II1 singletons and O^*

by

Leo Harrington and Alexander S. Kechris (Pasadena, Cal.)

Abstract. A conjecture of Solovay states: Assuming that for every real a, a^* exists, the constructibility degrees of \II^1 singletons are wellordered and the successor steps in this wellordering are given by the sharps. In this paper we prove among other things that (assuming $\exists a (a^* \text{ exists})$) for every \II^1 singleton a either O^* is constructible from a or a^* is constructible from O^*. From a relativized version of this result it follows that the constructibility degrees of $O^*, O^{**}, O^{***}, ...$ are the first ω constructibility degrees of sharps of \II^1 singletons.

§ 1. Preliminaries. Let $\omega = \{0, 1, 2, ...\}$ be the set of natural numbers and $^{\omega}\omega$ the set of all functions from ω to ω or for simplicity, reals. We use letters $i, j, k, ...$ to denote natural numbers and $a, b, c, ...$ to denote reals.

We shall use without explicit reference standard facts about the theory of indiscernibles for the models $L[a]$, as developed in [4] and [5]. At a key point in our proof in § 2 we shall nevertheless use a recent result of Paris [3] which we now proceed to review. Let \mathfrak{A} denote the class of Silver Indiscernibles for $L[a]$ and $\{a_\xi\}_{\xi \in \text{ORD}}$ its increasing enumeration. We omit the superscripts if $a \in L$. Let $v^*_\xi = \text{order type of } \mathfrak{A} \cap (a_\xi, a_\xi+1)$, where for any ordinals $x < \lambda$, $(x, \lambda) = \{\xi: x < \xi < \lambda\}$. We then have

\textbf{Theorem} (Paris [3]). Assume for all a, a^* exists. If for some $\xi, \eta v^*_\xi \neq v^*_\eta$, then $O^* \in L[a]$.

§ 2. The Main Lemma. Our results will follow easily from a main lemma which we shall establish in this section and which seems to be interesting in its own right. We need first some terminology and notation.

A tree T on a set X is a set of finite sequences from X closed under subsequences. A path through T is a sequence $f \in {}^nX$ such that for every n, $(f(0), f(1), ..., f(n)) \in T$. We denote the set of all paths through T by $[T]$. If X is of the form $Y \times Z$, we represent a path $f \in {}^n(Y \times Z)$ through T by the unique pair $(g, h) \in {}^nY \times {}^nZ$ such that for each n, $f(n) = (g(n), h(n))$. We then let

\[p[T] = \{g: \exists h (g, h) \in [T]\} = \text{first projection of } [T]. \]
The Main Lemma. Assume $\forall s(α^s \exists x)$. Let $φ(s)$ be a formula of set theory. Then for some tree T on $ω \times λ$ (where $λ$ is some ordinal), $T ∈ \mathbb{L}[O^s]$, we have

$$p[T] = \{x^α : L[x] ⊨ φ(α) & O^s \not\subseteq L[x]\}.$$

Proof. Let $ZF[\alpha]$ be the theory in the language of set theory, with a constant α added, which contains the axioms of ZF and also the two axioms: $\forall α \in ω$ and $V = L[\alpha]$. Let $τ_0, τ_1, ...$ be a recursive enumeration of all the definable terms in $ZF[\alpha]$ and assume $τ_1$ has the n_1 free variables $v_1, v_2, ..., v_{n_1}$. If $φ$ is a formula in the language of $ZF[\alpha]$, we denote by $⌜φ⌝$ its Gödel number. For each $α, α^s ∈ 2^ω$ and $α^s(⌜φ⌝) = 0 = L[\alpha][α] ⊨ φ(v_1, ..., v_{n_1})$, if $ψ$ has the free variables $v_1, ..., v_{n_1}$.

Let $φ(α^s) = k_0$ and assume n_0 is such that

$$O^s \not\subseteq L[x] ⇔ α^s(n_0) = 0.$$

Finally let J be a recursive tree on $ω$ such that $β ∈ J[α] ⇔ β$ satisfies all the syntactical properties for being a remarkable (with respect to some real) character; see for example [8]. If $β ∈ J[α]$, then we denote by $Γ(β, x)$ the model generated by x_0 indiscernibles on the basis of $β$. Thus

$$∃x(β = α^s) ⇔ β ∈ J[α] ⊆ Γ(β, x) \text{ is well-founded}.$$

Define now the following tree T in $L[O^s]$, where x_0 is the first uncountable ordinal in the world and $[n_0]^α = \{τ_1 < ... < τ_{n_0} < τ\}$.

$$[β(0), f_0], ..., [β(ν), f_0] ∈ T ⇔$$

(i) $[β(0), ... , β(ν)] ∈ J & (ν ≤ n_0 ⇒ β(ν) = 0) & (ν < n_0 ⇒ β(ν) = n_0)$,

(ii) $∀v ∈ [f_0], [x_0]^α \models v ∈ O^s \& \forall v \models [x_0]^α$,

(iii) $∀v ∈ [f_0], [x_0]^α \models v ∈ O^s \& \forall v \models [x_0]^α$.

Then one can check (see for example Paris [3]) that for all large enough countable $τ_1$ we have

$$Γ(β, x) \models [f(τ_1), ..., f(τ_{n_0})] = \tau_0(τ_1, ..., τ_{n_0}) ≡ [f(τ_1), ..., f(τ_{n_0})].$$

So if we put

$$f(τ_1) = f(τ_1), ..., f(τ_{n_0}) = (τ_1), ..., (τ_n),$$

clearly $f ∈ L[O^s]^α$ and $[β(0), f_0], [β(1), f_1], ... \in T$; so $β ∈ p[T].$

A basic consequence of our lemma is of course the following (assuming $\forall α(α^s \exists x)$); if $φ$ is a formula of set theory and $(∃x)(L[x] ⊨ φ(α) & O^s \not\subseteq L[x])$,

then $∃x(L[x] ⊨ φ(α) & α^s \in L[O^s])$. For example, if there is a nongeneric real $α$ with $O^s \not\subseteq L[x]$, then there is one such in $L[O^s]$. Solovay has conjectured that such real exists.

2. O^s and I_1^s singletons. We now apply our main lemma to get some information about the constructibility degrees of I_1^s singletons, which partially confirms Solovay’s conjecture. Put for convenience

$$α ≜ β = α \in L[β],$$

$$α = β = α \leq β = β =_α α.$$
The next theorem follows from our main lemma, Mansfield’s theorem on perfect sets [2], and a result of Friedman [1]. Recall that a set of reals is called thin if it contains no perfect subset.

Theorem. Assume $\text{Va}(a^*)$ exists. Let $A \subseteq \omega$ be Π^1_2 and put $A^* = \{a^* : a \in A \& O^* \neq L[a]\}$. Then

(i) A^* is thin $\iff A^*$ is countable $\iff A^* \subseteq L[O^*]$,

(ii) $\emptyset \notin A^*$ is countable $\iff A^*$ contains a Π^1_2 singleton.

Proof. (i) By Mansfield’s Theorem [2] if M is a standard model of set theory and T (a tree on $\omega \times \omega$) is in M and $p[T]$ is thin then $p[T] \subseteq M$. Since $A^* = p[T]$ with $T \subseteq L[O^*]$ (by our main lemma) if A^* is thin then $A^* \subseteq E[L[O^*]]$, thus A^* is countable.

(ii) Find an integer n_0 such that

$$\gamma \in A^* \iff f(\gamma) \in A \& \gamma = (f(\gamma))^2 \& \gamma(n_0) = 0,$$

where $f(\gamma)$ is a total recursive function such that if $\gamma = a^*$ then $f(\gamma) = a$ (clearly n_0 is the Gödel number of a sentence c such that $O^* \neq L[a] \equiv L[a] \vdash c$). If $\emptyset \notin A^*$ is countable, then by (i) $A^* \subseteq E[L[O^*]]$ and clearly A^* is also defined in $L[O^*]$ by the Π^1_2 formula (\ast) above. By a result of Friedman [1] every subset of $L[O^*]$ which is Π^1_2 in $L[O^*]$ contains a real γ_0 such that γ_0 is in $L[O^*]$; a Π^1_2 singleton in O^*, i.e., there is a Π^1_2 predicate $P(\gamma, \delta)$ such that $L[O^*] \vdash \delta = \gamma$ the unique γ such that $P(\gamma, O^*)$. Now there is a total recursive function g such that $g(a^*) = O^*$ for all a^*; thus $L[O^*] \vdash g_0 = \gamma_0$ is the unique γ such that $\gamma \in A^* \& P(\gamma, g(\gamma))$. But then $g_0 = \gamma$ is the unique γ such that $\gamma \in A^* \& P(\gamma, g(\gamma))$, since if for some γ' we also have $\gamma' \in A^* \& P(\gamma', g(\gamma'))$, then $\gamma' \in L[O^*]$, so by absoluteness $L[O^*] \vdash \gamma' = \gamma_0$. So γ_0 is a Π^1_2 singleton and we are done.

Part (ii) of the above theorem seems to be relevant to the open problem: Does every countable Π^1_2 set contain a Π^1_2 singleton?

§ 4. Some final remarks.

It follows easily from Paris’ theorem that if $\lambda^* = \delta_{\text{H}}$, then

$$\varphi \Rightarrow \varphi \iff \varphi \Rightarrow \varphi \iff \varphi \Rightarrow \varphi ,$$

i.e., the assignment $\varphi \mapsto \lambda^*$ satisfies the “Spector Criterion” for constructibility degrees, where sharps play the role of jumps. One can nevertheless use a much smaller ordinal assignment, namely

$$\lambda^* = \text{next cardinal in } L[\varphi] \text{ beyond (the true) } \omega_1 .$$

That this works is immediate from the following (unpublished) result of Kunen:

If φ is weakly compact and $\varphi^+ > (\varphi^+)^\varphi$, then O^* exists. We do not now if λ^* can be still lowered so that it satisfies the Spector criterion, for example if we can take $\lambda^* = \text{next } \varphi\text{-admissible beyond } \omega_1$. It seems in any case to us that the use of a suitable assignment $\varphi \mapsto \lambda^*$ satisfying (\ast) may be instrumental in a positive solution of Solovay’s conjecture.

References

MASS, INSTITUTE OF TECHNOLOGY AND STATE UNIVERSITY OF NEW YORK AT BUFFALO
MASS, INSTITUTE OF TECHNOLOGY AND CALIFORNIA INSTITUTE OF TECHNOLOGY

Accepté par la Réduction le 1. 4. 1975