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On the division by the circle
by

C. S. Hoo and H. Hésli (Edmonton, Ala)

Abstract. The cartesian product leads to number-theoretical considerations within the
category of topological spaces. We investigate whether or not the circle is a prime space in
this context.

1. If X and Y are spaces we say that X|Y if there exists a.space Z such that
Y = X'x Z where = means equality of homotopy types. We say that X is a prime
space if whenever X|(¥ x Z) then either X|Y or X1Z. This suggests that an analogue
of number theory may be attempted in the collection of homotopy types of spaces
with respect to the cartesian product as multiplication. Work along this direction
has been initiated by Sieradski, see [6] and [7]. In particular, in [7], be shows that
neither S® nor RP(3) is a prime space.

A space X can only be divided by S* if its fundamental group 7, X admits Z,
the infinite cyclic group, as a direct factor. Hence, the study of S* as a direct factor
has to be preceded by algebraic considerations. The group-theoretic results of
Section 2 allow us to conclude that S* is not prime, either among finite-dimensional
countable CW-complexes (and thus finite-dimensional polyhedra as well) or among
finite-dimensional manifolds, Based on results about fibrations with cross-sections,
we see that Z|m, X implies QS*[QX if 7, X is abelian. In particular, if X admits an
H-space structure, then Zln,X implies that $*|X. Among its consequences we
find that S* is prime among spaces with H-space structures. This last section is
rather elementary and the results may therefore be partially known, although most
of them have not been published. We assume that our spaces are of the homotopy
type of pointed connected CW-complexes with homology and cohomology of
finite type.

2. The object of our study are collections which admit a binary operation which
is associative, commutative and which has a unit element e. Among the numerous
examples, we mention the following ones:

(T): The operation induced by the cartesian product on the collection of classes
of homotopy equivalent spaces.
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(G): The operation induced by the direct product on the collection of isomorphism
classes of groups.

(K): On the collection of positively graded families of isomorphism classes of
finitely generated abelian groups, we have the operation induced by the
“Kunneth-product”

(dy ° B*)n: = ZO(AS@Bn—s)@)!)ZOTor(AH Byoi-s) -

(G) has substructures (G; f.g.) and (G; ab), involving finitely generated
and abelian groups respectively. We have homomorphisms fundamental
group 7t;: (M—(G),
higher homotopy group m: (T)—(G; ab), k=2,
homology H,: (T)—(K),
cohomology H*: (T)—(K).
All the given examples feature the fact that there is no zero-element around, that is,
there is no element o in (I, IT) such that IT(a,0) =:a'0 = o for all ae I'. Let us
restrict henceforth to those structures (I, I) which do not have a zero-element.
We define division in I' with respect to II by putting
alb if there exists x e I' such that a-x = b.
Division gives rise to the following sets:
Units U: = {ueT| ule}, i
Irreducible elements Q: = {aeI'|if bla, br e, then b = a'u for some ue U},
Prime elements P: = {aeI'| if a|(x-y) then either a|x or a|y}.
A main structure theorem in (I, IT) would be the existence and uniqueness (up
to U) of the factorization of any element into a product of finitely many irreducible
ones. For example, this theorem is true in (G; ab, f.g.). However, (G: f.g.) does
not have this property (see Lemma 2 below), and the same is true for (T): In either
case, there are for instance irreducible elements which are not prime (for (T), see [7]).
‘We start with an analysis of Z within (G). Obviously, Z is irreducible in (G),
and therefore, Z is prime in (G; ab, f.g.). This result can be improved.
Let 4, B, C be groups (we omit the particular structures) such that there is
an isomorphism ¢: 4 x B~ Zx C. It is uniquely determined by its factors oy and o5,
and we have a commutative diagram

TS
/"/ h“ 2

AXB———>ZxC

N N
N P,i \
\Z<—T~— z
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Clearly, o, and o, are epimorphisms, and so, we have short exact sequences
J1 ay
l—kero;, > Ax B> Z—1,
J2 a2
l—kero, > Ax B— C—1.

Let ne Z, and let (4, b) € AXB be the element such that o(a, b) = i;(n). Since
P2ii(m) = ec, we see that (a, b) e kero,. Thus, the homomorphism &,: = oJ,:
kero,—Z is surjective, for

6,(a,B) = pyajy(a,b) = pyiy(m) = n.

‘We claim that &, is actually an isomorphism. In fact, if &,(a, b) = 0, it follows
that p;aj,(a, b) = 0, and thus, gj,(a, b) = iy(c) for some c e C. Notice that o, j,
and i, are all injective. Since p,i,(c) = ¢, we get

c= Pzajz(ﬂ, b) .
On the other hand, we have

D20j2 = 03)5 5
which is the zero-homomorphism, as indicated by the exact sequence of o,. There-
fore, we conclude that ¢ = e¢, and then from iy(ec) = gj,(a, b) that (a, b) is the
neutral element of kero,.

Similarly, one shows that &,: = 0,j,: kero,—C is an isomorphism. Let then
(@g, bo) be the element in kers, such that &(ay, by) = 1, the generator of Z.
Obviously, not both a, and b, can have finite order. If a,(a,, ep) = s and o,(e,, by)
=t, then we find 1 = o,(ag, bp) = s-+¢. In the following we will assume that
a4(ay, ep) is not of finite order. Consider then the homomorphism «: A—Z defined
by a:=0,1,, where I;: A—Ax B is the inclusion {1, o}. From the above we see
that a4(ay, ep) = 04l5(ag) = a(ay) # 0, that is, « is not the trivial homomorphism..
Thus, ima = nZ for some integer »n # 0.

Restricting ourselves now to (G; ab), we find that the exact sequence of « splits
because im « is free. Moreover, we have then

191 a2 .
kera = keroy Nl d ® Cnoylid,
that is, s
AmZxCy,
where C, is-a subgroup of C.

We have shown

LemMmA 1. Z is prime in (G; ab).

However, this result cannot be extended to (G):

LEMMA 2. Z is not prime in (G; 1.g). '

Proof. We give a counterexample, found by Kurosh (see [5]), in a more modern
set-up.
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Let A, B, C be finitely generated groups, given as follows:

4= <£Z1, a5 di' = a§>5
B = (b, by; b} = B,
C =0y, C,C3,Ca5 CF =3, €165 = ¢yep, i=1,2,7=3,4).

Let z generate Z. A homomorphism o: 4xB—ZxC is given by its factors o,
and o,, which are defined on the generators in the following way:

o, ep):=z=:01(ey b)),
ox(ai, ep)i=¢;,  oy(ey, bj—l): = 0.

One easily checks that ¢, and o, give rise to homomorphisms. Similarly, we find
a homomorphism t = {4, 7,}: Zx C—4 x B from the following-data:

ty(z,e): =a”t, 1(0,¢): =aa,
‘Uz(zaec)3 =b9 Tz(os Ci): =b—1,

here, a: = a3 (= a2) and b: = b3 (= b3).

One easily checks that gt = 1 and 7o = 1, that is, ¢ and ¢ are inverse iso-
morphisms.

‘We claim that neither 4 nor B can be divided by Z. Both 4 and B have presen-
tations of the type G = <{gy, g;; g1 = g3y where n>2. Such a group G is the
pushout of the inclusions of (g} into {g;> and {g,)>, where g: = g} (= g%), It
follows from standard theory that the center Z(G) of G is just {g), and e is the
only element of finite order in G. Moreover, we can apply the Barr-Beck theorem
to find the cohomological dimension ¢d(G) of G (see ([3]). Since (g is free, it follows
that cdG<2. The subgrotp H of G generated by g and g,g, is then abelian, and
this is the only non-trivial relation between these generators. Therefore, HxZx Z
and thus, cd(H) = 2, which implies that cd(G) = 2.

Assume now that Z|G, that is, that there is a group K such that GaZ x K.
Since cd(@ = 2, it follows that c¢d(K) = 1. Consequently, K is free. Since G.is
not abelian, K must have more than one generator, and thus, its center Z(X) must
be trivial. But G/Z(G)=Z*Z,, while Z(4x B) = Z(4)x Z(B) implies that
(Zx K)[Z(Zx K)~K, % plain contradiction to GrZx K.

3. The homomorphisms from (T) to (G), (G; ab) and (K) respectively, men-
tioned earlier, can be used to analyze the irreducibility of a space. For example,
using H, and 7, one easily finds that §" is irreducible for all n > 1. To decide whether
or not S* is a prime space, one has to solve two problems. First, we have to study
the existence of spaces X, Y and Z such that Xx ¥ = S!xZ together with, X s §?
and Y s S*, If such spaces do exist, it remains to check whether or not there is
a space W such that S*'xW=X or S!xW =Y.

Obviously, if S* divides a space X, then Z is a direct factor of 7y X. The proof
Lemma 2 leads therefore to a homotopy equivalence between products of Eilen-
berg~Maclane spaces, namely K(4, 1)x K(B, 1) = §* x K(C, 1), where 4, B and C

(0, ¢): = a,
(0, ¢): = b7y,
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are the groups defined above. A closer examination of these spaces entails the
following result.

THEOREM 1. S* is not prime among finite-dimensional countable CW-complexes.

Proof. Since K(G, 1) has a contractible universal covering space, we can
apply Wall’s results (see Theorem 3 in [4]) to see that K(4, 1), K(B, 1) and K(C, 1)
can be chosen to be countable CW-complexes. Indeed, condition (Cn) for count-
ability (see [9] or [4]) is satisfied for all n. If cd(G) = m, then condition (Dm) for
finite dimensionality is satisfied as well. In our case, cd(4) = 2, cd(B) = 2, and
thus, cd(C)<3, imply that K(4, 1), K(B, 1) and K(C, 1) can be chosen to be 3-di-
mensional countable CW-complexes. )

Now a d-dimensional countable CW-complex is homotopy equivalent to
a d-dimensional locally compact polyhedron, and such a polyhedron can be em-
bedded in R* (see [4]). Taking then a homotopy equivalent neighborhood, one
finally obtains in our case manifolds of type K(G, 1), where d = max(3, cd(G)):

COROLLARY 1. S is not prime among finite-dimensional manifolds.

4. From now on we restrict ourselves to spaces with abelian fundamental

group. For example, if E—I-JrB is a fibration in this class -of spaces which admits
a cross-section s, it follows from the exact homotopy sequence that iy : mF—m.E
is injective for all k, and thus, =, F is abelian since [, F, , F] is in the kernel of iy.
Here, i: F—E is the inclusion of the fibre. Similarly, =, B is abelian since $4: 7,8
—n, E is mono. We continue with the analysis of this example and find an iso-
morphism
gy iy mBRmF—smE

for all &, which is in general not induced by a geometric map. But there is at least
one case where (S, iy» does come from a map.

Let M be the class of spaces which admit an H-space structure. As is well-
known, any multiplication on such a space induces the standard structure on the
homotopy groups, and its fundamental group is abelian.

In our case, if E e M, it follows that {s4, s> is just the homomorphism induced
by m(sxi): Bx F—~E, where m is any multiplication on E. Thus, we have ’

LEMMA 3. Let E € M be the total space of a fibration F—i> E—P> B which has a cross-
section s. Then we have a homotopy equivalence m(s x i): Bx F—E, where m is any
H-space structure on E.

Of course, also Be& M since it is dominated by E, and Lemma 3 shows then
that also Fe M. .

Remark. We would be able to deduce that £ is homotopy equivalent to Bx F
in the general case if i admitted a homotopy left-inverse j: E—F. In fact, if we have

an exact sequence of abelian groups 0o—B :>A1>C—>o together with homomorphisms
3’: C—dA and of: A—B such that yy' = 1 and o’a = 1, one finds an isomorphism
{7, &'}: 4—Cx B: Obviously, it is injective, and (¢, b) = {y, &'} (y'(&) +a(b—a'7'(c))).
Therefore, the map {p,j}: E—BxF would be a homotopy equivalence.
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Let F;E—I;B be a fibration with a cross-section 5. We can apply Lemma 3 to
the fibration Qp: QE—QB, for it admits a cross-section, namely Qs, and since £
and consequenily B and F have abelian fundamental groups, we do not encounter
any difficulties for my:

i p
LemmA 4. Let F-~E~>B be a fibration with a cross-section s, and assume that E has
an abelian fundamental group. Then there is a homotopy equivalence
n(Qsx Qi): QBx QF—QE ,
where n is any multiplication on QE.
Note. We can obtain another homotopy equivalence QB8 x QF—-QE if we
use the mapping sequence of s, converted into a fibration. In fact, in the sequence
Qs a2 i s
«.—QB > QE > G — B> E'the fibration 9: QE—G has a cross-section ¢: G—QE,
for gevpspe~o. Since Qs, the inclusion of the fibre, has a homotopy left-inverse,
namely Qp, we find a homotopy equivalence {8, Qp}: QE—GxQB. The com-
position
[ {Qp, 8} n(Qsx 2i): QBx QFQBx G
leads therefore to isomorphisms in homotopy which are given by
fales B = (2, 04(Q8) 4 () +8,4, (D) 4 (B)) .
Thus, we find a homotopy equivalence p, *ff,, where j,, p, respectively is the obvious
inclusion, projection respectively, between QF and the fibre of 5. As the definition
of f indicates, p,fj, = 2-Qi: QF—G. Lemma 3 gives a homotopy equivalence
n(Qsx ) QBx G—QE, and so, we obtain a homotopy equivalence
v n(Qs x oQRi): QBx QF—QF . )
We now return to the original problems. Suppose that Z|m, X, where X is
p1
abelian. Let K(n,X, 1) Z S* be those maps which induce the projection and in-

§1
clugon of Zlm, X. The map s5;: S*—K(n, X, 1) can be stepwise lifted through a Po-
stnikov system of X, for its induced fibrations are classified by elements in the
trivial groups H*'2(8; m,,X). Thus, we obtain a fibration F-sY-sg with cross
section 5. .

Lemma 4 gives therefore rise to

ProposrrioN 1. If Zin X, where n,X is abelian, then QS*|QX.

Rel?ark. Z|n X does not imply that S*LX, even if 7, X = Z. Counterexamples
are 1pmvxded by the generalized Klein bottles X, n3, total spaces’ of bundles
S"" 1K, S (see {8]). In fact, a splitting of S* would contradict that K, is not
orientable. .

Of course, if S*|(X'x Y), then Zis a direct factor of either 7 X or 7, ¥ (or both):

CoroLLARY 2. If SY(X'x Y), where X and Y have abelian Sfundamental groups,
then QS1QX or QS'QY. ’
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As usual, if we are dealing with spaces in M, we can “deloop once more”. In
fact, if X' € M and Z|n, X, then Lemma 3 can be applied to the fibration F—X-»S*
above and yields

PROPOSITION 2. Let X e M, and let Z|n,X. Then S*|X.

Suppose now that S*|(X x ¥), where X and Y are both spaces in M. It follows
that either Z|n,X or Z|n; ¥ (or both). Hence, we can apply Proposition 2 and find
that either SY|X or S| ¥ (or both). Moreover, if S'|X; then the space F such that
St x F = X is also in M, that is, division by $* of spaces in M does not lead out
of M. In other words, we have

COROLLARY 3. S* is prime in M.

Proposition 2 also implies the following partially well-known. result.

COROLLARY 4. Let X € M have rational type (1,ny,n,,..). Then X = S*x Y,
where Y e M has rational type (ny,n,, ..). ‘

Proof. Since H1X is torsionfree, H(X; Q) # o implies that H'X # o. But
HX is just the free part of H,X, which in turn is isomorphic to 7, X for X' e M.
Since we assume X to have homology of finite type, we see that Z|mn,X. Hence we
can apply Proposition 2. The Kiinneth formula takes care of the remaining part,

For example, if X e M has rational type (1, n), then Y is a rational cohomology
n-sphere which admits an H-space structure. In case of finite CW-complexes,
such spaces have been classified by Browder (see Theorem 5.2 in [1]). Using this
list, we deduce

COROLLARY 5. Let X € M-finite have rational type (1, n). Then X has the homotopy
type of S*x 8", n=1,3,7, or S'xRP(n), n = 3,7.
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