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assuming that X< N, it suffices to observe that N\X cannot posses infinitely many
components. But this is an easy consequence of the fact that X e .

COROLLARY 4.5. Any compactum X quasi-homeomorphic with an ANR-set
Yo M, where M is a surface, is itself an ANR-set embeddable into a surfuce.

Indeed, since Y is X-like, it follows that X is locally connected, and thercfore,
by Corollary 4.4, X is an ANR-set embeddable into a surface. .

The answer to the following question is not known to the author, but it seems
to be positive:

ProBLEM. Can we assert in Corollaries 4.4 and 4.5 that the space X is embed-
dable into the same surface M which contains Y?
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On models of arithmetic having non-modular substructure lattices

by

A. J. Wilkie * (Milton Keynes)

Abstract. A model of arithmetic having the pentagon lattice for its lattice of elementary sub-
structures is constructed, and some related results are proved. This answers a question raised by
7. B. Paris in his paper [3].

1. Tntroduction to the problem. Let T be a complete consistent extension of
the Peano axioms P, and M the minimal (i.e. pointwise definable) model of T. We
suppose that L, the language of T, contains the set S, of all n-place Skolem functions
for new, and identify M with So. Thus the notion of elementary substructure
coincides with that of substructure for models of T. Our aim in this paper is to study
the possible complexity of models of T. This we do by letting $(M*) be the set
of all substructures of M* partially ordered by the “is a substructure of” re~
lation, <. It is clear that $(M™) is a lattice; M, AM, (the infimum of M, and M,
in $(M*)) being M; 0 M, and M, v M, (the supremum of M, and M, in §(M*))
being that substructure of M* generated by M, U M, under all functions in U S,.

new

Our problem can now be stated as: “which laitices occur as $(M*) for some
M*ETY

A complete characterization of such lattices seems a long way off —even if we
restrict our atiention to finite lattices, as we do in this paper. For all known positive
results on the problem we refer the reader to [3]; in particular it is proved there
that every finite distributive lattice is an S(M*). If M is non-standard (ie. if T is
not true arithrietic) it is still possible that evéry finite lattice is an $(M*), whereas
it M is standard there is not even an obvious conjecture. For under this latter as-
sumption it is known (see Lemma 3.3 and [4]) that Cs (the simplest modular non-
distributive lattice — see Fig. (1)) is not an $(M*) and, as we prove here, neither
is K (which is non-modular). However, to confuse matters we also answer in the
sequel a question raised in [3] by showing that for any T, Ps (which is non-modular
but somewhat less symmetrical than H) is of the form $(M*) for some M*F T

* The results in this paper were obtained while the author was working for his Ph, D at
Bedford College, London, and many thanks are due to W. A. Hodges for the supervision given
during that period, and the Science Research Council for financial support.
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c, By H
Fig. 1

2. Definable ultrapowers. In order to construct models of T" with prescribed
substructure lattices we introduce a method similar to Skolem’s original construction
of a non-standard model of arithmetic.

Let B denote the Boolean algebra of M-definable sets and U any ultrafilter
over B. (See e.g. [1] for definitions of these concepts.) We define an equivalence
relation ~; on S; by:

frug = {xeM: MEflx) = g(x)}eU,

and set f¥ = {ge S, fryg) and My = {fV: fe S}

We turn My into an L-structure by defining:

F(fY, i) = ¢" = {xe M: MEF(fi(®), ... £(0) = g()} € U,

for FeS,, f1, .2/ g €51

That F so defined is a function on My, and that ~y is a congruence relation
for this function is easily verified, as is the following theorem, which is a definable
analogue of Yo§’s theorem on ultrapowers (see [1]).

TuEOREM 2.1. If ®(xo, ..., X,—1) €L and fy, .., fo_1 €S,, then

Myk &(f8, . fi-) W {xeM: MES(fo(x), o, fo-i())} € U.

Further, if for each ae M we denote by & that function in §; with constant
value g, the map I: M—My defined by /(a) = &% (Va € M), is an (elementary)
embedding of M into My.

- From now on we shall identify M with its image under / in M.

DerINITION 2.2, If M*E T, ae M*, M*[a] denotes the smallest substructure

of M* containing a, or equivalently that substructure of M* generated by a under
all functions in' {J S,.

THEOREM 2.3. Let id denote the identity function on M. Then id € S, and we have:

() Mylid"] = My for any ultrafilter U over B, and

(i) if M*F T, ae M* and M* = M*[a), then there is an ultrafilter U over B s.th.
M*~ My,

Proof. (i) is obvious. For (i) let U = {deB: M*kae ). Then U is an

<ultrafilter and the map taking a to id¥ can clearly be extended to an isomorphism
of M* onto My. @

©
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Working towards our aim of constructing models of T' with prescribed sub-

structure lattice we introduce the following notions similar to those used by Paris
in [3] (p. 253).

For f,geS,, Be B, and U an ultrafilter over B define

fdug < MENx, peB){g(x) = g()—-f(x) =f(y)),
f=pg = fdpg and g dsf, ’
Sdyg < ABe U sith. fdzg,

fEpyg < fApg and g 4y, and

JAyg < fdyg and not f=yg.

The point of these definitions becomes clear with the following:
U
Levma 2.4, Ler U be an ultrafilter over B, and f, g € Sy. Then Myl fP1e Mylg¥]
iff fAvg.
Proof. Suppose MylfUlsMylg°]. Then Ahe Sy s.th.

B={xeM: Mkh(g(x))=f(x)}eU.

Clearly /4y g, hence fdyg. .
Now suppose f 4y g. Then 3Be U s.th. f459, ie.

) Mk (Vx,y € B){(g(x) = g0)~f() = f) -
Define he S, by

f(x), where x = pte B sth. g(t) =y if @AreByg® =),
h(y) = (where pt ... = the least ¢ sth..),

0, otherwise.

Then T claim
(2) Bcd ={xeM: MFh(g(x) = f(x))}.

For suppose xeB and let xo = puteB: g() = g(x). Then xo,x€ B c{qr:id
g{xo) = g(x). Therefore, by (1), f(x) = f(x(l,Z)). fBTIL h{g (%)) = f(xg), by the defi-
[k, so h{g(x)) = f(x) from which ollows.
mllolriTo(‘)\fJ II’L?;?A}-,——.(-Z(G))U, }s;(xlge BeU. Hence MyF h(g" =/ Z (from U(2) and
Theorem 2.1) from which it follows, since h &Sy, that MylflleMylg™] as re-
quired. @ . .

Now =y is an equivalence relation on §y, as is easily ‘checked, and 1t_ 1sla 50
easy to show that 4y induces an upper-semi lattice ordering on the cgmva en;:e
classes. We denote this upper-semi lattice by Ly and have the' following result,
analogous to Aczel’s theorem in [3] (Lemma 0).

Lemva 2.5. $(My)=~The ideals of Ly.
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Proof. It follows from Lemma 2.4 that the map 0: §(My) — The ideals of L,
given by 60(M") = {fi=y: f¥e M'}, where f] =, is the =y, — equivalence class
containing f(&S,), is the required isomorphism. B

It is clear that Lemma 2.5 reduces our original problem to one of investigating
(definable) partitions of M. Before we do this however, we require 2 lemma which
reduces the complexity of partitions we shall have to consider later and also provides
us with the negative results promised earlier.

3. The main lemma. We first require the following definitions and results.

DeFmNITION 3.1, (i) If M*E T, S, S'S M*, we write §> 8 (or a> 8" if § = {a})
if M*Fs>s VseS, Vs'eS'.

(i) If M'sM*E T and a>M' holds for no a e M*we say M’ is cofinal in M*
or M* is a cofinal extension of M'.

Lemma 3.2. Suppose My, My, M*E T, M, cM*, M,cM* and M,v M, is
cofinal in M*. Then either M, or M, is cofinal in M*.

Proof. If the lemima is false 3a € M* s.th. a>M,; and a>M,. Since M, v M,
+ a we may suppose that. da; e M;, a, e M, and Fe S, sth. M*k (F(ay, a;)
= ana;<a,). Let G(x) = max F(y,z). Then Ge S, and M*F G(a;)>a. But

»,28x
M, M* so G(a,) e M, which contradicts a>M,. B

Lemma 3.3 (Paris, Gaifman). Suppose M*FT and M* = M*[a’] for some
a’' € M*. Suppose further that there is a lattice embedding of Cs (see Fig. (1)) into
$(M*) which takes the least element of Cs onto M and the greatest element of Cs
onto M*. Then M* is a cqfinal extension of M.

Proof. Suppose the lemma is false. Then we may suppose there are a; <a,<a,
€ M*[a']—M s.th. M*[a;] A M*[a;] = M and M*a,]v M*[a;] = M*[a'IVi, j, 1<i
<j<3, and that a,>M (by 3.2).

Now there must be some Fe S, s. th. M*k F(a,, a,) = aj.

Define Ge S, by:

GO)=0,
Glx+1) = 1+G(x)+max{F(y, z): y<z<G(x)}.

Working in M* we see that G is strictly increasing and so we may define iy = px:
G(x)>a; and iy = px: G(¥)za,. Clearly iy e M*[a,] and i, € M*[a;]. However,
by the definition of G we have i; = i, or i, = iy-+1, but in either case ip € M*as).
Hence ipe M*[a]AM*[a;] = M. So G(i))e M which contradicts a>M. 8

DEFNITION 3.4. If My, M, kT we write M, <™M, if MeM,, M, # M,
and VM'ET, MSM'SM,=>M = M, or M' = M,.

We can now prove the main result of this section.

LemMA 3.5. Suppose M*F T, M* = M*[q) for some ae M* and that M* is

not a cofinal extension of M. Suppose further that AM,, My, My M* s.th,
D Mc"M, SM,s"M* and M, # M,,
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(i) Myv My = M* and MyAM, = M,

(iiiy VM'sM,, M'2M, or M' = M, and

(i) VM'2M,, M'sM, or M' = M*.

Then YM'sM*, M' = M* or M'SM, or M' = M,.

Proof. We first show that VM'cM* with M’ # M*, either

n MeM, or MAM,=M and M VM =M*"

So suppose M'sM*, M’ # M* and M'EM,.

Now M'AM,<M,; therefore by (i) M'AM,2M, or M'AM, = M. But
M'AM,2 M =M'2M, and thus by (iv) M's M, or M’ = M* which is contrary
to our supposition above, Hence M'AM, = M.

Similarly M'sM*, M'# M* and M'EM,=M'vM, = M*, and (1) is
thus proved.

Now let

@ M'cM* M #M* and M'EM,.

We now claim that
3) M—-M>M,.

For suppose (3) false. Then Jae M'—M and be M, sth. a<b. (We work
in M* throughout this proof unless otherwise stated).

Now by (1) and (2) M’ AM, = M. Therefore M'[alA M, = M since M "{a]
S M'. But M'[a] # M, by choice of a, so M'[a]EM,. Hence by (1) we have both

4 M'TalaM, = M,
and
©) M'a)v M, = M*.

Now suppose

(%) Ace M,—M sith. c<a (<b).

Then M,2M,[c]2M and M,[c] # M; so by (iii) M,[¢)= M. Using this and (5)
we see that there must be some f€ Sy s.th. f{c, d) = b. Define Fe S, by:

F(0) =0,
F(i+1) = i+ 1+max{f(j, k): j, k<F(@)} .

Then fe 8, (by the induction schema in T) and is strictly increasing. Hence
we can define iy, iy as follows:
iy = pi: F@)zb.
iy = pi: FDza.

6 — Fundamenta Mathematicae XCV
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Clearly iy € M,[b]l=M,, and i; € M'[a4]. But since ¢c<a<b we have, by the
definition of F, that either iy = i; or iy = iy +1. In either case iy e M'[i,]= M'[a].
Therefore iy e M'[a]A M, = M (by (4)). Thus we have:

©) FligyeM and Flg)zb>a>c.

Now from (5) and Lemma 3.2 it follows that either M'[u] or M, is cofinal
in M*. Let us first suppose that M'[a] is. Choose d e M'[a] s.th. d> M. (This is
possible since M* and therefore M'[a] is not a cofinal extension of M by the lemma
hypotheses). Let g € S; be s.th. g(a) = d. Define g*e S, by:

g*(x) = max{g(y): y<F(x)}.
Then by (6): g*(ip)2 g (@) = d>M; and since iy € M, g*(iy) € M — a contradiclion.
Now suppose that M, is cofinal in M*. Choose de M, s.th. d>M. Now
M,lcleM,, therefore by (iii) M,[c]2M, or M,[c] = M. In the former case,
choose g € S; s.th. g{¢) = d and proceed to a contradiction (using (6)) as above.

The latter case is impossible by the choice of ¢ (see (#)).
We have now shown (x) is impossible, which means that

7 u<My—M.

Now choose a, & M;~M and a, e M,—M,. This is possible by (i), from
which it also follows that M; = M [a,].
Hence, by (5), 3he S, s.ith. ii(a, a,) = a,. More precisely: M* k h(a, ay) = a,,
so by (7): i
Vde My—M, M* = Ax<d)(h(x, a;) = a3) .
Therefore,

®) Vde My—M, M,k @x<d)(h(x, a)) = a;) .

Let xo = px: h(x,a,) = as (working in M*). Then Xo € M*[ay, a,]=M,.
311t from (8) we see that in fact x, e M = So. Define g by: g(x) = h(xy, x). Then
since xp€ S, g€S; and further, M*F g(a,) = a,, — so0 a, e M*a s M, —
contradicting the choice of a,.

Thus the supposition that (3) is false is absurd, so M'—M>M,. We must
now show that under the assumption (2), M’ = Ms,.

We. certainly cannot have M’ A M, = M and M'v My = M*, for this would
contradict Pemma 3.3, since M* = M*[a'], M* is not a cofinal extension of M and
the sublattice ({M, M', M|, M,, M*}, =) of $(M*) would be isomorphic to (.
So say M'AMy =M, # M and M’ # M. Xt M, = M, then M'2M,. Let
ae Ml—M3' Then 3fe S,, a, € M, and b e M, s.th. M* Eflag,b) = u (usin‘g (ii)).
Hence from (3) and (i) it follows that:

VYde M'—M, M*E @Ax<d)f(¥, b)y=ua.
Therefore:

Vde M'—M, M'F @x<d)f(x,b) = a.
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Arguing as before, this implies that « € M '[b]< M5, contradicting the choice of a.

IF M, My, then MM, S M;, M# M, # M;,and we get a contradiction
using (3) with M’ = Mjy.

Using a similar method we can show that both M'vM; = M, # M* and
M' % M is impossible.

Hence we must have M’ = M, whenever M’ satisfies (2) and the proof of
Lemma 3.5 is complele. =@

COROLLARY 3.6, If M is standard and K, K' are finite lattices each having at
least two elements, there is no M*k T s.th. $(M*) =R, where R is the lattice re-
presented by the diagram:

VAN
/ N

Vi -,

Fig. 2

In particular, there is no M*F T s.th. He$(M*) (see Fig. 1).

Proof. If M*E T and $(M*)=R, then clearly M* = M*[a'] for some a’'e M*
(since $(M™) is finite) and M* is not a cofinal extension of M (since M is standard).
A contradiction now follows casily from Lemma 3.5. @

4. The pentagon lattice. We now show 3M* k Ts.th. §(M*)~Ps, where T is
once again an arbitrary complete, consistent extension of P with Skolem functions.

By Lemma 2.5 it is sufficient to find an ultrafilter U over B s.th. Ps~Ly. This,
however, we do not do directly as Lemma 3.5 allows us to construct U with ap-
parently weaker properties (and also gives us some information about how we
should go about it). To use Lemma 3.5 we must first guarantee that our resulting
My is not a cofinal extension of M, for which we need the following result.

LemmA 4.1, Let U be any ultrafilter over B. Then My is « cofinal extension of M
iff U contains an M-finite set.

Proof. Suppose B is M-finile and Be U. Let fY(feS,)) be any clement
of My, Let ¢ = max{f(x): x € B} (working in M). Now My EfU<a’ by Theo-
rem 2.1, so My is a cofinal extension of M.

Conversely, idY e My and it MyFid?<a” for some ae M we have

BeU sih. B={xeM: MFid®<a(} = {xeM: MFx<a},

which is M -finite. B

We now begin the construction of the required U. For the purposes of clarity
however, we shall for the rest of this paper make two omissions (which have in fact
been made to some extent already). Firstly, it will be necessary to check that all
arithmetic results we use can be proved in P (so that they are true in M). This will

6 - s
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usually be clear (though tedious to perform) and is left to the reader. Secondly,
we shall be constructing many sets and functions and it will be vital to ensure that
they are in B and |J S,, respectively. In cases where this is not immediately clear

new
we refer the reader to [2] where general theorems are proved justifying (in P) the
definitions we shall use. We also work in M, and assume all sets mentioned are
subsets of M, unless stated otherwise, from now on.
Now let Ax,y: {x,y>e 8, be a fixed pairing function and =, n, be the
corresponding projection functions, i.e.

mx, ) =x and  mKx, ) =y.
For Be B and {x, y>, {x', "> € B define:

{x, <, ¥ > <y Ax = &' (mod?2?),
and

X, 9D ~pl, ¥ & (%, yD<pdx’, Y)Y AR, ¥ < plx, 95

Then ~p is a definable equivalence relation on B. Let

<x7 y>B = {<-x/: ¥ <x,= y’)""l] {x, y>l ’
and

Iy = {0, )% (x, 9> e B} .

<jp induces a partial ordering on £y (in fact an M-binary-tree ordering) which
we shall also denote by <. Also if B, Ce B and B=C we have <p = <cPB (in
both senses of <z and <,).

We shall usually regard all sets in B as sets of ordered pairs. Thus we shall
speak of the horizontal and vertical lines of BeB, meaning sets of the form
73 *[s]n B and 77 '[s] A B, for some s € M, respectively.

For 4 & B, let lev4 = the unique y s.th. 7,[d] = {p}, if such a unique y exists,
and let lev4 be undefined otherwise. Note that if @ s A e s p (for some BeB)
then levd is defined.

On setting K = {(x,»)>: y<x} (¢B) we can make the following crucial.

DEeFINITION 4.2. A set Be B is called correct iff

@iy Bk

(ii) Every set in S is infinite.

(iif) £ has a <, — least element.

(iv) Every element of £, has precisely two immediate < p— successors in S,

(V) It I, h are horizontal lines of B s.th. lev/<levh, then Riak= AN

(vi) f C, De Sy and levC = lev D, and if C’, D’ are immediate <p— suc-
cessors of C, D respectively, then levC’ = lev.D'.

©
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We first note that il B e B, there is a sentence of L (depending on B) which is
true in M iff B is correct, and also that K is a correct sct.
Now let ¢ be any function in §; which is constant on each set in Sy but takes

different values on different numbers of Sy, e.g.
A

o Jm(x, 2,95 for () eK,
(X, 30) = 0 otherwise ,

where rm(s, ) = the remainder when ¢ is divided by 7, will suffice.

Lovva 4.3, Let fe S, and B any correct set. Then there is a correct set
C< B, s.th. either

() / is one-one on every horizontal line of C, or

(i) f=¢o, or

(i) f =cm,, or

@iv) f =¢ 0 (i.e. [ is constant on C).

Before we prove Lemma 4.3 let us show how it implies our main theorem, as
immediate justification for these rather obscure definitions.

TuEOREM 4.4, There is an ultrafilter U over B s.th. $(My) =~ Ps.

Proof. For 4eB, define fye 8, by;

o 0 if xed,
T =0 4 xeq.

Let B be any correct set and apply Lemma 4.3 with f = f, to obtain a correct
C< B satisfying ({) or (ii) or (iii) or (iv) of that lemma. Now f, takes only two values,
so by the correctness of C it clearly follows that C satisfies (iv). Thus we have shown
that if B is any correct set and 4 e B, then there is a correct C= B s.th. C<4 or
CeM—A.

Now enumerate S, X B as [ollows:

<fla Bl>7 <f2' Bz>~ ey (./;M Bn>’ b 71E(LJ, Il?l .

We can now construct a sequence Ag, Ay, .y Ay, ..o, 7€ @, of sels in B s.th,

(i) 4y = K,

(ily (View)d2A,,

(iif) (Vie w)4, is correct,

(v) (View, izl) A\<B; or 4, &M~ B,

() (View, iz1) either (a) f; is one-one on every horizontal line of 4,, or (b)
fimaq o0, or (€) fy =47, or (DN =,,0.

It is clear how the 4, are constructed using Lemma 4.3 and the above remarks.
(if) and (iif) imply that {4,: i € ®} can be exiended to an ultrafilter U over B (whi.ch
is vinque in view of (iv)) containing no M-finite sets. (Every correct set is M-in-
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finite by Definition 4.2 (i)). We claim §(My)~P;. In fact we show the elementary
substructures of My are arranged as follows: ‘

My = Mu[idU]\

M, = My[o")
My = Myni]
M, = Mv[ng] /
~— M = M,[0°

Fig. 3

Firstly, we clearly have O dx 7, Ay o dg id; hence, since K = 4y e U, M< M,
SM,=My, by Lemma 2.4. Similarly M M;SMy.

Now, by part (iv) of the construction, every set in U contains a correct set,
so it follows from Definition 4.2 that

6] MM, # M, # My,
and
@ M# My # My.

In order to show the hypotheses of Lemma 3.5 are satisfied let us first suppose
that M'QMU, M’2M, and M'2M;. Then n{ € M and nj & M'. But the pairing
function 2x, y: {x,y> € S,, hence {n%, 73> & M, i.e. id’e M’ = My. Thus

3) MV My = M;,.
We now show :
@ ! 4 MyAM; =M.

Suppose e Sy and ¥ e My AM;. Then T dy o and ¢ 4y 7y by Lemma 2.4.
Hence - h

) dBeU s.th. tdpc  and  tdgm,

and we may suppose B correct. Let y, be the level of the <p— least element, D
of Sy, (see Definition 4.2 (iii)). We show that X, 90, (X, ') € B=1({x y>)’
= 7({x’, ¥"), so that 7 =, O and thus MyAMy = M. 7

So suppose <x,p, <{x', »'> e B. Then

() 7, (K%, D) = (K%, yo)) T (3, p) = my (K, Yoo}

Also {x, y°,>’ {x', »o» € B by Definition 4.2 (v). Therefore, by the definition of D,
<%, Y07, <X's Yoy & D, 50 (X, yo)~ 5(x', 3o, Which implies o (¢x, yo)> = o ((, o)
bydthe ;ieimltlon of o. Therefore, by (x), 7({x, yo)) = T({x, ¥o)). But by (%)
and (x4), T(<x, D) = 7(<x, ¥od) and T(x, ¥'D) = (¢, ¥o)). Hence v

= t({x, ¥")), as required. ' ) f(("w)’))

and
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Now by the definition of U and Lemma 2.4:
%) McMy, M'# My=M" =M or M'=M.
In particular, ,
6) CMe"M,.

Now suppose M'22M;, M'# M,. Choose fYe M'—M,. We may suppose
7y Ay f; 58y 7 Ay f = fy with Be U, Then from the definition of U; either (i) f; is
one-one on every horizontal line of 4;, or (ii) f; =4 ¢. But if (i) holds we have,
using 7, 4 f;, that f; is one-one on B~ 4, € U. Hence f = f; =y id, and M’ = M.
If (i) holds for no f¥ e M'~ My, then f =y o for.all such f and hence M’ = M.
Thus

%) MM, M A M, = M = M, or M' = M,.
In particular
® M,="My=" M, .

Now U contains no finite sets so, by Lemma 4.1, My cannot be a cofinal ex-
tension of M. This, Theorem 2.3 and (1)-(8) now imply the hypotheses of Lemma 3.5
with My replacing M. Hence, VM'< My, either M' = My, M'SM, ot M' = M,
which together with (3), (4), (6) and (8) gives §(My)=Ps as required. M

Before we return to the proof of Lemma 4.3 I shiould like to mention why it
was necessary to invoke Lemma 3.5 in the above theorem. It is simply this., A direct
construction of the required U would require proving a stronger version of
Lemma 4.3, namely with (i) replaced by the condition:

either (ia) f=1id, or (ib) f=¢ 7,,

and this I could not do. However, Lemma 3.5 tells us that in constructing the U of
Theorem 4.4 we only have to guarantee (i) (or (ii) or (iii) or (iv)) to ensure that (ia)
or (ib) (or (i) or (iii) or (iv)) must eventually occur.

Now the proof of Lemma 4.3, »

Stage 1. We first construct a correct set C’S B s.th. V4 e # ecither

(*)  (a) fis constant on A, or (b) f is one-one on A,

‘We define, by induction, sets /o, Iy, ..., I;, .. (i € M) which will be the horizontal
lines of €' in ascending order of level. Thus we will put C' = U {/;; ie M}. We

" simultaneously define sets' 4%, ..., 45—, (€ M), which are elements of #5 and

are s,th. [; n A for j<2' will be all the elements of £, having the same level as /;.
We require the following induction conditions: .
A,. I; < some horizontal line of B, and lev/;_,<levl;. .o ‘
B;. Ay fpVj<2, and i U {4): j<2}, and [, n A} is infinite Vj<2’, and
J#Ek=>dn4=0. L ' EEEEU L
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C;. Either i = 0 or Vj<2'~! there are precisely two numbers j,, 7, <2 s.th.
7‘1[(*4.: v Ajy) n li]gﬂx[Ai'_l nlioqd

D;. (Vj<2) fis either constant on Lin Aj or one-one on [; N A}

E;. Vj<2, ADje sy sth. n,04;n 1] nn[D] is infinite VD' e, s.th.
Di<pD'. (This condition is purely to make the inductive step possible.)

First let B*(y, s) be a formula s.th. as y runs over M, B; = {se M: Mk B%y,9)}
runs over all sets in ./, without repetitions.

DEFINITION OF /5. Let I = <jp-least element of &5, and £, = lev/. We define
the function g by:

g{0) = <xp, 1) where xp = px: (x, 1> el.
<x'a t0>)

where x' = ux: ((x,ro)el/\xeirl[B;“]/\

AYz<y) (x # 7y (g D) AFE, 1)) # F(9(2)))),

gly+1) = if there is such an x.

g, otherwise.

If the range of g is M-infinite, let Iy = rangeg, and 45 = I, whence Dy =1
will satisfy Ey. Conditions Ag-D, are easily checked — f being one-one on Iy n
N 49 =1,. If the range of g is M-finite, there must be some De Sy s.th.

T, to): xemy [D1}]

is M-finite. It is easy to define, in this case, a set D € # s.th. D<yDand aset D'<D
s.th. f is constant on D* = {(x, t,): xen[D"]}, and s.th. VGe fy, D<,G
=7,[D*] n n,[G] is infinite. We now put I, = D*, Aj = I. Condition D, is satisfied
since f is constant on D* = [, = [ n A3, and E, is satisfied with D = D. The
other conditions are trivial to check.

In_duction step. Now suppose for some i, /y, ..., I, Aj- have been defined
(Vj<2)) satisfying A;-E;. Let D, (Vj<2%) be the sets given by E;. We can suppose
all the D} have the same level and E; still holds. Consider the elements of .# » which
are im.med‘iate <p— successors of the Dj. Each Dj has two such <, — successors,
say Gp; G1 and all G have the same level (i is fixed) say f£,. (This follows fron; the
correctness of B.) For k<1, j<2' let Gi* = {Kx, 1) eGl: xe ﬂ:l[A§ N1}

Now each Gj* generates a correct subset, 7 of B in a natural way, namely:
T = {Kx,y>eB: yztyaxe nl[G,{‘]}. Further, GJ' is the <z (= <T,J‘) — least

element of .. ;- Hence we can perform the same construction on the T as we did

for B in the first part of the proof, to obtain subsets *G} of G{’ on which [ is either
one-one or constant and s.th. A;,,-E,,, hold when we put 45t .., Aizi'.ﬁ_l equal
to GJ, GY, Gy, G, ..., G&' ™%, g3'! respectively, and /., = ) {*Gi: k<1, j<21,
where in C;,,, 477' = G} and AT = G (ie. jo = 2j, Ji = 2j+1).

The induction is now complete and we leave the reader to check that our
construction ensures that C’ = {J {I;: i€ M} is correct and satisfies (*).
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Stage 2. We now construct a correct set C”'<C”’ s.th. either
(+x)  (a) fis constant on every set in S, or (b) f i% one-one on every set in S .

First note that one of the following must occur: either

() (VAesH)@xe M) (x>levA and (Vyzx)(F4' e Fo)(levd = y) =
34, 4")(A4" # A" and levd’ =levd” =y and A<cA', A" and f is constant
on both 4’ and 4"))), or

B) @4 es) (There are M-infinitely many horizontal lines, /, of C’ s.th.
lev/zlevA and fis one-one on all but possibly one of the elements of ¢, which
are subsets of / and greater (in the <. ordering) than A).

Tt is easy to check that in case (o) one can construct C”<=C’ to satisfy (a)
of (++), or to satisfy (b) in case (B).

Stage 3.

(#xx) Tf C” satisfies (#x) (a) I claim we can find a correct set C<C" s.th. (ii)
or (iii) or (iv) of Lemma 4.3 holds. )

Upon observing that {f¢., <) is an M-(full binary tree of height w) (since C*
is correct) it is clear that (xx«) is equivalent to the following.

Lemma 4.5. Suppose S is an M-( full binary tree of height w) and the nodes
of S are coloured (i.e. partitioned) in any way (possibly using infinitely many colours).
Then there is a subtree of S’ of S s.th.

(o} S is an M-( full binary tree of height w), and

(B) any two nodes of J' having the same S'-level, also have the same 5 -level
and, either

(v) every mode of S has a different colour, or

(8) two nodes of 5’ have the same colour iff they have the same level, or

(e) every node of J' has the same colour.

Proof. Denoting the order on # by <, we first suppose the following holds:
(+) Vze M, Vxe s, 3 level, | of # above x, s.th. V¥ levels, I’, above I, I' A
N {yeF: y>x}is at least z-coloured (i.e. there are z colours appearing in this set).

We define #' to satisfy (o), (B) and (y) by constructing its levels Iy, /;, ... by
induction as follows.

Iy = {least element of #}.
Suppose Iy, ..., I; have been constructed s.th.

(1); every element of J {/;: j<i} has a different colour,

2); (<D some level of .,

(3); (U {l:j<i}, <) is an M-(full binary tree of height i), where we use < to
denote its restriction to subsets of .. *

To construct /;,; take z = 2'*?in (+) and find a level [ of & s.th. I n {y e S
x<y} is at least 2"¥2 — coloured Vx € /;. This is possible from (+) since J; is finite
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and # has infinitely many levels. Suppose /; = {Xq, ..., X211}, and let A; = {pe s [31 J.B. Paris, On models of arithmetic, Conference in Mathematical Logic — London 1970,
yex3nl (Vj<2‘) Then since | {I;: ]<1} has 2*1—1 elements, we may pick Lecture Notes series no. 255, 1972, pp. 251-280.
two elements, y and !, from each Aj s.th. every element of () {/;: j<ilu {y [4] — Models of arithmetic and the 1-3-1 lattice, Fund. Math. 95 (1977), pp. 195-199,

J J
k<2, j<2%} has a different colour. Putting /;,; = {5 k<2, j<2} completes the FACULTY OF MATHEMATICS, THE OPEN UNIVERSITY

induction, and it is easy to check that #' = {I;: ie M} satisfies (o), (B) and (y). Milton Keynes, England
If (+) is false, then using the method of Stage 2 we can construct a subtree S/

of £ sith. ' satisfies (o) and (B) and 's.th. nodes of the same level in .#” have the

same colour. It is now a trivility to construct a subtree .#' of S satislying («) and (f)

and either (8) or (g).
This completes the proof of Lemma 4.5 and hence of (xs). B

Accepté par la Rédaction le 21, 4, 1975

Stage 4. We complete the proof of Lemma 4.3 by showing that

(sxxx)  if C" satisfies (¥#) (b), then there is a correct set C= C” s.th. Lemma 4.3 (i)
holds.

Let /o, 1y s Iy o i€ M, be the horizontal lines of C” in increasing order
of level. We define /g, I{, ..., I}, ..., i€ M sth. Vi:

A, el and m[lilem[li-,] (or i = 0).

B,. De S, Dl =D n 1} is infinite. .

C;. f is one-ome on I;.

D;,. De S, Deli=n,[D nl] nn[D]isinfinite VD' eI sith. Den D',

Let Ip = 1,.

Suppose /g, ..., ;i have been constructed for some i3 0, satisfying A-D; Vj<i.

Let levl; = t,.

Define G(y)<-levC,'* 21, (where the * opetator is defined in Stage 1).

Define g as follows:

g = ux: xem iy ] om0,
gy+1) = px: (xen [l n 7 [C.*] where z= (y+1)st clement, ¢ satisfying
G A (V<) (f(x, 1)) # [ (D), 1)) -
By the induction hypotheses A;-D;, g(») is always defined and rangeg <[/, (]

since G(2) Axemn[C,{] = xem /], by the correctness of C". We now put
Iyq = {{x, to): xerangeg} whence A;,-D;,, are easily verified.

Put C= U {/j: ieM)}. That C is correct and that f is onc-one on cvery
horizontal line of C (i.e. on [[V7) follows from the construction, Thus (wss),

Lemma 4.3, and hence Theorem 4.4 are finally established.
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