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Abstract. A new class of spaces larger than the totally normal spaces is defined and the subset
theorem for Ind and dim is proved for this class.

In [4] V. V. Filippov gave an example of a hereditarily normal Hausdorff
space for which the subset theorem for dim and Ind fails. Thus a problem of
C. H. Dowker [2] has been resolved. The example is clearly not a totally normal
space since Dowker showed that the subset theorem does hold for totally normal
spaces ([2] and [3]). The space of ordinal numbers not exceeding the first uncount-
able ordinal number is not totally normal [2]. In the present note we define a new
class of spaces called super normal which is larger than the class of totally normal
spaces and which includes this ordinal space. The subset theorem is proved for
Ind and dim in this class of spaces.

1. Super normal spaces. The spaces under consideration need not be Hausdorff
spaces.

A set Uis called D-open in a space X if U is the union of a collection of cozero
sets of X which is locally finite in U.

A space X is called totally normal if X is normal and each open set of X is
D-open in X. -

A space X is super normal if for each pair of separated sets 4 and B of X there
are disjoint sets U and ¥ D-open in X with AcU and BcV.

THEOREM 1. Each totally normal space is super normal. Each super normal space
is hereditarily normal.

Proof. Sincea D-open setinanormal space is also normal, cach open subspace
of a totally normal space is normal. Thus a totally normal space is hereditarily
normal. Consequently, if 4 and B are separated sets in a totally normal space then
there are disjoint open sets U and ¥ with A= U and B< V. That is, a totally normal
space is super normal.

The fact that a super normal space is hereditarily normal is obvious.
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ExaMpLE 1. Let X be the space of ordinal numbers not exceeding the first
uncountable ordinal number Q. It was shown in [2] that X is not totally normal.
‘We show X is super normal.

Let 4 and B be separated sets in X. We consider three cases. Suppose sup 4 < .
Then I = {x e X] x<sup4} and J = {xe X| x>supd} are disjoint cozero sets
in X. The required D-open sets are easily found since 7 is a metrizable closed and
open subset of X. Symmetrically, we have the case supB< Q. Finally, suppose
supA = Q = supB. Then A n B has Q as a limit point. X\4 n B is the union of
disjoint open intervals each of which has a least upper bound less than Q. Since 4
and Bare separated, 4 U B X\4 N B. If I'is an open interval of X with I« X\4 n B,
then I is metrizable and hence one can find disjoint D-open sets in X separating
A nIand B I Consequently, there are disjoint sets U and ¥ D-open in X and
contained in X\A n B such that AcU and B<V. The proof is now completed.

THEOREM 2. If X is super normal and Y<X then Y is super normal.

Proof. The proof is immediate.

2. The subset theorems. We now prove the subset theorems. According to
C. H. Dowker a hereditarily normal space X may satisfy one of the following
conditions.

(B.):
(v): I Y= | F,cX with each F; closed in Y and IndF;<n, then
=1

Ind Y<n.

‘We define a third condition.

(3,): If GeYc=X with G D-open in Y and Ind Y<n, then Ind G<n.

LemMA 3. Let X be a super normal space.

A. If X satisfies condition (y,-,) then it satisfies condition (5,).

B. If X satisfies conditions (B,—,) and (8,) then it satisfies condition (B,).

Proof. The proof of statement A is a modification of that of C. H. Dowker [2].
(See [6] Lemmas 11-3 and 114, p. 60.)

We prove statement B. Let ¥ be a subset of X with Ind ¥<n and G be open
in Y. It will be evident from the proof that we may assume ¥ = X Let 4 and B
be two disjoint sets closed in G. Then A4 and C = [(X\G) U BINA are separated
in X. Hence there are disjoint sets U and ¥ which are D-open in X with AcU
and CcV. Since UnV =@, we have UnB= . Let D = A\U. Then D is
closed in X and AND and (XNUND are disjoint sets closed in Y\.D. Hence there
are disjoint sets S and T openin X\.D such that AND< S and (X\UN\D<T. Clearly,
S and T are open in X. Obviously, S=U. Since U is D-open in X, JndU<n by
condition (8,). So there is a set W open in U suchthat AND = 4 A Uc W< S and
Ind By(W)<n—1. Wisalso openin X. Now, WeScX\T<Uu D. Hence WA D U.
Finally, Bn WaBn U= Band X\D>X\(A\4) > G n [I\N(D\4)] = C\(A Q) = G.
Since WeUcX\D = A nUcWeX\Bwe get Ac W n G<G\B. Since Bo(W n G)

If GeYcX with G open in ¥ and Ind Y<n, then Ind G<n.
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= By (W) n G is open in By p(W), condition (B, ,) gives Ind Bo(W n G <n—1.
Thus we have shown IndG<n.

‘THEOREM 4. Let X be super normal and Y<X. Then Ind Y<Ind X.

Proof. It is known that for a hereditarily normal space X, condition (P,)
implies condition (y,). (See [2] or [6], Lemma 11-2, p. 60.) Also, condition ({,)
implies condition (3,). Conditions (y_,) and (B.,) are trivially satisfied. With
the aid of Lemma 3, one can prove conditions (y,) and (B,) are valid for every n by
induction. Consequently, Ind ¥<Ind X" for each open set Y of X. We complete
the proof for arbitrary subsets of X by referring to a lemma of C. H. Dowker [6],
Lemma 11-2, p. 60.

LemmA 5. Let X be normal and Y be D-open in X. Then dim Y<dimX.

Proof. Being D-open in X, Y is the union of a collection % of cozero sets
of X which is locally finite in ¥. Y is normal and each member U e % has dim U
<dimX. There is a Jocally finite closed covering ¥~ of Y which shrinks %. By the
locally finite sum theorem for covering dimension [7], we have dimY<dimX.

THEOREM 6. Let X be super normal and Y<X. Then dim Y<dimX.

Proof. Let ¥" = {Vy, V, ..., ¥}} be a finite cover of Y by sets open in Y.
There is a collection & = {Fy, F,, ..., F;} of sets closed in ¥ such that F,c ¥,
(i=1,2, .., k) which covers Y. Now F; and Y\V; are separated sets in X. Hence
there are disjoint sets U;, W;, D-open in X, such that F;cU; and Y\V,= W,
(i=1,2,..,k). Obviously, {U;n Y| i=1,2,..,k} is a refinement of ¥ and
covers Y. Let Z= {J{U] i=1,2,..,k}. Z is normal and dimU,<dimX
(i=1,2,..,k). Hence dimZ<dimX. The open cover {U;| i = 1,2, ..., k} of Z has
an open cover refinement .# with order /4 <dimX+1. .#|Y is an open cover
refinement of ¥” and order .#| Y <dim X'+ 1. Thereby, we have shown dim Y<dim X

3. Remarks. The class of super normal spaces can be enlarged to one in which
the subset theorems remain valid as follows.

Let o be the class hereditarily normal spaces which are the union of a o-locally
finite closed cover of super normal subspaces.

THEOREM 7. If X is hereditarily normal and is the union of a o-locally finite
closed cover F <A then XeX.

Proof. The proof is straight-forward.
LeMMA 8. Let X be hereditarily normal and & be a o-locally finite closed cover
of X by super normal subspaces with IndF<n for each Fe &. Then IndX<n.

Proof. It is clear that one needs to prove a countable sum theorem and a locally
finite sum theorem. The countable sum theorem follows from a lemma of Dowker
([6], Lemma 11-2, p. 60) and Theorem 4 above. To prove the locally finite sum
theorem, one can easily adapt the proof of [5] with the aid of Theorem 4 above.
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THEOREM 9. For the class A" and the dimensions Ind and dim the following are true.
1. The countable sum theorem. : '
2. The locally finite. sum theorem.
3. The subset theorem.

Proof. The case of Ind: The two sum theorems are valid due to Theorem 7
and Lemma 8. The subset theorem follows from Theorems 4 and 7 and Lemma 8.

The case of dim: The two sum theorems are known to be valid under more
general conditions. (See [6], Theorem 9-10, p. 53, and [7], Theorem 2, p. 212.)
The subset theorem follows from the sum theorems and Theorems 6 and 7.

ExaMpLE 2. The following is an example a space in the class % which is not

super normal. ‘ :
~ Let X be the one-point compactification of the countable disjoint topological
sum of the space of ordinal numbers less than the first uncountable ordinal number.
The verification is left to the reader.
4, The huge inductive dimension. In [1], Aarts defined a new dimension on
the class of hereditarily normal spaces called the huge inductive dimension, Hind.
The proof of a sum theorem for Hind is extremely simple and Hind >Ind. The
subset theorem for Hind also fails in the class of hereditarily normal spaces. In [1],
it is shown that Hind X = Ind X for totally normal spaces X. We remark that the
équality also holds for spaces in our class.

After the completion of the present paper, Professor R. Engelking made the
‘following two observations to the author through a correspondence. We include
them. with his permission.

" 'THEOREM. A space X is super normal if and only if X is hereditarily normal and
évery regular open set is D-open in X. The hereditarily normal condition cannot be
deleted. (A regular open set U is a set of the form U = IntU.)

Lifanov and Pasynkov in Vestnik MGU No. 3 (1970), pp. 33-37, have defined
.2 Dowker space to be a space X which is hereditarily normal and every open set
U< X is the union of a point-finite family of open F,-sets in X. We could modify
our definition of .D-open sets to be a set U in X which is the unjon of a point-finite
family of open F,-sets in X. Then we could define super normality using these
D-open sets. The subset theorem for Ind will now remain valid for these super
normal spaces.
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