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cushioned pair with %* cushioned in ¥, let %% = {Ue%*: U—V where
Vey™ and Ve W for some We #}. Then %¥  is cushioned in % under the
correspondence U— W, there are countably many such collections, and we will be
done if we can show that |J %% refines # . This is easy to do, for given x e X,
there is a We # for which x e (| U(n, a4, a;, t;y= W. Choose rationals b;, 5; with

1
a;<b;<fo, (%) <s5;<t; and note that the set | U(n, ;, b;, 5;) contains x and is

T
a member of some #%%". Thus, #" does indeed have an open ¢-cushioned refine-
ment, and the proof is complete.
Thus, Theorem 9 is more general than Theorem 7. Furthermore, Example 4
shows that there are relatively complete collections satisfying the hypotheses of
Theorem 9 that are not locally finite partitions of unity.
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Locally well-behaved paracompacta in shape theory
by

G. Kozlowski and J. Segal * (Seattle, Wash.)

Abstract. We generalize the classical notion of ANR to paracompacta in shape theory to
obtain the notion of absolute neighborhood shape extensor (ANSE). Although the corresponding
classical statement is false for compacta we have the theorem: Any LC" paracompactum of di-
mension < n is an ANSE. We also generalize the various notions of movability to arbitrary
topological spaces.

TueOREM. Every LC"™* paracompactum of dimension < n is uniformly movable.
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1. Introduction. In Section 3 we give a categorical description of shape theory
for arbitrary topological spaces based on the concept of matural transformations
of homotopy classes of maps into polyhedra. We show precisely in what sense
this theory agrees with the Mardesié-Segal ANR-systems approach to shape
theory on compacta.

K. Borsuk [2] introduced the notion of movability for metric compacta as
a generalization of ANR’s, and S. Mardesié and J. Segal [16] extended this property
to compacta by means of ANR-systems: Movability appears to be the most inter-
esting shape invariant discovered so far. It occurs as the hypothesis under which
many classical theorems of algebraic topology generalize to shape theory, for ex-
ample, [9] and [19]. In Section 4 we present a definition of movability for arbitrary

* The second named author was partially supported by NSF grant GP-34058.
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topological spaces which is consistent with the original description and can be
interpreted categorically, but differs from the usual definition in systems.

In Section 5 we generalize the notion of extensor to the theory of shape for
paracompacta. We also generalize the notions of FANR [I] and ANSR [14] to
paracompacta. The starting point is the generalization of the neighborhood extension
of maps to the neighborhood extension of shape morphisms. The universal quantifi-
cation of this property gives the concept of ANSE.

In Section 7 we show that any LC" paracompactum X of dimension <# is
shape dominated by some polyhedron of the nerve of an open cover of X. Morcover,
such an X is an ANSE and therefore an ANSR. An interesting feature of this domi-
nation is the fact that it is induced by maps.

2. Complexes. We will now give a brief summary of the definitions and main
results needed in our consideration of complexes. The reader is referred to [22,
Chapter 3] for a more detailed account.

DEFINITION 2.1. A complex K is a (possibly infinite) set of objects, called
vertices, {v°}, and a set of finite subsets of.the vertices, called simplexes; the
simplexes satisfy the condition that any subset of a simplex of X is also a simplex
of K. If K is a complex, a subcollection K, of its simplexes is called a subcomplex
of Kif it is a complex. The dimension of a simplex s of K is the number of vertices
of s minus one. X" denotes the subcomplex of X consisting of those simplexes of
dimension <.

We now define a topological space [K| called the polyhedron of K. First lot £
be the vector space consisting of all real-valued functions defined on the vertices

of K with operations defined pointwise. Identify the vertex v with the function .

which is 1 on v and 0 elsewhere. For each simplex s of K let |s] be the set of all
functions p in E such that

@) p@) =0if vés,

(i) p(v)=0 for all v,

(i) Y p) = 1.

vekK
The open star of the vertex v is the set of all p in |K| with p(v)>0.
There is a metric on |K| defined by

o(p,q) = [Zﬂl\'(p(v)—fl(v))zl”2

and the topology on |K| defined by this metric is called the metric topology. The
metric ¢ also induces a topology on ls] which makes the space ls] homeomorphic
to a geometric simplex of the same dimension lying in a finite dimensional Euclidean
space. The weak topology on |K| consists precisely of those subsets U of |K]| for
which U n [s] is open in |s] (in the metric topology) for each simplex s of K. If K is
a locally finite complex (i.c., every vertex of K belongs to only finitely many sim-
plexes of K), then these two topologies are identical,
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We mention two facts we will need later. First, a function f: |K|—X from | K]
into any space X is continuous, if the testriction f'||s] is continuous for all se X.
Second, a function H: |K|x I—X is continuous, if H||s|x I is continuous for all
se K.

Finally, let X be a topological space and let % be a covering of X by a col-
lection of non-empty open sets. We define a complex K(%) in which the vertices
are members of % and the simplexes are the subcollections of members of % with
non-empty intersection. This complex is called the nerve of %. If % = {1/ }is an
open covering of a space X and K(®) is its nerve, a barycentric map f: X—s |K(%)|:
is a continuous map such that, for every x € X, each vertex of the smallest simplex
se K@) with f(x) € |s| contains x, A barycentric map is often called a canonical
map. Il % and ¥ are open coverings of X, with ¥ a refinement of %, a projection-
from #" 1o % is a function = (or myy) which assigns to each ¥ e ¥ an element
n(V) e such that Ver(V). A projection defines a simplical map K (¥ )—K(%)-
which in turn defines a continuous map |K(#)|—|K(%)] both of which are also-
denoted by =.

Recall that a paracompactum is a Hausdorff spaces every open cover of which
has an open locally finite refinement. Notice that if X is paracompact, then for
any open cover % of X there is a barycentric map u: X—|K(%)|, because % has
a locally finite refinement ¥” and we may take u as the composition of a bary-
centric map o: X—|K(¥7)| (whose existence is a standard fact) followed by a pro-
Jection m: [K(¥)|—|K(@)].

It % is an open cover of a space X, then a simplical map y: K(#)—K is said
to be barycentrically induced by a map p: X—| K|, provided the set p(U) is contained
in the open star of the vertex y(U) for each Ue %. Simplical maps barycentrically
induced by the same map X—|K| are contiguous and therefore homotopic. If ¢
refines %, then for any projection m: K(#° )—K(%) the composition Yz is also-
barycentrically induced by p.

A barycentric fuctorization of a map p: X—]K]| is a pair

(w: X— K|, py: IR —|K))

in which 4 is an open cover of X; u is & barycentric map, and p, is a simplical map -
barycentrically induced by p. For any x e X each vertex U of the smallest simplex
containing u(x) contains x and p(U) is contained in the open star of pil), for
each such Uj thus p(x), pu(x)e|s| for some simplex se K and, consequently, .
pep .

3. Shape theory for topological spaces. Let # be the category of polyhedra
and homotopy classes of continuous maps between them. If X is a (topological)-
space, then [Ty is the functor from & to the category of sets and functions which
assigns to a polyhedron £ the set IT,(P) = [X, P] of all homotopy classes of maps
of X into P and which assigns to any homotopy class ¢: P— Q between polyhedra
the induced Tunction @4 [X, P]—[X, Q] which maps the homotopy class f: X—P"
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into the composition @f = @4(f) of the homotopy classes of f and ¢. A natural
transformation ¥ of the functor Ty into the functor ITy assigns to each homotopy
-class f: X—~P a homotopy class ¥(f): Y—P in such a way that for all homotopy
classes f: X—P, g: X—Q, and ¢: P— Q such that ¢of = g we have oW (f) = ¥ (.g).
I f: X—Y is a map, then there is a natural transformation f#: ITy—ITy whlchv
assigns to the homotopy class ¢: Y—P the composition ¢[f] = f *(p) o?‘ the
homotopy class [f] of £ with ¢. A natural transformgtion from Iy to Iy will be
-called a shape class from X to Y.

Given two spaces X and Y we say that X shape dominates Y if and only if
there are natural transformations &: ITy—IIy and ¥': ITy—ITy such that ¥ = 1;" .
Tf, in addition, @¥ = 1¥, then X and ¥ are said to be of the same shape. In other
words, X and Y have the same shape if and only if there is an invertible natural
transformation.(i.e., a natural equivalence) of the functors ITy and ITy. This ap-
proach is essentially the same as that of Mardesié [12] except that he used shape
maps instead of natural transformations. The development of shape theory via
natural transformations and its equivalence with Borsuk’s theory for metric com-
pacta was obtained independently by Kozlowski [6].

"Remark 3.1. For a paracompactum ¥ the functor Ty is represented as the
direct limit of the system {IT = Hixay> Tgs> Cov(¥)} by means of the maps
u¥*: IIy—IT, induced by barycentric maps u: Y—|K(%)| (see [10]). As a conse-
‘quence of Remark 3.1 we have the following two remarks.

Remark 3.2.1f P = |K|, Q = |L| are polyhedra, X paracompact, and f: X~—»P,
g: X~ 0, 8: P— Q maps such that §f~ g, then for any sufficiently fine open cover %
and for any barycentric factorizations (u: X=|K@), f: |K@)|—|K]), (u: X
=K@, g,: | K@) —IL]) of f, g respectively, g,~6f,.

Remark 3.3. For any space X a family {p,: XK ()| |% e Cov(Y)} with
the property that

(1) @4 ~7ay 0., when ¥ refines %, defines a natural transformation @: Iyl
‘which is uniquely specified by the requirements

(2) D] = [¢q] for every % e Cov(Y).

For any natural transformation ¥': IIy—ITy, where Q is a polyhedron, there
is a unique homotopy class g: X—Q such that g* = ¥, In fact, if g* = ¥, then
g = ¥(1,), and taking this as the definition of g we see from the fact that ¥ (k)
= h¥(14) holds for any homotopy class A: Q—P that g*(h) = hg = ¥(h) for any
‘such A.

It is useful to observe that the scope of the natural transformations oceurring
in this definition of shape may be enlarged. By the theorem of Appendix 2 of [10]
any natural transformation of I, into IT x has a unique extension to a natural
Aransformation of {Ty into fTy, where the tilde indicates that the homotopy class
functors are considered to be defined on the category of all shapes dominated by
polyhedra and homotopy classes of maps. By a theorem of Milnor [17] the class
-of spaces dominated by polyhedra coincides with the class of spaces dominated
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by CW-complexes and includes the class of ANR’s. Accordingly, a given natural
transformation of ITy into ITy will be assumed to give a transformation ‘of homotopy
classes of maps of ¥ into ANR’s into such classes of X'into ANR’s. If ¢: [T,~»1T x
is a2 natural transformation and S X—P, g: Y—P are maps into a polyhedron P, .
then the relations ®[g] = [f] and Dg* = f* are equivalent,

The definition of shape for compacta was obtained by Mardesi¢ and Segal [15]
in terms of ANR-systems.

An ANR-sys'Lem is an inverse system X ={X,, pp, A} where each X, is
an ANR, ie., a compact ANR for metric spaces and Do OS0, @, 0/ € 4, are
maps from X, into X; (4,<) is 2 closure-finite directed set [15]. It X = Inv lim X,
we say that X is associated with X and we denote by p.: XX, the natural pro-
Jections. A map of systems S X>Y = {¥;, g5, B} consists of an increasing
function f: B—A4 and of a collection {/f3. B} of maps Ju: Xpp— Y, such that < g’
implies the homotopy relation

JoP s sy =Sy -

The identity map‘l,_(: X=X is given by 1(a) = o, 1, = ly,. The composition of
maps fi X—7Y, g: YoZ = {Z,, r,y, C} is the map b =g f: X—Z given by h(y)
=fg(y) and b, = g, f, ;. Two maps of systems J>g: X—Y are said to be homotopic,
JS=g, provided for every fe B there is an index aed, azf(f), g(B) such that
JoP sy gpPypye. ANR-systems X and Y are said to be of the same homotopy
type, XY, provided there exists maps of systems f: X—Y, g: Y= X, such that
gf=ly, fo ~1y. Two compacta are said to be the same shape if they have as-
sociated ANR-systems of the same homotopy type.

The equivalence of the ANR-systems definition of shape and the functorial
definition on compacta is established by the next result (which follows from [12,
Theorem 6]).

THEOREM 3.1. For two compacta X and Y and any map of systems [t X-Y
there is a natural transformation J*: Iy—IIy which only depends on the shape class of A

The assignment fs f# has the following properties:

(1) 1* = identity and (g .f)* = f¥g¥*,

Q) it f* = g*, then fo~g,
and ) ) B X

(3) for any natural transformation &: ITy—ITy, there exists o XY such
that f# = o, ‘

Remark 3.4, It follows from Theorems 4 and 3 of [10] that if Y is any
ANR -system associated with .Y, then, for any space W dominated by a CW-com-
plex, IT,(W) is represented as the direct limit of the direct system

{H[J(W) = [Yﬂﬂ w1, f]/'ffe', B}
by the functions :1,}'* T (W) —ITy(W). This means that for any set £ and any family
of functions @;: I(W)—E satisfying &, = Bpgfy (BB, there is a unique
function &: ITy(W)—E satistying & = $,q,.
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4. Movability and n-movability. In [2] and [3] Borsuk introduccd‘-t;hle 20;101’151'
of movability and n-movability for metric compacta. ‘In [16] Mquc?s_lc an (szrd
and in [8] Kozlowski and Segal generalized these no’uons to arl?ljcmlylc.o:m’)a IL
In this section we give a categorical description of these .prop@tles w11;1 ‘dppy~
to arbitrary topological spaces and show they are shape l.n.vanant& In .d:Ct, ;lil
version of movability is a generalization of uniform movability [18, Definition 3.1,
p. 132], .
DerFmITION 4.1. A space X is said to be uniformly ‘movable pI‘OV{dCd, L(hﬂt
for each map f: X—P of X into a polyhedron P, there exists a polyhcdmn' @ and
natural transformations &: IMy—ITy, ¥: I—IIy such that YO [f] = [/}

Remark 4.1. If a space is shape dominated by a polyhedron then it is uni-
formly movable. - ‘

Remark 4.2. Since any natural transformation ‘I’:;HQ—>H x satistics 'I" = -g“
for a map (unique up to homotopy) g: X— Q, the condition of the above dcmlmc.n
can be stated: for each map f: X—P there exist a polyhedron Q, map§ g: /\——rQ,
¢: 0—P, and a natural transformation ¢: IIy—II, such that @g=f and @[f]
= [¢]. ' .

DEFINITION 4.2, Two maps f: X—P, g: Y—P of spaces into the Si,lmc
polyhedron P are shape-equivalent, provided there exist natural transformations
@: [Iy—Iy, ¥: II,—Ily such that fe ®@[g] and g ¥ [f]

Remark 4.3. We may say then that a space is uniformly movable if and only
if any map of it into a polyhedron P is shape cquivalent to a map of a polyhedron
into P.

‘DerINITION 4.3. A space X is said to be wniformly n-movable, provided that
for any map f: X—P of X into a polyhedron P, there exists a polyhedron Q, maps‘
g: X—0. ¢: Q—P, and a natural transformation @: ITy—IT,5. such that gpg=f
and &[] = [¢|Q"].

Tueorem 4.1. If X is a uniformly movable paracompactum, then for any map
[ X—P of X into a polyhedron P and for any sufficiently fine open cover U of X there
exist a barycentric factorization (u: X—|K(@), f,: \K(W)|—P) of f and a natural
transformation @: I y—II gy such that @[ f1 = [f,]. If X is a uniformly /1—17?(1v(1hle
paracompactum, the above conclusion is modified only in that ® maps Iy to If JEn )
and @11 = [AIK" ()]

Proof. Suppose X is a uniformly movable paracompactum. From Remark 4.2
it follows that there exist a polyhedron Q, a natural transformation ¥: Tyl
and maps g: X¥— 0, ¢: Q—P such that pg=jf and ¥[f] = [e].

For any sufficiently fine open cover % there are baryceniric factorizations
(u./) and (u.g,) of f and g respectively, and by Remark 32 ¢g,~f, Take ¢
= g¥¥ and note that

L1 =gr¥If] = gllel = [pg) = [1].

icm
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When X is a uniformly n-movable
and Y[f] = [p|Q"]. Obtain %, (u, ),
being simplical, maps |K"4)| into o"
Then @ = 9*Y¥ is the desired n

paracompactum, ¥ now maps Ty into T
and (u, g,) as above, and observe that Gus
and thus defines a map y: |K"(%)|—Q".
atural transformation.

DEFINITION 4.4. A space X is said to be movab
S X=P of X into a polyhedron P there exist a pol
¢@: Q—PF such that

(i) f=~¢pg and

(ii) for any polyhedron R and any maps h:
there is a map 0: QO—R such that Wi,

a-movability is defined by replacing condition (ii) by

(i), for any polyhedron R and any maps h:
there is & map 0: Q"R such that WO~op|Q".

THEOREM 4.2. Any uniformly movable Space is movable. Any
space is n-movable.

le provided, that for any map
yhedron Q and maps g: X— o,

X—R, ¥: R—P such that Yhe~f

A—R, 1 R—P such that yhe f

uniformly n-movable

Proof. Let X be uniformly movable, and |
By Remark 4.2 there exist 0, g: X—0, ¢: Q—P and &: IIy—I, with f~pg and
P[f]=[e]l. It R is a polyhedron and 4: X—R and y: R—P satisty Whaf, then
taking 0 e ®[h] gives
WOl =y @[h] = Yy [h] = d[F] = [¢].
Thus X is movable.
Il M is uniformly n-movable, and f° X—P is given, choose Q, 9: X—0,
@: Q—P, and @: ITy—T g as in the definition of uniform n-movability, and let R, ~
hi X—R, : R—P satisty Wh=f. Taking 0 € #[h] we have
WOl = gy @ [h] = BYu[h] = O[f] = [0]Q"].

Thus X is n-movable.

et f: X—Pbeamapinto a polyhedron.

Remark 4.4. The convers2 of Theorem 4.2 js not valid in general (see our
paper, Movability and shape-connectivity, Fund. Math. 93 (1976) pp. 145~154).

TueoREM 4.3. A paracompactum X is movable if and only if for any open cover %
of X, there is an open cover ¥ refining U such that for any open cover W refining U
there is a map & = " \K (W)~ | K(#)| such that Ty A Togy. A paracompactum
X is n-movable if and only if for any open cover WU of X, there is an open cover 4~
refining A such that for any open cover W refining U there is a map M| K" (%)~ K (7))
SuCh 1t gty Aot || KP(%7).

Proof. Suppose X is movable, and let % be an open cover of X, Let f* X
=K (#)| be a barycentric map, and choose Q. g, ¢ as in the definition of movability.
Let (v: X—s|K (¥, 4ot |K(¥)l— Q) be a barycentric factorization of g in which ¥
refines . Since (g, v~myy, we may assume by Remark 3.2 that og,
Now if %" refines %, there is a barycentric factorization

(s X= KW, gt KWK

2 TLygre
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W
of f; hence there is a map 6: G—|K(#)| such that Tgy0~¢ and A = By,
i condition of the theorem. . )
Satls%ezniliisgﬁj?d:ssfme this condition is satisfied. If f: X—P is a-map nfno
a polyhedron, take a barycentric factorization (u: X—|K@), fu: IK(%)I-{P) o. f
Then there is ¥ as in that condition. Take O = |K(¥)|, g: X—Q 2 barycentric

map, and
@ =f;n7r‘7ﬂ" "

If h: X—R, : R—P satisfies Yh=~f, choose 2 baryf:entric factorization
(w: X—>[K(#), b, |K(#)|—=R) in which W reﬁneif W%. $11_1ce YhWatf ooy W,
we may assume as above Yh,~f, Mgy Then 0 = kA" satisfies Yoo,

For n-movability the argument is similar.

THEOREM 4.4. If X is uniformly movable and shape dominates Y, then Y is uni-
formly movable. ‘

Proof. Since X shape dominates Y there exists natural transformations
A: Hy—TIy and @ : Iy—ITy such that @4 = ly,. Consider an arbitrary rfxap f Y—P
of Y into a polyhedron P. Then [ f]e IIy(P) and Ae]ell x(P). Serxcc X is.uniformly
movable there exists a polyhedron @ and natural transformations @: Hy—g,
¥: [1y—ITy such that YOA[f] = A[f] Let ¥’ = @¥ and & = &4. Then

YO [f] = O¥PA[f] = OALf] = 1m[/]1=[f].

THEOREM 4.5. If X is movable (n-movable) and shape dominates. Y, then Y is
movable (n-movable). .

Proof. Let &: IIy—Ily and ¥: ITy—ITy denote natural transformations suc’h
that W& = 1p,. Let f: Y—P be a map of ¥ into a polyhedron P. Then ¢[ﬁ is
a homotopy class of maps of X into P. Since X is movable we have there exists
a polyhedron Q and maps ¢: X—Q, ¢: Q—P such that: (i) [pg] = ®[f] and
(i) for any polyhedron R and maps h: X—R, ¥: R—P such that [yh] = &[]
there is a map 6: W—R such that

1 Yl .

Consider any maps A': Y—R and y’': R—P such that
(2) Yh~f.

Applying the natural transformation ¥ to (i) we get

@ 0+ ¥igl = 1/1.

Then applying the natural transformation @ fo (2) we get
“@ Ve®h] = 2[f].

Now take s = @®[h'] and ¥ = ¢'. Then
[Wh] = Yulh} = Y010 = @[ f].

Locally well-beh
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!
So the hypothesis of (ii) are satisfied. Therefore, there exists §: O—R such that
Y0~ and so
(5) Yhxg .
Lines (3) and (5) imply conditions (i) and (i1) hold for the map f: ¥—P. Hence Y is.
movable.

The prool in case X is n-movable is similar.

The following generalizes the analogous result for compacta in [8].

THEOREM 4.6. If X is. an n-dimensional, uniformly n-movable paracompactum,.
then X is uniformly movable, '

Proof. Let f* X—P be any map of X'into a polyhedron P. Since X'is uniformly
n-movable there exist a polyhedron Q, maps g: X—>Q, ¢: O—P, and a natural:
transformation &: ITy—I1pn such that g f and @[f] = [¢|Q"]. Since X is para--
compact @ can be taken as the georhetric nerve of a covering % which is a member
of some cofinal family I' in Cov(X). Since X is r-dimensional I can be taken as
a family of coverings of order #, so that Q will be n-dimensional and so Q" = Q.
We thus have obtained the desired relation for uniform movability.

THEOREM 4.7. A compactum is movable in the sense of Marde}ié—Séagal if and
only if it is movable. It is n-movable in the sense of [8), if and only if it is n-movable_

Proof. Throughout the entire proof {X,, p.., A} is an ANR-system as-
sociated with X" in which each X, is a polyhedron; p,: X—.X, is a projection of the
system. Suppose X is movable. By Theorem 4.1 there is a fnite open cover % and

. & barycentric factorization (u: X—|\K(®@), p,.,: |K(%)|—X,) of p, such that for-

any polyhedron R and maps h: X—R, ¥ R—X, such that p,~yh there is a map-
0: |K(@)|—R such that yfp,.,.

By Remark 3.4 there is an index f>u and a map 7: X;—|K(%)} such that
nppeu. SiNCe py. Py paepy, by the direct limit property in this remark there is.
an o'>f such that p,.MPup=pu. Set u' = NPop. Then p,. w'~p... I o' >a,
take R = X, b = py., ¥ = p,,» to conclude that there is a map 0: |K(X)|—X,
such that p.0ep,.,. Set *** = 0u'; and observe that p.r*™ ~p,..u'sp,,.
Thus movability implies movability in the sense of Mardesié-Segal.

To prove the converse recall that ITy is represented as the direct limit of the-
system {II,, = Iy, , pst;, 4} by means of the maps pf: IT,~ITy. If f: X—P is a map-
into a polyhedron, it follows that there exist an index « and a map f,: X,—P such
that fef,p,. By the definition of movability in the sense of Mardesi¢-Segal there
Is o'>a such that for any o' 2o there is r***': X X, such that por** = p,..
Take Q = X/, g = p,, and @ = fop,, to satisfy Definition 4.4 as follows:

To verify (i) consider h: X—R, y: R—P with Wh=f. As before there exist
Bzo and a map hy: Xp—R such that he2hyp,. Since p) Whyl = [f1 = 2§ [ fobugls-
it follows from the representation of ITy as the direct limit that there is a”/ > § such
that P/;';"[‘/’hp] = Pjorl SuPupl

Let 0 = hypper™ and observe that

YO = Yhypge 1™ S f, PopPper ™ 200
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Since pg=~f, it follows that the conditions of. Deﬁnitio-n.4.4 are satlsﬁe;i. Th?’
movability, in the sense of Mardesié-Segal implies movability, This comp.c.lcs the
proof of the first assertion. To prove the second obscFve t.hat the deﬁnltl.()l'j of
_n-movability in [8] takes by means of cellular apprgxtmatm'n [23] an equwaler.u
form when one considers systems of polyhedra associated with X as a‘?'ove: Xis
n-movable if and only if for each o there is an &' >« such that for any o'’ Za there
i u'l’,: :’—)X«z" with ! 'rd,a” :pm’l a:’ N X .

o x\g\l/alir: X isA;-movable, t]f:: first part of the above proof is ch.ange'd in that 0
.and h are defined on |K"(%)| instead of |K(%)|. By cellular gpproxnmatmn we may
assume ' (X2)<|K"(%)|. Hence, r**" = hu' defines the desired map. .

When X is n-movable in the sense of [8], the second part of the g’r’oo.f is
changed in that /" is defined on X7%. As above, the map 8 = hypge ™™ gives
the desired conclusion.

TuEOREM 4.8. If X is a metric compactum which is movable (n-movable in the
.sense of [8]), then it is uniformly movable (uniformly n-movable).

Proof. Let X = {X,,, Pum} be an ANR-sequence assqciated with X such
that each X, is a;olyhedron. Let f: X—P be any map of X into a polyhedron P.

By Remark 3.4 there exists an index m, and a map fy,: X,,—P such that
SmoPme==f- Truncating the sequence and renumbering we have a map fii X—P
such that

Jipi=f .

Now since X is movable X is a movable sequence. We define by induction a strictly
increasing sequence mg = 1<, <m,<..<my<.. such that my is a' i m_,
is o in the definition of movability [8]. Since m, 4 >m,_, we have maps ¢, = py,,
@, = Py3W5 Where /5 is obtained by applying Definition 2 of [8] to ly,: X,—X,
“to get a map Y¥3: Xy—X; such that pysa~pisly,, @3 = pasfy where Y i Xo—X,
satisfies, p,4fa~p,5¥;, and is obtained by definition as above, and so om.
Inductively, we have @, = Pyt (Womer Where pr_gms Wit 1= Prmt,mWm+

Let Q = X, in Definition 4.1 and note {¢,} defines a map of sequences
¢ = {¢,}: 0—X. Now in Definition 4.1 as modified by the remark let & = f; p;,:
@—»P and let g = p,: X— Q. Furthermore, we have ¢ determines a natural
transformation ¢* which we take for @: ITy—IT,. Then we have the relations re-
-quired for uniform movability, namely,

L1 =¢*[f]1=1fie.] = [fip12] = (1]
-and
hg = fipapr = fip=f.

For uniform n-movability we proceed as above. However, ¢,: Q" = X3—X,,
is the restriction of the ¢, obtained previously to X3. This determines a map of
sequences @ = {@,}: Q"—X. Then ¢ determines a natural transformation &
= o¥*: Hy—Ily.. Let h = fip;5: Q—P and let g = p,: X—Q. Then

OS] = 0*[f] = [fies] = [filp1:1 @] = [(f1p12)1Q"] = [41Q"]
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and
hg = fipi2p, =fipi=f.
(. Spiez has also obtained the same result in the movable case.)

5. ANSE’s and ANSR’s. Before we state our generalization of extensor to
the shape of paracompacta we recall the classical definition from [5]. The closed
subset 4 of a space X is said to have the neighborhood extension property in X with
respect to the space Y if and only if every map f: 4—Y can be extended to some
neighborhood N of 4 in X. Let & denote a weakly hereditarily topological class
of spaces. By an absolute neighborhood extensor for the class o (written ANE(#))
we mean a space Y such that every closed subset 4 of any space X' e & has the
neighborhood extension property in X with respect to Y,

DepiNrmion 5.1. We say Y is an absolute neighborhood shape extensor for
paracompacta (ANSE) if for any natural transformation ®: IT,—IT,, where 4 is
any closed subset of an arbitrary paracompactum X, there is a closed neighbor-
hood N of 4 and a natural transformation ¥+ Iy—ITy such that ¢¥ = & (where
@: IIy—Il4 denotes the restriction). In the ANR -systems approach this implies
that any compactum ¥ is an absolute neighborhood shape extensor if any shape
map f:.4—Y can be extended to ashape map F of a closed neighborhood N of 4

in X. (Here F extends J means Fix~ [ where iis a shape map of 4 into N induced
by the inclusion i: A—N.) T i

We will also generalize the following description of absolute neighborhood
retracts Tor compacta in shape theory due to Mardesic [4] to paracompacta. Mar-
desié’s definition was a generalization of Borsuk’s [1] fundamental absolute neighbor-
hood retracts (FANR’s) to the compact Hausdorff case. Mardesic says that a com-
pactum Y is a absolute neighborhood shape retract provided, for every compactum Z,
YeZ, there exists a closed neighborhood & of Yin Z, such that ¥ is a shape re-
tract of N (i.e., there is a shape map r: N—Y such that ri=1ly, where it Y—N is
the inclusion map). o

DermNTionN 5.2, The paracompactum ¥ is said to be an absolute neighborhood
shape retract (ANSR) if, whenever ¥ is a closed subset of a paracompactum Z,
there exist a neighborhood N of ¥ in Z and a natural transformation ¥: ITy—1Ty
such that oW = 1,;, (where g: Hy—ITy is the restriction). Clearly, every compact
ANSR is an ANSR (in the sense of Mardesic) by Theorem 3.1.

TueoreM 5.1, If a paracompactum Y is an ANSE then it is an ANSR.

Proof, In the definition of ANSE take X = Z, A = Y and let the natural
transformation &: MTy~+IT, be the identity. Then by the definition there is a closed
neighborhood N of ¥ in Z and a natural transformation ¥: ITy—ITy such that
eV =1, so that Y is an ANSR.

THEOREM 5.2. -4 compactum ¥ is an ANSR (in the sense of Mardesic) iff it is
an ANSE. i

5 — Fundamenta Mathematicae XCV
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Proof. Let ¥ be an ANSR (in the sense of Mardesic). Let h: ¥Y—Y'<I™ be
an imbedding of Y in a cube (where 1wt is possibly uncountable). Now Y” is a shape
retract of a neighborhood Q in I™ and Q can be taken to be the product of a compact
polyhedron P with a cube: @ = PxI"<I™ Let the shape retraction be r: Q—Y",
Since PxI" is an ANR the shape class 4—P xI" defined on a closed subsct A of
paracompactum X contains a map; this map extends over a ncighborhood N of 4
in X to give the desiied shape class extension.

The converse is obvious by Theorem 5.1.

THEOREM 5.3. Any space shape dominated by an ANSE is also an ANSE.

Proof. Let ¥’ be an ANSE which shape dominates Y. Then we have natural
transformations A: IIy—IIy and @: ITy—ITy such that @4 = lg,. Now let 4 be
a closed subset of a paracompactum X Let @: ITy—II, be a natural transformation.
Since Y'is an ANSE, and ®@: ITy—I1, is a natural transtormation, there is a closed
neighborhood N of 4 in X and a natural transformation ¥': ITy—ITy such that
o¥' = @O. Let ¥ = ¥'A. Then

oV = ¥'A = POA = Ply, = &
and so Y is an ANSE.

The following is a restatement in shape theory of a result of [10].

THEOREM 5.4. Any polyhedron P is an A'NSE.

Proof. Let 4 be a closed subset of a paracompactum X. Consider the shape
class A—P. It contains a map 4—P and by [10, Corollary 4.8] the map is homotopic
to one which can be extended over a meighborhood of 4 in X. :

COROLLARY 5.1. Any space shape dominated by a polyhedron is an ANSE.

THEOREM 3.5. For a metrizable space X the fallowmg three properries are equiv-
alent:

(1) X is an ANSR,

(2) X is an ANSE, !

(3) X is shape dominated by a polyhedron.

Proof. It suffices to show that (1) implies (3). Let X be an ANSR and let
h: X—=Cy(X) be the Kuratowski-Wojdyslawski imbedding of X into the space of
all bounded continuous functions on X defined by choosing a bounded metric
on X and setting h(x) = d, where d(») = d(x, y). Then h(X) is a closed subsct
of its convex hull A in Co(X). Hence there exists an open neighborhood N of 2(X)
in H and a natural transformation ¥: ITxy—Iy such that ¢¥ = identlity (where
@ is the restriction). Since N is an ANR, it is dominated by a polyhedron P. Let
J: N—=P, g: N—P satisty gfe1y. Then g*¥ and of * give a shape domination of
X by P.

6. Partial realizations.

DerNITION 6.1. A partial realization of a complex K in a collection o of
sets in a space X is a map ¢ |L|—X from the polyhedron of some subcomplex L,
which contains all the vertices of X, into X such that for any simplex s of X there
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isan A e with t(ls] n |L) 4. A full realzzatzon of Kin o/ isa pnrual realization
in & in which L = K.

We now recall a theorem from [5, p. 157, 159]. Note that “LC” indicates
homotopy local connectedness.

TucoreM 6.2. If X is an LC"™' paracompactum, then for any open cover R
there is a cover P such that any partial realization of an n-complex in P extends to
a full realization in %.

If % is an open cover of X and A is any subset of X, then the star of 4 in %
St(d, %) = {UeWU| AnUs @} When 4e, we write 4* = ) St(4, %). An
apen cover ”Zl is called a star-refinement of an open cover ¥, provided the collection
W* = {U* UeU} refines #". We frequently use the fact that every open cover
of a paracompactum has a star-refinement.

LemMA 6.3, Suppose that (1) @, & and U are open cover of a topological space X,
) 2 refines R, K star-refines U, and U is locally finite, and (3) any partial realization
in @ of any n-complex has « full realization in R, Then for any star-refinement ¥~
of @ there is a full realization t: |K'(¥)|—X of X"(¥") in & such that for any pro-
jection m: K(¥")—K(%) and barycentric map u: X—|K(%)| the maps ut and || K"(¥")|
are homotopic. Moreover, the map t can be chosen so that for any simplex s e K™(¥")
the image t(|s|) is contained in |) St(Us, #&).

Proof. Define a partial realization

10 KO )—X
of K(#7) in ¥ by choosing °(V) & V for each Ve ¥ . Il 5 is any simplex of K(¥"),
then
Ns#9;
hence there is a V& ¥ such that
seSIV, V).

Thus there is a Py & # such that ()= (JscP,, which shows that 1 is a partial
realization of K"(#") in £. By hypothesis there is a full realization of K*(¥") in £,
i.c., there is a map #: |K"(¥)|—X such that, for any simplex s of K*(¥"), there is
an R(s) € Z with t(|s]) = R(s). .

Let u: X—|K(%)| be any barycentric map of X into |K(#)]. If s is any simplex
of K"(¥7) and x & t(]s]), then there exists a simplex s(x) of K(%) with u(x) & |s(x)]
and s(x)cSt(x, %). Let C(s) be the subcomplex of K(%) consisting of all those
simplexes s such that z(Js]) n () &) # @. For any p & s write x = t(p) and ob-~
serve that because wt(p) € [s(x)| and £(p) & [s(x)], that

ut(p) €|C()! -

Hence ut(|s]) =|C(s)| for any simplex s of K"(¥").

Consider a projection 73 K(#)—K(&). If s is any simplex of K(¥), th_en
m,(s) is a simplex of K(%) which has the property that any vertex of n,(s) contains
5 :
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a point of #(|s]). Thus m,(s) =St(R(s), Z#). Let i K(#*)—K(%) be a projection.
If s is any simplex of K(¥"), then for any vertex R of my(s), R 0 R(s) # ©; hence
T (R¥) > R¥*> R(s) .

Define a projection ny: K(#)—K(U) by no(R) = m,(R¥). Since any vertex U of
mony(s) has the form U = m,(R¥) for some vertex R of my(s), mo(R(s)) and the

vertices of mym,(s) comprise a simplex of K(%).

Now let U(s) = m,(R(s)) and notice that any simplex of C(s) is contained in
a simplex of which U(s) is a vertex. Thus C(s) is a cone with cone vertex U(s) which
implies that |C(s)| is contractible. Since any vertex of mym,(s) contains #(|s]), C(s)
contains the simplex mym(s). Thus for any simplex s of K"(#") we have

t(Is) © momy () =IC(s)|
and if s" is a face of s, then
C(s")=C(s) .
The fact that ut~nym,|[K™(¥")| follows from Lemma 6.4.

LemMA 6.4. Two maps f and g of a polyhedron |K| into a space Y are homotopic,
provided that there is an assignment of simplexes s € K to contractible subsets ()
of Y such that:

n sy v g(sh=Ce)
and :
(2 if 5 is a face of s, then C(s)=C(s).

Proof. Define a homotopy H: |K|xI—Y in stages on the skeleta of K. Let

H,: |K|%{0,1} U K" xI-Y be defined inductively as follows:
H_l(p,()):f(p), H—l(p’]‘):g(p),
(Note: K™* = @.) Suppose H, has been defined and satisfies
(3) H(|s'|x )= C(s)
If 5 is any (n+1)-simplex of K, then
Hy(Is| % {0, 1} U [8s] x ) = C(s)

because of (3) and (2). Then thereis a map |s| x I-C(s) extending H,|\asx 1y - These
extensions combine to give the desired H,,,.

The next Corollary follows from Theoren1 6.2 and Lemma 6.3.

COROLLARY 6.1. For any open cover U of an LC"~1 paracompactum X and for
any sufficiently fine open cover V" refining U there is a map t: |[K"¥ )X such that
wl 27y [|[K"(V), when u: X—|K@)| is a barycentric map.

for every s e K",

7. Locally well-behaved paracompacta.

THEOREM 7.1. Any LC" paracompactum X of (covering) dimension <n is shape
dominated by some polyhedron of dimension <n (which can be chosen as the poly-
hedron of the nerve of an open cover of X).

icm°
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Proof. Let #" be an open cover with the property that any two maps

/> & [K|— X of a polyhedron |K| of dimension < into X are homotopic, provided

that for any simplex s of K there is a W(s5) e %" with JUsD Vg sy e W(s). (For
a proof of the existence of such a %" see Lemma 2 of [7] and observe that the fini-
teness condition in its proof is irrelevant.)

Let # be a star-refinement of % and let & be an open cover refining # such
that any partial realization of an n-complex in £ has a full realization in 4. Let %
be a locally finite open cover which star-refines 2 and whose nerve has dimension <n.
We will show that |K(%)] shape dominates X.

The map fty: |K(%)|~X is the full realization obtained by using Lemma 6.3.
Let % be any locally finite open cover of X. Let 2(%) be a star-refinement of @
and a refinement of #, and let #(%) be a refinement of (%) such. that every partial
realization of an n-complex in #(%) has a full realization in R(¥).

Let ¥ be a star refinement of 2(%) and a refinement of % whose nerve has
dimension <n. By Lemma 6.3 there is a realization #,: [K(¥)|—X in R(%) such
that for any barycentric map ¢! X—|K(%)| and any projection gyt K(¥)Y~K(E)
we have .

6)) Cly DTy .

It ¢ is any simplex of K(¥7), then by Lemma 6.3 t,(|s|)c Us.(Us, 2(%)),
and fy(n(ls))= USt{ Un(s), #) where m = my,. Since R (%) refines & and ¥
refines %, s Un(s) and accordingly USt(Us, 2(9)< USst(U=(s), ). Since
% is a star-refinement of 22, USt(Un(s), .%)cR* for some ReZ and, therefore,
USt(Um(s), #) is contained in some member W(s) of # . Hence, for any simplex s
of K(77) the images £,(|s|) and #,n(|s]) arc contained in W(s), and consequently

@

Ly =2ly Ty .
The desired shape domination is induced by any barycentric map u: X—|K(%)]
and the map #y: |K(%)|—X. To prove this we will show that ¥t} is the identity
natural transformation on the functor IIy. This means that for any map f; X—P
of X into any polyhedron P we have w*t§[f] = [f], or equivalently frauesf.
Since f has a barycentric factorization (¢, f,) it suffices to show that

(3)
for any barycentric map ¢: X—|K(%)]. Now
O
The first and last homotopies of (4) hold because any barycentric map followed
by a projection is a barycentric map and barycentric maps are homotopic; the
second and third homotopies are consequences of (2) and (1), respectively.

Since any polyhedron with the metric topology is an ANR (see [5, p. 106])
we have

Clyum=c

Clygi o2 Cly Ty b 22 Clypl S Tyl C
4 Wy ¥ 3

CorROLLARY 7.2. Ay LC" paracompactum X of dimension <n is shape dominated
by an ANR,
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The next result also follows from Theorems 7.1, 5.4 and 5.3.

TuEOREM 7.3. Any LC" paracompactum X of dimension <n is an ANSE and
therefore an ANSR.

Remark 7.1. Since an ANSR may behave badly locally there is no chance
of extending the compact metric result, ANR=>LC", to paracompacta. On the other
hand, an example due C. W. Saalfrank [21] shows that the compact metric result,
at most n-dimensional and LC"=>ANR, cannot be extended to compact Hausdorff
spaces. However, Theorem 7.3 does extend it to paracompacta in shape theory,
ie., at most n-dimensional and LC"=>ANSR.

THEOREM 7.4. Every LC"™! paracompactum is uniformly n-movable.

Proof. Let f: X»P be a map into a polyhedron, and let (ui X—|K (%),
fui |K(%)}—P) be a barycentric factorization of f. Choose 7" and ¢: |K"(¥)|—X
as in Corollary 6.1, and take Q = |K(¥)|, ¢ = f,Tgy, ® = t*, and g: X—=Q
a barycentric map. These satisfy the conditions of Definition 4.3.

COROLLARY 7.3. Every LC"™' paracompactum of dimension <n is. uniformly
movable. (In the compact metric case this was first obtained by Mardesi¢ [11] and
in [20].)

Remark 7.2. The proofs indicate that the natural transtormations implicit
in Theorem 7.1, Corollary 7.2, Theorem 7.4 and Corollary 7.3 are induced by maps.

8. Summary. We now summarize in diagram form the results of this paper
and classical results on locally well-behaved compacta. An arrow (—) indicates
class inclusion and a broken arrow (—»n—) indicates class inclusion under the ad-
ditional hypothesis that the dimension of the space in question is <n. Here SDP
indicates a space dominated by a polyhedron.

Classically we have for metric spaces: N
@O LC¥SANE-ANR
and for compacta:
an LC"—ANE~ANR .
In shape theory we have for compacta:
LC"——n——> SDP«~ ANSE«> ANSR
15 L(Jf‘,"‘1

uniformly n-movable X;= uniformly movable
and for paracompacta )
LC"——n—-— SDP— ANSE—ANSR
X ‘

{
(Iv) Lcrt

\
uniformly z-movable %7 uniformly movable
We do not know if ANSR—ANSE or if ANSE—SDP for paracompacia.

71
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