Models of arithmetic and the 1-3-1 lattice

by

J. B. Paris * (Manchester)

Abstract. In this paper we show that if T is any complete theory in the language of number theory extending Peano’s Axioms then there is a model M of T such that the 1-3-1 lattice can be embedded in the lattice of elementary substructures of M.

Introduction. Let T be a complete theory in the language of number theory extending Peano’s Axioms. For M a model of T, let \(\mathcal{S}(M) \) be the lattice of elementary substructures of M. In this paper we show that there is a model M of T such that the 1-3-1 lattice can be embedded in \(\mathcal{S}(M) \).

This result continues investigations started in [1]. Related work also appears in [2] and we adopt the notation of that paper. Thus for M a model of T, \(a_1, \ldots, a_n \in M \) and \(M[a_1, \ldots, a_n] \) is the smallest elementary substructure of M containing \(a_1, \ldots, a_n \). Since M is a model of Peano’s Axioms, \(M[a_1, \ldots, a_n] \) consists exactly of those elements of M definable in M from \(a_1, \ldots, a_n \).

Theorem. There is a model M of T such that the 1-3-1 lattice can be embedded in \(\mathcal{S}(M) \).

Proof. Fix M to be an \(\alpha^2 \)-saturated model of T and identify \(N \), the natural numbers, with an initial segment of M. We shall show that M satisfies the properties of the theorem.

Before proceeding further it will be useful to have the following crude estimate.

Lemma 1. Let \(r, q \in M \), \(s \in \mathbb{N} \) and \(s \geq 2 \). Let \(x_1, y_1, 1 \leq i \leq q \) be sequences of elements of M definable in M and let

\[
\sum_{i=1}^{s} x_i = \sum_{i=1}^{s} y_i = r \quad \text{(sums taken in M)}.
\]

Then

\[
\sum_{i=1}^{s} x_i y_i = \text{(the sum of the s largest } x_i y_i) \leq \frac{r^2}{4(s-1)}.
\]

* This paper was written when the author was working at Manchester University and the University of California, Berkeley.

* Fundamentea Mathematicae XCV
Proof. We work in M. We shall simplify the proof by working with rationals in the sense of M, hereafter called rationals. It is easy to check that the rational arithmetic required in the proof can be carried out in M.

Given x_iy_i as above we may assume,

$$x_1y_1 \geq x_2y_2 \geq \ldots \geq x_{r+1}y_{r+1},$$

and $x_{r+1}y_{r+1} > 0$, since otherwise the result is trivial. By removing rational fractions of the x_i for $i \leq r$ we can obtain positive rational z_i, t_i for $i \leq r$ such that

$$\sum_{i=1}^r z_i + \sum_{i=1}^r x_i \leq r,$$

$$\sum_{i=1}^r t_i + \sum_{i=1}^r y_i \leq r$$

and $z_1t_1 = z_2t_2 = \ldots = z_rt_r = x_{r+1}y_{r+1}.

By further redistributing rational fractions of x_{i+1} to x_i and y_{i+1} to y_i for $s+1 \leq i \leq q$ we obtain non-negative rationals z_s, t_s for $s+1 \leq i \leq m$, where $m \leq q$, such that

$$\sum_{i=s}^m z_i \leq r,$$

$$\sum_{i=s}^m t_i \leq r$$

and

$$x_{s+1}y_{s+1} = z_{s+1}t_{s+1} = z_{s+2}t_{s+2} = \ldots = z_m t_m \geq x_{s+1}y_{s+1}$$

and

$$\sum_{i=s+1}^m z_i y_i.$$

Put

$$a = \sum_{i=s}^m z_i, \quad b = \sum_{i=s}^m t_i$$

By Cauchy's inequality for $1 \leq i \leq m-1$,

$$ab \geq z_i t_i \geq z_m t_m,$$

so

$$\sum_{i=s+1}^m z_i y_i \leq m - z_m t_m \cdot ab.$$
Then

$$|K| = \sum_{\alpha \in \mathcal{A}} |\langle a_1, a_2, a_3 \rangle \in \mathcal{A} | F_{\alpha}(a_1) = e_1 \& F_{\alpha}(a_2) = e_2| +$$

$$\sum_{e \in \mathcal{O}} |\langle a_1, a_2, a_3 \rangle \in \mathcal{A} | F_{\alpha}(a_3) = F_{\alpha}(a_1) = e|$$

$$= \sum_{\alpha \in \mathcal{A}} |L_{\alpha}||J_{\alpha}| + \sum_{e \in \mathcal{O}} |L_{\alpha}||J_{\alpha}|$$

$$= \sum_{\alpha \in \mathcal{A}} |L_{\alpha}||J_{\alpha}| - \sum_{e \in \mathcal{O}} |L_{\alpha}||J_{\alpha}| - \sum_{\alpha \in \mathcal{A}} |L_{\alpha}||J_{\alpha}|$$

$$\geq p^3 - p^2/4m$$

by Lemma 1.

Set

$$A_{n+1} = A_n \cap K - B = A - (A - A_n) \cup (A - K) \cup B.$$

Then

$$|A_{n+1}| \geq p^3 - (p^2 - p^2/m) - (p^2 - p^2 + p^2/4m) = p^3 - p^2/4m .$$

Furthermore for $\langle a_1, a_2, a_3 \rangle \in A_{n+1},$

a) Since $A_{n+1} \subseteq K$ either $F_{\alpha}(a_1) \neq F_{\alpha}(a_2)$ or $F_{\alpha}(a_1) = F_{\alpha}(a_2) = e \in M[p]$ some $1 \leq p \leq m + 1$.

b) Since $A_{n+1} \cap B = \emptyset$, $F_{\alpha}(p) \neq a_n.$

We are now ready to construct the required sublattice of $M.$

Set $A_0 = A$ and having found A_0 such that $|A_0| \geq p^2/m$, some $m \in \mathcal{N}$, find, by Lemma 2, $A_1 \subseteq A_0$ such that $|A_{1+1}| \geq p^3/p$ some $q \in \mathcal{N}$. Since all the A_k are non-empty and p-Def, and since M is a_0-saturated, we can find

$$\langle a_1, a_2, a_3 \rangle \in \mathcal{A}_{n+1}.$$

We now claim that we have the following sublattice of M:

$$M[a_1, a_2, a_3, p]$$

$$M[a_1, p] \quad M[a_2, p] \quad M[a_3, p]$$

$$M[p]$$

To see this, let $1 \leq i, j, k \leq 3$ and i, j, k distinct. Then,

$$e \in M[a_1, p] \land M[a_j, p] \land \exists z, t, F_{\alpha}(a_i) = F_{\alpha}(a_j) = e \land e \in M[p] \text{ by } a_k,$$

so

$$M[a_1, p] \land M[a_j, p] = M[p].$$

By $\beta)$ $F_{\alpha}(p) \neq a_k$ for all $u \in N$ so $M[p] \neq M[p, a_k].$ Finally $a_i = \text{ the least } z \text{ such that } 0 \leq z \leq p$ and $z + a_j + a_k = 0 \text{ mod } p$, so

$$a_i \in M[a_j, p] \lor M[a_k, p].$$

Thus

$$M[a_1, a_j, a_k, p] = M[a_j, p] \lor M[a_k, p].$$

Concluding remarks. It may be hoped that this result could be improved to:

There is a model M of T such that $\mathcal{S}(M)$ is isomorphic to the 1-3-1 lattice.

However, if T is the theory of N then this is impossible, by an unpublished result of Gaifman and the author. (This result is implicit in work of Wilkie, [2].)

We do not know if the improvement is possible in the case when T is not the theory of N.

It is known that the pentagon lattice can be embedded in the model M of the main theorem (see [2]). Thus M is both non-distributive and non-modular.

We do not know if there is a model M' of T such that $\mathcal{S}(M')$ is modular but non-distributive, that is a model M' such that the 1-3-1 lattice can be embedded in $\mathcal{S}(M')$ but the pentagon lattice cannot.

We finally remark that a very similar proof to the above will show the embeddability of the 1-1-1 lattice in M for all $n \in N$, $n \geq 3$.

References

Accepted pour l’Rédaécion le 21. 4. 1975

233–238.