... be as given in Definition 3.2. Suppose « is
a l-simplex of T;,;. Then for some fe Dy, o = ¢;.1(f), and under the hy-
pothesis of this lemma, o’ = g,(«) = ¢,h(B) is either a vettex of T, (in which case
gl is constant), or a 1-simplex of T (in which case g,« is a homeomorphism
onto o). Clearly g; maps each vertex of T;.. ; onto a vertex of T;. Hence the hypothesis
of Theorem 2.4 is satisfied and there is a sequence T, T3, ... similar to T, Toy e
so that (G, 1", g) is uniformly simplicial. Since Ty, T, ... now has the properties of
Definition 3.1, we may assume for the rest of the proof that (G, T, g) is uniformly
simplicial. o

Now, let (X, f) denote the inverse sequence associated with H = D%, D}, ...
as in Definition 1.4. For each i, there is 2 homeomorphism u; from G; onto X, such
that (1) u; maps the 1-simplex o of T;, where o = ¢(B) for some B e D;, onto the
arc |[N(B)|, considered as a subset of X; = |N(D{)|, and (2) if v & (D)), theh u,p,(v)
is the vertex v of N(DY).

We next show that f; = u; ' fiu;,, is a piecewise monotone map from Gy
onto G relative to (T, T;) and that f; is similarto g, relative to T, , so that the
hypothesis of Theorem 2.5 is satisfied. Suppose « is a 1-simplex of Ty, where
@ = @;41(f) for some f = (¢,..,c,)eDyyy. Denote h(f) by f =di,..,d,
and g,(%) = ¢,(B") by «’. Since, by Definition 3.1 (2), no link of f intersects any el-
ement of D} other than those in f, it follows from Definition 1.4 (2) that f; maps
each vertex of N(f)=X;,, into a simplex of N(f')<=X;; hence

Sili (@] = LINB] = INB)| = wi(0d8)) = ule’) .
So gy0) = &' = u * fiuysy = f{(2). It follows that g, and f; are similar relative
to Ty . Toshowthat f; |« is monotone, it suffices to show that ;| |N(B)| is monotone,

and this follows directly from Definition 1.4 (2) and Lemma 34.

* ©
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This completes the proof that the hypothesis of Theorem 2.5 is satisfied, so
lim (G, ) =1im(G, T, g) is homeomorphic to lim (G, f'). But for each i, u; f; = fiuy, 4,
so that the sequence vy, Uy, ... of homeomorphisms induces ahomeomorphism from
1im(G, ") onto lim(X, f) which is in turn homeomorphic to M by Theorem 1.6
The next lemma is the inductive step in the proof of Theorem 3.3,

LemmA 3.6, Suppose n Is a positive integer, (G, g) is an inverse sequence on graphs
following the pattern of the chain structure sequence (D", k") for the one-dimensional
continuum M, and T" and @" are sequences satisfying Definition 3.2. Then there exist
a chain structure sequence (D', K'Y for M, and sequences T"** and o™t satisfying
the requirements of Definition 3.2 for (G, g) and (D"**, h***) such that

(1) if 1 net1, then DI*' = DI TPV = TV, and @l** = o,

Q) if n 1 % ntl, then h"' = K,

(3) Dt and TUEY are subdivisions of Dj., and T7.,, respectively, and

4 for each elememt 3 of DiLt, Hi*M(B) consists of only one chain.

Prool. Suppose f is an element of Dj.,. Since B goes straight through
H(B) = By, ...r By, there exist order preserving subdivisions ay, .., of f and
OMEH0L), s QT 1() of the arc ¢f..4(f) such that if 1<i<k, then a; goes straight
through 8, and (a) g,|@ht1(x) is an order preserving homeomorphism onto @j(8;)
if 2B is an arc and (b) g, it 1) = @} if @(B) is a point. Subdivide the other
chains in D!, and the other 1-simplexes in T}, similarly, and extend the definition

of ¢"%t; denote the collection of chains so obtained by D}Ii and the subdivision

of T",, so obtained by 731, For each chain « in D}{1, let #)*'(«) consist of the
element of D} that o goes straight through.

Now, it §’ € D!, then A, ((f") is a sequence fiy, ..., f;, and there’is an order
preserving subdivision A%, ..., A of f' so that A’ goes straight through §; foir each :
But f; = dj, ..., dy, has been replaced by an order preserving subdivision 5, ..., &,
so that for 1<e<n;, o has endlinks d, _, and d, . Let A=cy, - Cony .and
AL ymd—={1,1%, ..., ky—3%, k;} denote the function for A' and B; described
in Lemma 3.4, Let #(0) = 1, »(n;) = m,, and for 1 <e<n,, pick r(¢) so that pr(e)v= a,,
and for 1<e<<ny, let AL denotethe subchain of A' from 6,110 ¢ It follows directly
from Lemma 3.4 that A, goes straight through o, for 1< e<n;. Hence §' goes‘stljalght
through o, .., 0}, el .., f,, which we denote by RN, nElll‘nllaﬂZ,
Gos 1| 012(B") goes straight through @l i(d), ..., @}11(e). Finally, let D™ = Dj,
TP s T8 and @)% s @l if 156 n1 and B =AY AL no# 0 £ ntL

Proof of Theorem 3.3. Let T' and ¢ denote sequences as given by De:ﬁnitic_m 32
We construct a chain structure sequence (D', k') and sequences T" and ¢’ satisfying
the additional hypothesis of Lemma 3.5, from which this theotem follows.

Let (DY, 4"y = (D, k), T' =T, and @' = ¢. Assuming that (D" "), T",
and " are defined, let (D", BY), 77+, and @"*! be as given by Lemma 3.6.
For each n, let D) = DI, T4 = TV, ¢ = ¢, and b, = HitL By‘Lcmma 3.6 (4),
h,(B) consists of only one chain for each f & Dy, and by properties (1)e and (2) of
Lemma 3.6, Dpyy = Dirys Thps = Thavs ot = Puts and h, = h, for ecach
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ezn+1. It follows quickly that (D',h"), T' and ¢’ satisly the requirements of
Lemma 3.5. ) i ) )

In applying Theorem 3.5,the main problem is to find a workable chain structure
sequence for a given one-dimensional continuum M. An inverse sequence for M can
then easily be obtained by simply following the pattern, as indicated by the following
example.

ExaMpLE3.7. Let M be a spiral around a circle, e.g. the union of the unit circle
in the plane and the graph, in polar coordinates, of the equation r = 1 +¢~° ©=0),
There is a chain structure sequence (D, A) for M such that for each i,

(1) Di = {ﬁlil ﬁéa ﬂl3ﬂ ﬁi}’ v

(2) if j<4, then the last link of B} is the first link of f,,,

(3) the last link of B is the last link of f,

(4) hi ﬁil+1) = ﬁ’ia ﬁ125 ﬁg’ Bz-s El.ﬂd

(5) By ") = B if j # 1.

To follow this pattern, we let G, be the union of four arcs ey, ..., €, such that
the last point of e; is the first point of e, 4 if i<4, and the last point of e, is the last
point of e;. Define f;: G;—G; so that fi|e, goes straight through ey, e,, €3, ey,
andif i # 1, fi|e, is the identity on e,. Then if for each i, G; = Gy and f; = fi, the
inverse sequence (G, 1) follows the pattern.of (D, k). So M is homeomorphic to the
limit of this inverse sequence with a single bonding map on a triangle-with-a-sticker,

4. Patterns for chainable continua. We can give a more concise notion of “pattern”

for chainable continua (for the basic results on chainable, or snake-like, continua,
see [1]).

DEFINITION 4.1. A sequence s, 5, ... is a pattern sequence for the chainable
continuum M if and only if there exists a defining sequence {Ci=cl, .o, b}y of
chains for M and a sequence {C] = d{, ..., d\}i%, such that for each i,

(1) C} is a subsequence of Ci, no two terms of which infersect,

(@ di=c and d}, =¢,, . , R .

(3) s; is a sequence s,(1); ..., sy(k;. ) of integers such that if 1< J<lki;ii then
the subchain f of Cy, from di** to di%} goes straight through the chain B in C,

from d;‘(j) to dj‘(” 1)» and no link of B intersects any element of C;—f'.

DEFNITION 4.2, The inverse:sequence (G,f) follows the pattern sequence
81,8y, ... for the chainable continuum M if and only if for each i (contiriuing the
notation of Definition 4.1), ‘

(1) G; is' a number interval [y;, z,],

(2) there is an increasing sequence y; = a, ..., a,i“ = z; such that if 1<<j<k, .y,
then fi(aj*') = al,;, and f; is linear on laj*4, alth]

TurorEM 4.3. The limit of any inverse sequence that follows a parrern sequence
81582, .. for a chainable continuum M is Komeomorphic to M.

Proof. Suppose (G,f) follows the pattern sequence §1,82,.. for M and
Cy, Cy, ... and Cy, Cy, ... are as given by Definitiofi 4.1. For each i, let D; denote

©
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the chain structure consisting of the subchftir:s of (ffr 1from dj’ tf’ d} 41 for 1gj<k;.
It § denotes the subchain of Cpyy fromi dy’ tol d;31, for' 1§J<ka+1= then § goes
straight through the chain B’in Cifrom dy,g, to dyps). Usmg‘Lelpma 3.4, constru(?t
an order preserving subdivision of f’ whose clements are chains in.D;, and denote
the result by #,(8). Then (D, k) is a chain structure sequence and (G, f) follows the
pattern of (D, h): an application of Theorem 3.3 completes the proof.

‘We conclude with several examples of pattern sequences for well-known chain-
able continua, Tn each of these examples it is posgible ‘to giye a pattern sequence
515 85 v Where $y == 85 == ..., in which case we W;lll call 5, itself a pattern for the
continuum, By following this single pattern we will be able Fo find an inverse se-
quence (G,f) on [0, 1] = Gy = Gy = ... with a single bonding map f; =f;, = ...
whose limit is homeomorphic to the continuum,

BxAMPLE 4.4 (The sin(l/x)-continuum), Let

M= {0, y)| x =0 and —1<y<1} U {(x,))| » = sin(l/x) and 0<x<2/n} .

Then (1, 3, 2) is a pattern for M (see the figure, where the chain Cy-and the sequences
" = db,db, di and Cy = df, d3, dj are indicated). Hence if for each i, G, = [0, 1],
- 3 W2 . .
0= ay<ay<dy =1, fila) = ay, fiaa) = a3, fias) = aa, and,fi is linear on both
lag, a;] and [z, a3], then the Limit of (G,[f) is homeomorphic to M.

|
dh d

4}

: ; : jctur [ the con~
In the rest of the examples, we give only & patiern. Both a p“fimz Octmt:tructe d
tinuum and an inverse sequence with a single bonding mep can easily be :
from the pattern, )
] o . ) ample
EXAMPLE 4.5, Let M' denote the reflection in the y-axis of M in the.‘last1 e;cafélp4)s
and let = M u M’ (the double sin(l/x)-continuum). A pattern 18 3.2, 4
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EXAMPLE 4.6. Let M’ denote the reflection of M i

~ ! ‘ M in Bxample 4.4 in the li
x =2/m, and let H =M U M'. A pattern for H is (2, 1, 4, 3), ¢ e

ExampLE4.7. (1, 3, 1) is a pattern for a well-k i
’ »3, -known indecomposabl &
with only one endpoint (see [4], p. 332, Figure 8-6). posable continuum

ExampLE4.8. The union of two copies of Example 4.7 joined at their endpoints

is used by Bing as an example of a chai i i
nable continuum with n. int
p. 662, Example 7). A pattern is (3,1, 3,5,3). ° endP°1llt @

ExXAMPLE 4.9. (2,3,1) is a pattern for an indecomposable continuum withv

three en po1nts. hi s chai abl (ﬂ. hy
N 2 nce 11rred C ’
( d ts, which. is ¢] b © d he dl,lclble) betwcen any two Of ﬂlen]
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Extensions, retracts, and absolute mneighborhood
retracts in proper shape theory

by
R. B, Sher (Greensboro, N. C))

Abstract. The notion of an extension of a proper fundamental net is defined and studied.
Various results concerning this notion are obtained; these include a homotopy extension theorem
and results relating the idea of extension to the concept of proper fundamental retraction. We also
define absolute neighborhood proper shape retract (ANPSR), and show that the property of being
an ANPSR is a hereditary proper shape invariant,

1. Introduction. In [5] Borsuk introduced the notions of fundamental retract,
the extension of a fundamental sequence, fundamental absolute retract (FAR), and
fundamental absolute neighborhood retract (FANR) for compacta in the Hilbert
cube Q. These ideas were later studied by Marde$ié [13] for compact Hausdorff
spaces using the ANR-system approach to shape theory developed by MardeSi¢
and Segal [14]. Tn [15], Patkowska proved the important homotopy extension theorem
for fundamental sequences on compacta in Q, and this result was then used by Bor-
suk [6] to show that the properly of being an FANR-space is a hereditary shape
invariant. Results similar 1o these have recently been obtained for the shape theory
due to Fox [9] by Godlewski ([10], [11], [12]). In a seminar at the University of
Georgia during the spring of 1974, Godlewski presented an exaniple to show that
similar results do not hold in the theory of shape for metrizable spaces described
by Borsuk in [7], [8]. (It was this example and its implications which, to a degree,
stimulated the ideas that led to this paper.)

In [1], Ball introduced the notions of proper fundamental retract and absolute
proper shape retract (APSR), which are in some sense the patural analogues in
proper shape theory (2], [3]) of Borsuk’s fundamental retract and FAR. It is our
purpose in the present paper to introduce and study the concepts of extension of
a proper fundamental net and of absolute neighborhood proper shape retract (ANPSR).
Perhaps it should be now noted that the notion of extension studied here is not an
exact word-for-word carry over into the proper shape theory of the extension of
a fundamental sequence; indeed, as noted in Section 2, the precise carry over wogld
not yield the main resulis here established, notably the (proper) homotopy extension
theorem (Theorem 4.1) which yields the fact that the property of being an AN'PSR
is a hereditary proper shape invariant (Theorem 6.5). Theorems relating the ideas
of proper fundamental retraction and the extension of a proper fundamental pet
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