Closed curves and circle homomorphisms
in groups of diffeomorphisms *

by

Reinhard Schultz (West Lafayette, Ind.)

Abstract. Given o smooth manifold M with diffeomorphism group Diff M, the problem of
finding homomorphisms St-> Diff M homotopic to given closed curves is considered. Examples
are given to show this is frequently not possible, Particular attention is paid to the case M = 5",
for which general criteria and numerous quantitative results are obtainable. For example, certain
nonlinear circle actions on spheres determine homotopy classes that might not be expected to
contain homomorphisms (see 2.5).

If G is a connected finite-dimensional Lie group, then every closed curve
y: S'»G is homotopic to a homomorphism (a proof in the compact case is
outlined in [9, Exercise 3, p. 153]; the noncompact case follows from [9, Theorem 3.1,
pp. 180-1811). Examples given in this paper show this is not the case for G = DIff M,
the group of C" diffeomorphisms of a smooth manifold M with the C" topology
(1<r< o). In fact, such examples exist for spheres of suitable dimensions, although
in this case the answer is less simple than generally suspected (as noted in the last
sentence of the next paragraph). The existence of classes in 7, (Diff M ) not contain-
ing homomorphisms is strongly suggested by work of J. Palis stating that very few
clements of Diff M lie on one-parameter subgroups [12].

To illustrate the widespread nature of such examples, we consider two natural
but contrasting classes. The first consists of smooth manifolds with no effective
smooth circle actions; in this case it merely suffices to note that 7, (Dif M") # 0
for broad classes of manifolds by the methods and results of Antonelli, Burghelea,
and Kahn [l, 2]. The other class, consisting of spheres, illustrates that the non-
existence phenomenon is basically independent of a lack of differentiable symmetry.
Furthermore, in this case enough specific information is available to show that
the set of classes in 7 (Diff §") containing homomorphisms often is not even a sub-
group. In fact, it is possible to obtain much specific information about the re-
presentability or nonrepresentability by homomorphisms in this case, and a few
such examples are discussed. One of these (Example 2.5) refutes a common mis-
conception that no class in the image of my(Diff S™rel D") is representable by a homo-
morphism; on the contrary, infinitely many admit such representations.
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Acknowledgments. The problem of representing elements in =,(DiffS") by
homomorphisms was first posed to me by W. C. Hsiang; his comments on these
and related matters have been extremely valuable. Proposition 2.3 was first proved
to answer a question in a letter from B. Conrad.

1. Manifolds with no smooth circle actions. By a result of Montgomery and
Zippin [1], pp. 208-214, if a smooth manifold M" has no effective smooth S* actions,
then no nonzero class in 7,(Diff M") contains a homomorphism. Antonelli, Burghe-
lea, and Kahn have given general methods for detecting nonzero homotopy classes
in such groups in [1] and [2] that apply directly to the problem at hand; their basic
tool is the homomorphism Ey: m,(Diff(D", S"~!))—r,(DifM") defined and
studied in [1], Ch. 2. Recall from {1] that Diff(D", $"~1) is the group of diffeo-
morphisms of D" that are fixed near the boundary, and E has the effect of extending
such diffeomorphisms to M" via a coordinate neighborhood inclusion. Further-
more, partial information on =,(Diff(D" S~ 1)) is given by the Gromoll homo-
morphism

Aty (DIfE(D", §*"1))—T, .,

(see [1], § 1.1), which is onto by results of J. Cerf [8].

The following strengthens the one-dimensional case of the nontriviality cri-
terion in [1},,§ 2.3; the proof of the latter result actually implies the statement
given here.

Lemma 1.1. Suppose that x € n, (Diff (D", 8"~ %)) satisfies Ep(x) = 0. Then A(x)
belongs to the homotapy inertia group of M xS>.

Remark. The homotopy inertia group I,(N) of a closed oriented manifold
N¥is the group of all k-dimensional homotopy spheres XZ* for which the canonical
homotopy equivalence N # X—N is h-cobordant to the identity (compare [6]).

Examples of pairs N, X with £ ¢ I,(N) may be given as follows:

ProrosiTioN 1.2. (i) If N* is a m-manifold, then I(N)SbP,, .
(i) Let p be an odd prime, let k = 2p*—2p—2, and let X eI, have order p
(such elements exist [19], 111.2). Then Z & I(N) for all N*. '

Proof. (i) Some iterated suspension of N* has the form §"** v §"N,, where
Ny is a (k—1)-dimensional finite complex. Since the space F/0 that classifies normal
maps is an infinite loop space, this means [N¥, F/0] & n(F/0)®[N,, F/0], and
hence the canonical homotopy equivalences in question are not even normally
cobordant to the identity.

(ii) This result is due to H. E. Winkelnkemper [19], IIL.2.

Combining these observations, we immediately obtain the following examples.

THEOREM 1.3. (i) Suppose that M* is a m-manifold that is not a rational co-
homology sphere and y e 7 (Diff (D, S*~%)) satisfies A(y) & bPy, 5. Set N* = T M*.
Then Ex(y) € m, (Diff(N®)) does not contain a homomorphism.
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(i) Let p be an odd prime, M b a (2p*2p-4)-dimensional spin manifold
with nonzero A-genus, and y € my (DIF(DY, S¥71)) with A(y) of order p. Then Ep(y)
is not representable by a circle homomorphism.

Proof. (i) The class Ey(y) is nonzero by the previous two results, On the other
haad, N* has rational cup length k, so by a widely known result the orbit map for
every topological S* action is surjective in rational cohomology (see [7] for one
version). But by the Leray spectral sequence this implies H*(N) = H*(S Y@ H*(N/SY
as graded rational vector spaces, a description that is inconsistent with the con-~
struction. of N. Hence N does not even admit fopological S* actions. (i) As before,
Ey(y) is nonzero. But M has no smooth circle actions by a result of Atiyah and
Hirzebruch [3].

2. Spheres. Recall the well-known splitting 7, (DiffS") & 7,(SO,+ )@
@y (Diff (D", §"~1)), induced by the natural inclusions of SO, ., and Diff(D", S
as subgroups of DiffS” ([1}], p. 10); we assume 35 throughout this section. Of
course, all classes of the form (x,0) are represented by homomorphisms; the
following example shows that other such classes are also representable:

ExaMpLE 2.1. Let 0 e ny(DiffS") = I',,; be chosen so that the element
t(y, 0) e I',,, defined by the Milnor-Munkres—Novikov pairing ([1], § 1.2) is non-
zero (0 # 7€7,(SO,.,) = Z,; such examples exist for infinitely many n— for
example, whenever 7 = 0, 1lmod8). Then the elements in the arc component

_determined by @ induce a specific automorphism I, of m,(DiffS”) by conjugation;

it follows that & e m,(Diff S") is representable by a homomorphism if and only if
Ipea is. But I,uy has the form (4, §); and a routine verification as in [{] shows that
A(B) = t(n, 0); in particular, § is nonzero. .

It is tempting to think that no class of the form (0, f) with B # 0 is represent-
able by a homomorphism, particularly since local linearity of St actions at fixed
points shows the nonexistence of nontrivial homomorphisms into Diff(D", "~ %).
However, we shall give an example later to show this is false. The general prok?lem
of specifying exactly Which elements of ;(Diff S") are represented by homomorphisms
seems quite subtle.

The results of this section depend upon a smooth suspension construction .for
smooth S* actions on S§" (compare [4], Section II). Given a homomorp%nsm
f: SL-Diff ™, call the resulting S*-manifold (S”, f). Form the smooth S*-manifold

IPFA Y = DFx (8", f) U, ST x (D", trivial)
where St acts on itself and D? by complex multiplication and # is the equivariar_xt
shearing diffeomorphism k(z, x) = (z, flz"hHx). Tt is routine to check that E is
a homotopy sphere. Define H(f) € m,44(S"**) (= Z?) to+bze the Hopf construction
on the “suspended” homomorphism S(f): S*—Diff Z""*(f).

PROPOSITION 2.2. In the above notation, let (o, f) denote the homt;topy class
of f. Then A(B) gives the differential structure on Z(f) and H(f) = S (J(&) +n).
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Proof. In the first place, the diffcomorphism type of Z(f) only depends on
the homotopy class of f. Furthermore, the classes (e, 0) induce diffeomorphisms
of §'x 8" that extend to S*x D"*?, and hence the manifold obtained by identifi-
cation under (a, f) is diffcomorphic to the one obtained using (0, f) (compare [10],
5.4). Finally, it is immediate from the definitions and [10], 2.3, p. 526 that the mani-
fold obtained using (0, f) is the exotic (12--2)-sphere with differential structure AB).
Since the inclusion of Diff(D”, "~ 1) in the homeomorphism group of S” is
nullhomotopic by the Alexander trick, an explicit homeomorphism from Z"*2( f)
to $"*% may be constructed using the topological triviality of (0, f) and the extend-
‘ibility of (a,0) to m,(Diff D"*Y). Under this identification the Hopf construction
on the suspended action on X"*? corresponds to the join of o on S with left multi-
plication on S*, and the formula for H(f) is an immediate consequence of this.
In order to prove certain classes of the form (0, f) cannot be constructed,
we need a criterion. showing that the above suspension construction is impossible
for certain choices of X. Following a suggestion by B. Conrad, we say that an S*
action on a homotopy sphere 5™ (m3>2) is essential or inessential depending on
whether the Hopf construction on the adjoint map S* x Z"—s 2" yields the essential
or inessential class in m, 4,(S™"%) = Z,. Also recall that the inertia group I(M)
of a cloged oriented manifold M™ consists of all homotopy spheres 2™ such that
M 4 X is orientation-preservingly diffeomorphic to M.

ProposiTioN 2.3. If X" (n=7) admits an essential circle action, then
I(Z"x SY) = 0.
Proof. This follows from the same sort of argument used in [14], § 3, since

the argument referred to uses only the fact that the action defines a nontrivial class
in 7(Gyey) = 7y n(S™).

It is now easy to find the desired examples.

THEOREM 2.4. For infinitely many values of n(eg.,n=8k 8k—1, k=), there
exist classes in 7, (Diff S") not representable by homomorphisms. In fact, for infinitely
many values of n (e.g., n = 8k) the set of classes represented by homomorphisms is
not even a subgroup.

Proof. To show the first statement, it suffices to find homotopy (n+2)-spheres
Z"2 with J(Z"*2x SY) # 0; one reference for such examples when # = 8k+1
is [13]. In fact, if one takes the exotic (8k +2)-spheres corresponding to the cle-
ments j4n (notation as in [13]), then I 5 0 for these examples too; this follows
because the image of ph? in g, 5 is the 2-torsion in the image of J, a fact which
implies nontriviality by results of G. Brumfiel [5].

To see the assertion about subgroups, consider the element L,+(n,0)~(, 0)
& my(Diff %%). By Example 2.1 this is a sum of classes represented by homomorphisms
and has the form (0, f), where A(B) = (i, ) = wy. On the other hand, the
discussion of the previous paragraph shows that such classes (0, ) are not represent-
able by homomorphisms,
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ExAMPLE 2.5. Some classes of the form (0, ) with A(f) 5 0 are represcmab!o
by homomorphisms. For example, consider the semifree § ! acL.iOn on the exotic
sphere X*° of order 3 in I'yg = Z¢ constructed in [15]. W. C. I:lsmng has obscf'ved
that this action admits an invariant subsphere S® that contains all fixed points;
this may be checked directly from the explicit construction for suitable choices of
the equivariant diffeomorphisms in [15]. Therefore an argument due to Browder
and Petrie (see [4], Prop. 2.1, p. 141) implies that £'° is a smooth suspension of
some smooth semifree S action f on S8 Express the homotopy class of fas («, fi);
then Proposition 2.2 implies that « = 0 (since §* is the fixed point set) and A(f)
eI'y, has order three.

An infinite family of similar examples may be constructed using the semifree
circle actions ‘in [16] and existence theorems for invariant codimension 2 sub-
spheres from [17] (Hsiang’s method also applies in. this case).

ExAMPLE 2.6, It is considerably more difficult to find classes of the form (e, ff)
with both o % 0 and A(f) 5= 0 that are not representable. The only example known
to the author occurs in m;(DiffS®), in which case A maps to I'y = Z,. This is true
because of the following two facts: .

(i) If («, p) is representable by a homomorphism, the suspension construction
yields an S* action on the exotic sphere determined by A(f) that has an invariant
codimension 2-subsphere and acts freely off this subsphere, _

(i) By the results of [17], the exotic 8-sphere admits no smooth S' actions
of this type.

Finally, we mention that an elaboration of the above suspension argumient
yields a nonrealizability theorem for a wide class of (8% — 1)-dimensional manifolds:

THEOREM 2.7. Suppose that M®*~* bounds a spin manifold and
my € 7, (Diff (D%~ 1, §%~2))

satisfies A(m) = py € Ly Then Ey(my) is not representable by a homomorphism.

This depends on the fact that , & gy does not correspond to. the bg;mldary
of a spin manifold [18]. The proof uses the previous methods with Me . re-
placing $%~! and a 2-connected spin manifold V% with boundary M®*"' re-

placing D,
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