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Abstract. The paper gives a number of characterizations of normal radicals, i.e., radicals of
associative rings which satisfy a natural condition on Morita contexts (cf. [1], [5]). It is proved that
for normal radicals the lattices of radical ideals of Morita equivalent rings are isomorphic. That
section of the paper is “a radical counterpart” of the results of A. D. Sands [6]. In Section 2 lower
and upper normal radicals are constructed.

Introduction. A radical (a radical class, a radical property) of associative
rings is a normal radical if for every Morita context (R, V, W, S), where R, S are
rings, ¥ is an R-S-bimodule and W is an S-R-bimodule, we have

VN(SYW<=N(R), or equivalently WN(R)VSN(S).
It.is not assumed that the rings have identities or that the modules are unitary.
(For the definition and notations of Morita contexts see [1] and [6]. For radical-
theoretic terms and properties we refer the reader to [3].)

In [1] Amitsur proved that the radicals of Baer, Levitzki and Jacobson are
normal. Sands [6] and the present author [4] generalized this result to certain axio-
matically defined classes of radicals. The notion of a normal radical was introduced
in [5].

In what follows we shall characterize normal radicals in several different ways,
in particular in terms of rings with idempotents. We shall describe the connections
between radical ideals of rings in some distinguished Morita contexts (Theorem 7),
and we shall prove that the lattices of radical ideals of Morita equivalent rings are
isomorphic for normal radicals. Moreover, we shall prove that all one-sided her-
editary and one-sided strong radicals are normal (Theorem 4 — cf. [4], [6] and [7)).
In Section 2 we shall construct lower and upper normal radicals for every class of
associative rings. )

Section 1 is “a radical counterpart” of Sands [6] and often the ideas of the
proofs presented should be traced back to that paper. Following Sands, we shall
apply in our considerations a Morita context (R,V, W, S) in matrix form, i.e., in

the form of the ring RV of all 2x 2 matrices {© © ,reR,veV,weW,seS,
wSs w s

with obvious definitions of addition and multiplication. One can observe that every
such generalized matrix ring determines a Morita context, and so we shall .use
1 — Fundamenta Mathematicae XCV
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both forms interchangezibly. It 4, B, C, D are subsets of R,V,W, S, respectively,

we shall denote by (‘é %) the subset of (I;V Z) consisiing of all matrices <f 4bl>
with ae d, beB, ceC, deD.

An ideal always means a two-sided ideal, and if [ is an ideal of a ring R, we
denote this by writing I < R. Airadical of .an ideal of a ring R is a radical ideal
of R (see [2] and [3] Theorem 47). This fact is one of our basic tools and we shall
refer to it as the ADS-theorem (Anderson—Divinsky-Sulifiski).

1. Characterization of normal radicals. Ajpplyipg the ADS-theorem to Morita
contexts, we obtain the following lemma.

AW . . . RV
Lemma 1. If (VV S) isa Mqu{a ggnzjexl, a11{{ N Is any radical, then N (W S>

= (‘éf}) for certain ideals A, D _of'R’, S ;md }ubfbimop‘iules B, C., c;f RVS,
sWa, respectively. e C oo

Proof. Let (II}V g) be a Morita context.and let R¥, S“‘* denote theusual over-

rings with 1dent1ty of the rlngs R and S respectwcly 'V and W a1e umtary R**

e s

and §¥ -modules in an obvious way and (R

v
W S*) is a Morita context wh1ch contains

as an 1dea1 the’ context IIjV ,Is'/

R V\_(R*V 14 10). (00
N (W_S) < (W S?*) Now, multiplying N(W S) by 1dempotcnts (0 O) and (0 1)

By théAD’S-theorém, 'fof évery ‘radical N we have

_ from the left and right in all four- possible ways, one can.easily show that the

radical of the context has the form stated in the.lemma. @8. . ..
The following is a basic theorem on characterization of normal radicals.

THeOREM 2. If N is a radical in a class of associative rings, then the followmg
conditions are eguivalent.
(1) N is a normal radical.

(2) (@) If a ring Ris an ideal of a ring R suc‘h t/mt the ftl(,‘l‘o) ring R/R is iso-

* morphic mth the ring of integers, then

 NR)=NR)nR
and (b) zfe = g2 is an idempotent of some ring R, then

ST

.

. N(eRe) = eN(R)e
/R V
. (3) For every. Morzfa coniext WS we Izawe

Y R V) : (N(Ry B
CO\WS) L€ LN

where. B and C are subbimodules.of .x Vs and:gWy, respectively.

©
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Proef. (1) = (2). This was proved in fact in [5], Lemma 1.5 and; Theorem 1.9,
(2) = (3). Let (ﬁ/ s be a Morita context and let R¥, 5™ be 4¢ in Lemma 1.
. R* vV R*y R

Since (W S*) > (W S) > (W S)’ and both ﬂle factor rings arelsomorphlc with

the integers, application of Lemma: ! and -twofold application of . (2a), give us

4B\ (R W ‘R* ¥\ (R V
(c D) = N(-W s) = N(W S“) <W S)
where 4, B, C and D are as in the lernma.

lete=e® = 10 be a matnx from R% 4 . Hence by conditions (2b)
00 wos*

and (2a) " o T e ' o
40N (R VN [ (R*V R\
(0' 0>=€N<W S>Q"E<N(W S*) (W S))e
e . (R*V RO R¥ 0\ (R O\. ..
L _=,’fA~_r<W S“)e“(o 0) _N(o o)f‘(o _0).._
: S (N@R®)AR 0\ _(N®R) O I S T
- 0 oh’" 0 0/ Sl e

whence 4= N(R) Similarly D' = N(S)

(3) = (1). Let N be a radml such that for every Morita’ comc){t (R v, W S)
we have : y

RV 3 N(R) * Lot T
'Nst)‘<A* N@D?. i i

/ R VN (RV
Wht?le the stars are for ys@ta‘brle blmo'dul‘ei lSmcc N<W S) <1 (W S)-m we have

oV N(R) * \/0 0 VNS)W 0\ _ NER) * ).
00)\ « N®)\Wo o 0o)=\ ». Ns))

VN(S) we N(R) ,

....... R P T A

Thus

so that the 1'1dlca1 N is_ normal. H

THEOREM 3. Let N be a razlzcal Then N is nmmal and <ontctms alI 711/1)qtent
rings Jf .and only if for every Morita context (R,V, W,.S)

-

W(RPY (V@ B
W S C' N(S) EANE )
wheie either ¢ - ‘ Dl
B= {ve V] WUCN(S)} or B={ve V] vWCN(R)}a LB g
or C = {we W| wVeN(S)}, or C= {we W| VwCN(R)} N

'Mareaver if diie of thése equalilies for B and ¢ holds, then alf of them 11old; . ?
7
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Proof. Let N be a radical such that the N-radical of every Morita context
(R,V, W, 8) has the form
N(R) B
C N/

By the previous theorem N is normal. Furthermore, if B = {ve V| WosN(S)}
for every Morita context (R, ¥, W, S), and if T is a ring with T? = 0, then let us

8 0 isomorphic as a ring with T. Our assumption gives us

or\_[(oT
Nmﬂv(o 0) = (0 0>”T‘

Thus all zero-rings are radical, whence all nilpotent rings are also radical. Anal-
ogously, we can prove this fact by assuming one of the other equalities.
Conversely, let us assume that N is a normal radical containing all nilpotent
rings. By [4] Theorem 2, it follows that N is an N-radical in the sense of Sands [6].
Then [6] Theorem 8, provides us with the remaining part of our theorem. ®

consider the context

A radical N is left hereditary if every left ideal of a radical ring is an N-ideal.
A radical N is left strong if every left N-ideal of a ring R is contained in N(R).
Analogously we define a right hereditary radical and a right strong radical.

The following theorem generalizes both Theorem 1 of [4] and Theorem 2 of [6].
The proof is a slight modification of the proof of Theorem 1 of [6}, dueto A. D. Sands.

THEOREM 4. If a radical N is either left or right strong and either left or right
hereditary, then N is a normal radical.

Proof. By Lemma 1 the N-radical of some context (R V) is of the form <A B).

‘ ws CcD

We shall prove that 4, which is an ideal of R, equals N(R). Since by a symmetrical
argument one can prove D = N(S), then this suffices for the normality of N by
Theorem 2(3)

(= s) = (5 o)=r(i i)

Since N is either left or right hereditary, one of these one-sided ideals is an N-ring,
So A, which is a homomorphic image of both of them, is also an N-ring. But 4 < R,
and so ASN(R).
Now we shall prove the opposite inclusion. Accordingly, we shall show that
the left ideal ( N 0) of the ring <R V) is a radical ring. Krempa’s Lemma [4]
WN(R) 0 w s "
implies that the zero ring N(R)™ on the additive group of the ring N(R) is a radical

. 0 0\ . . o
ring. Hence (WN(R) O) is also an N-ring, as the sum of all its ideals of the form

0 . . -
(w N(R) 0 w e W, which are N-rings as homomorphic images of N(R)*. Thus

©
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( N(R)

WN(R) O) is an extension of a radical ring by a radical ring and so is a radical

ring. If N is a left strong radical, then we have

N® 0\_ (R V\_(4B
WN®R 0)~"\ws) \c D}’
whence N(R)c A4.

If the radical N is right strong, then we obtain the required inclusion by con-
sidering the right N-ideal (N(OR) N(Ig) V>. Therefore in every case 4 = N(R).@

Remark 1. Let x and y denote either “left” or “right”, and let x’, ¥’ be the
opposite sides to x, y, respectively. If a radical N contains all nilpotent rings and
if Vis an x-hereditary and y-strong radical, then N is x’-hereditary and y’-strong
too. This follows immediately by the above theorem and [4] Theorem 2.

Remark 2. Recently A. D. Sands proved in [7] that a radical &V is normal if
and only if NV is left strong and all left-ideals of the form Ra, ae R € IV, also belong
to N. But this result, so far, does not have a left-right form.

THEOREM 5. Let N be a normal radical and let (R,V, W, S) be a Morita context.
If A is an N-ideal of R, then the ideal

A AV
WA WAV
is an N-ideal of (‘I/R;/ g)

WA WAV
N(4) 0\ _ (4 0
o o)~\oo)

4 AVQRV
WA WAV ws)

Proof. Theorem 2 implies that K = N( A 4V ) contains

Since

) RV . . R V
we have by the ADS-theorem K< (W S)' So K contains the ideal of (W S>
) A0 . A 4V
generated by <0 O>’ which equals (W AW, AV)' Therefore

A AV \ N A AV -
WA WAV) T \WA WAV)®
COROLLARY 6. If N is a normal radical, then for every Morita context (R, V, W, S)
and every N-ideal A of the ring R the ideal WAV is an N-ideal of the ring S.
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+Proof. By Thearems 5 and 2 we have. . .

4 (AVN_ A AV (N
WA \WAV ]~ T\WA WAV ]~ \ x N(WAV))"
Hence N(WAV) = WAV, B | - :
In the whole followmg text o 'Uld ﬁ w111 denote maps (bctween sets of ideals

V-

ordered by inclusion) and will be defined for every Morita context (R,V, W, S)

as follows: c(4)' = WUV.< S, for every 4 <1 R, aiid f(B) = VBW, for every B < S.
Burthermore, for- X and ¥, ideals of some ring, ahd a, fixed radical N we will put
XvY=X+7 (the sum of ideals) and XA Y = N(X n 7).

" TuxoreM 7. Let N bé . normal radical and let (R, V, W, S) be a Morita context.
Then '« and f3, defined above, map’ N-ideals into N-ideals'and preserve the order und
the ‘operation v . If WV = 8 dnd'S'is a Fing vith a unity, then the composite «y is
an identity map; so the réstrictions of « and  to the sets of N-ideals of R and S aré
an’ epimorphism- and a monbmorphism, 'respectively, of ‘ordered- séts. If; moreover,
VW = R'and R is a ring' with & unity, i’e., if R and 'S-are-Morith equivalent, then o
and f are mutually inverse isomorphisms of the lattices of N-ideals of R and S with
operations- v and A as du.b.-and g.Lb.; respectively.. - :

Proof. Nearly all the statements of the theorem'cah be obtamed by Corol-
lary 6 and by easy checking. We shall only show that a(4A4,;) = ad Aod, for
Morita equivalent rings R and S and A, 4, ideals of R. By the ADS-theorem,
AnrAd; = N(4 n 4;) is an N-ideal of R. Obviously AnA A and AnAd S A,.
Since a preserves order, we have a(4Ad,)Sad noad;. But, by Corollary 6,
a(4d AAy)is an N-ideal of S, and so a(AAA)SN@Ad N ad,) = ocA/\och1 Apply-
ing the same procedure to the ideals 04, ad, of S and the mapping B, we obtain

Blad nod)SBud APod, = AnA,.
Thus ' 8

AANIA;, = af(ad Aad)Ea(AAA,),

and we have the required equahty ‘@ !
THEOREM 8. For every mdzca/ N.the Jollowing - conditions are equivalent.
(1) N is a normal radical.

) If (R,V, W, S) is. a Morita cam‘eat WV.= S and S is a ring with a unity,
then for every ideal 4 of R

N(WAY) =', WNAY.
(3) For every ideal A Vof a ring R with an idgmpotgnt e
O N(ede) = eN(d)e .

Proof: ‘(1)=(2). Let us observe that, by the 'ADS-theorem, N(A) and
N(BaA) are N-ideals of R for A<'R. Since » *preserves inclusion; we have & (A)

usual over- ung with mcmlty of R Thus for
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Sad. By Theorem 7 aN(4) is an N-ideal, and so aN(4)<= N(ad). Sumhlly ﬂN(ocA)
SN(fod). Furthermore, N(fad)SN(4) since fud <. -
If (R, V,W,S) 1s such a context that W)V = S is a ring with a unity, then
aff is an identity’ map and ‘we have
aN(A)S N(aAd) = afN(ad)SoaN(Bad) =aN(4) .
This means that ‘ o E '
N(WA V) = N(W!) =aN(4d) = WN(V.
(2) = (3). In the uontem (R, Re eR, éRe), with' multiplications as products,

eRe = eRe e = eR-Re is a ring with g umty e, And ede = eR A Re, for 4 <l R.
Thus, if IV satisfies (2), we -have

N(ede) = cRN(A)Re = L'N(A)e

(3) = (1). A Morita contex! RV is' an: ideal ‘of» R ¥V where R* is the
' ' W S ’ WS

kd

e (L0 (R‘*LV Cand (R VﬂR"*V
) ‘ Vo) \ws) M \ws) N\ ws)
we obfain )

. ol RN (R VN Y /N(R) O).
: o3 )l £)9- (157 0)
hence N (;}/, S) has the forxﬁ (N(R) 7:).“81;11“;11' arghmems sho\.x‘/ that. in the
bottom-right corner we have N(S). Theorem 2(3) implies then that N is a normal
radical. # o .
Condition (3) of this theorem gives us arl éasy méthod of ﬁndmg’noxmal r'1d‘1cals
of matrix rings.' By mec.ns of it one can essemtmlly 51mp11fy the proofs of [5]. ‘
COROLLARY 9 IfN. IS a,normal r(fdua/ (R V, W, S) is a c'ontext wtth WV S.
and S has a_uniry, lhen ‘ )

N(S) WN(R)V
Proof. Since VWS R and’' N is normal, we have” "
N(S) = NWVWV) = WN(VW)VSWN(R)VEN(S).
Thus N(S) = WNR)V. B - > K L : . \
- The- following description -of normal radicals by means: of semlslmple rings
will be useful in the construction of an upper. normal- radical.

For a Morita context (R, V,‘ W, S) .by. 8(S) we shall denote the 1ded.1
(seS| VsW =0} of S.

THEOREM 10. :4; radical N .is 4 normial radicdl if and only if for every Morita
context (R,V, W, S) with N(R) = 0 wethave' N(S/3(S)) = 0.
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Proof. The “only if” part of the theorem was in fact proved by A. D. Sands [6],
Theorem 4, and so we omit the proof.
RV

Conversely, suppose that N satisfies the stated condition. If (W s

) is a Morita
context, and
B={veV| vWeN(R)}, C={weW| VwesN(R)}, T={5eS| VsWsN(R)},

then for the Morita context

(RIN(R), V|B, W]C, S/T):(ﬁ, Z) / (N S ‘;)

we have, by our assumption, N(S/T/3(S/T)) = 0. If § denotes the coset of s€§
in the factor ring S/T, then

(S/T) = {5 S/T| V/B-5-W/C = 0}
= {5eS/T| VsWsN(R)} = {§eS/T| seT} =0.

This implies N(S/T) =0, whence N(S)=T. This means VN(S)W<N(R), and
so N is a normal radical. &

2. Lower and upper normal radicals. Let 4 be a class of associative rings.
A normal radical N is the lower normal radical defined by 4 if A= N and N is
contained in every normal radical M which contains 4. A normal radical N is the
upper normal radical defined by A4 if all rings from A are N-semisimple and all
normal radicals with this property are contained in N. In this section we shall
construct a lower normal radical and an upper normal radical for every class of
associative rings.

A subring 4 of a ring R is accessible if these exists a finite chain 4 = 4,<4;< ...
.<d4,<1R.

For every class of rings C classes /(C) and u(C) are defined as follows. A ring X'
belongs to I(C) if there exists a Morita context (R,V,W, S) and an ideal 4 of R
belonging to C and such that X is a homomorphic image of the ring WAV. A ring X
belongs to #(C) if X is an accessible subring of a ring T which either belongs to C,
or is of the form T = §/0(S), for Morita context (R, ¥, W, §) and S € C. Obviously
C<l(C) and C=u(C).

Now, for a class of rings 4, we define by transfinite induction two families of
classes. We put

Ay =4.

If for every ordinal x less than y the class 4, has been defined, then A, is the
class of all rings for which every non-zero homomorphic image contains a non-zero
accessible subring from /(4,) for some x<y

LN-A = 4,,
b4

where the union is taken over all ordinal numbers. Next we put
A°= 4.

©
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If for every ordinal x less than y the class A* has been defined, then A7 is the class
of all rings for which every hon-zero accesstble subring has a non-zero homomorphic
image in u(4*) for some »<7y. A ring R belongs to UN-A if and only if R cannot
be homomorphically mapped onto some non-zero ring from |J A’, where the union
¥

is taken over all ordinal numbers. :

THEOREM 11. The class LN-A is lower normal radical and the class UN-A is the
upper normal radical defined by a given class A.

Proof. By a standard procedure one can prove that LN-4 and UN-A are
radicals (cf. for example [3], constructions of lower and upper radicals). Moreover
is easy to observe that |J A7 is a class of UN-A-semisimple rings. We shall prove
that these radicals are normal. Let L(R) and U(R) denote the corresponding radicals
(i.e., maximal radical ideals) of a ring R. Let (R, V,W, S) be a Morita context.
There exists an ordinal y such that L(R) € 4,. By definition the ideal WL(R)V of S
belongs to A,, SLN-4, whence

WL(R)V=L(S),

i.e., LN-4 is a normal radical.

If a ring Ris UN-A-semisimple, then R € 47 for some y. Hence S/3(S) € A** L
and so is also UN-4-semisimple. The normality of UN-4 now follows from
Theorem 10. .

As immediate consequences of the ADS -theorem we infer that a ring is a xadical
ring if and only if every non-zero homomorphic image contains a non-zero radical
accessible subring and that accessible subrings of semisimple rings are also semi-
simple. By these remarks, Corollary 6, Theorem 10 and transfinite induction one
can easily verify that LN-A is the lower normal radical and UN-4 is the upper
normal radical defined by 4. M
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