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by
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Abstract. Some results related to a fixed point theorem of L. B. Ciric have been presented
in this paper.

0. Let (X, d) be a complete metric space and let T be 2 mapping of X into
itself such that
Q) d(Tx, Ty)<wd(x, 7)

where 0<a <1 and x, y & X. Then by Banach’s [2] fixed point theorem T"has a unique
fixed point. According to Kannan’s [3] fixed point theorem the following condition
also implies that T has a unique fixed point:

) (T, T)<ald(x, o) +d(y, Ty)]

where 0<a <% and x, y e X. Recently Chatterjeé [4] has proved that if T; and T
be two selfmappings of a complete metric space X such that

©)] d(Tyx, T,y)<a[dlx, T+ dty, Ty x)]

for all x, y in X and for some o with 0<a <%, thenT; and T, have a unique common
fixed point. If we take Ty = T, = T in the result of Chatterjee, then as a Corollary
we get the following:

If T be a selfmapping of a complete metric space X such that
@ d(Tx, Ty)<old(x, Ty) +d(y, Tx)]

where x,ye X, 0<a<i, then T has a unique fixed point.
These results we unified in [1] where Ciric proved:
TreoreM 1. If T be a selfmapping of a complere metric space X such that

() d(Tx, Ty)<ed(x, y)+Bld(x, To)+d(y, TOl+y1d(x, TN +d(y, )]

for all x,y in X and for some o, B,y € Ry with a+28+2y <1, then T has a unique
fixed point. .
We [11] have recently established the following:
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Let Ty and T, be two selfmappings of a complete metric space (X, d) such that
6)  d(Ttx, Tiy)<od(x, y)+pd(x, Tix)+9d(y, T§9) +5[d(x, TSy +d(y, Thx)]
Jor all x,yeX where a, B,y,5€R, with a+B+y+28<1 and p, q are positive
integers, then Ty and T, have a unique common fixed point.

Ifwetake Ty =T, = Tand p = ¢ = 1 in (6) then as a Corollaiy we get the
following theorem:

THEOREM 2. Let T be a selfmapping of a metric space X' (complete) such that
(M d(Tx, Ty)<ad(x, )+ pd(x, T)+yd(v, TH)+6[d(x, Ty)+d(y, Tx)]
Jorallx, y e X and for some o, B, 9, 6 € R, with o+ B+y+26<1, then T has a unique
fixed point.

We note that the theorem of Ciric follows from Theorem 2 by taking p
in (7). ‘

The aim of this paper-is to generalize Theorem 1 in different directions, A few

theorems on sequence of mappings have also been presented in this paper. Through-
out this paper X will denote a complete metric space and d the metric on X,

=7

1. Rakotch [5] proved the following result.
THEOREM 3. Let T be a selfmapping of X such that

63) d(Tx, Ty)<e(d(x; ))d(x, ) for each x # ye X,

where a: (0, c0)—[0, 1) is monotonically decreasing function, then T has a unique
fixed point.
We now generalize both Theorem 1 and Theorem 3.

THEOREM 4. Let o, B, y be monotonically decreasing functions from (0, o) into
[0, 1) with a.(2)+28(2) +‘2y(t)<1, te(0, ). Let T be a selfimapping of X such that
the diagram of T is closed and that

©) d(Tx, Ty)<a(d(x, y)d(x, y)+
+B(d(x, »)[d(x, Tx)+d(y, Ty)]+
+r(dx, ) d(x, Ty)+d(y, TH)]
Jor each x £ ye X, then T has a unique fixed point.

Proof. Let x,e X be arbitrary and let us consider

{T"x,}. Suppose T" *x,
# T"xy. Then for n>1 we have -

d(T"xo ) T'H- ]xo) < Ol(d(T"_ lxo s T"xo)) d(Tn— 1x0 R T"xo) +
BT g, Tx) (T xg, T00) + d(T"%, T x0)] +
(AT 50, T AT xg, T ) +d(T"x,, TN
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or
o+ B4y
d(T"xo s Tn+ 1x0) < (1

)d(T”"‘xo, T"xo)<d(T" 1xg, ") .
—B-v
Hence {d(T"xo, T"*'x,)} decreases. Let
fim d(T"%,, T" 'xg) = §
and suppose S>0. Take
a(S)+B(S)+y(S) _ e

1-B(S)—v(S)

Then d(T"x,, T"*1x0)>S implies
(AT, T 1)+ B (AT "0, T 520)) +9 (&I M0, T 50))
1= B(a(T"xo, T+ x0))—1(d(T"Xo5 T 'xo))
a(S)+B(S)+v(S) _ ¥n
1-B(S)—7(S)

<

Hence d{T"%,, T+ xo) <ad(T” " 1xg, T"X0) S - <a"d(xg, Txo) e_a.nd a"d(xo,STxo):s(e)
as n—o sir;ze a<1. Now we intend to show that {T"xe} is Cauchy. Supp

T" 1xy % T™ 'x,, then
n— m—1
AT, Txe) < (d(T" 25, T x0))d(T" 0, T "o} + .
+B(d(T™ x5 T 1x,)) [d(T" *xq, T"x0)+ d(1" "X, T"x )+

+9 (AT o, T txo)) [d(T"* %o, T™xo) +d(T™ "xq, T"%0)];

Le.,

u+l3+v -1 m
a+B+y - » IR\ A(T™ g, T™0) -
d(TnxO, meo)< ( 'B -—> d(T” 1Xo: T"xo)+ (1'—0!-"27) 0
i

I—a—2y

an find an N such that
26}

~ {(1 —a(e) -2y ()¢ 23}

1
d(Tm—lxo, meo)< —2- min m’

Let >0 be lgivenl I a(e)+B(e)+7(e) # 0, then we C

1. ((1—a®—-27()e
. d(T"_le’Tuxo)<-in’uﬂ {ms

and

i all
for all n.m=N. I a@®+BE+yE =0 for example, we require that for
& ERUS A A

n,mzN, ’

d(T" %, T"X0) <t d(T %0, TTX0) <8 -

and

4%
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Let us take any n, m>N. We wish to show that d(T"x,, T™x,) <e. Assume T 1y,
# T x,. I d(T" 'x,, T™ *x,) >¢ then since «, B, v are monotonically decreasmg
functions we have

d(Txq, T"x,)
a(B+BE+E) ;s " oz(a)+ﬁ(s)+y(g)d ——
Sml—ot(s)-—Z'y(s) da(T XO;Txo)+'—m1_oc(6)—2y(€) ( X0, Xo) <€ .

On the otherhand d(T™ x4, T™ 'x,) <e implies
d(T™y, T™xe) Sad(T"™ xg, T Lxg) + BA(T™ 'Xg, T"x)+d(T" x4, T"x0)]+
+9 (T %o, T"%) +d(T™ 50, T"x0)]
<(@+28+2p)e<e. ‘

Thus {T"x,} is Cauchy. Since X is a complete metric space, {T"x,} converges to
a point ¢ in X.

Now since the diagram.of T is closed, we have lim7""'x, = T¢, Thus ¢ is
a fixed point of T.

We need prove now that ¢ is a unique fixed point of T.If possible let ¢, 4,
& # n be two fixed point of T. Then

d(€,n) = d(TE, T < [o(d(€, m)+2y (d(E, m)]d(E, ),
which gives a contradiction. Hence ¢ is a unique fixed point of T. This completes
the proof.

We apply Theorem 4 to the following proposition which is a generalization
of a result due to Nadler [9].

TarorEM 5. Let T,: X—X be a function with ar least one fixed point a, for each
n=1,2,.. and let Ty: X—X satisfy the hypotheses of Theorem 4 with the same
o, B, y. If the sequence T, converges uniformly to T, then the .s'equence a, converges
10 ay, the unique fixed point of T,.

Proof. Assume a, # a,, then
d(an, a0)<d(T,a,, Toa,)+d(Tya,, Toap)
<d(T,a,, Toa,)+a(d(a,, as))d(e,, ag)+ .
+B(d(@, a0))[d(a,, Toa,) +d(ay, Toao)]+

+(d(ay, 20)) (e, Toao)+ d(ao, Toa,)]
Hence we get
(10) ’ d(a,, ag)< [ 1+8(d(a,, ao))+7(d(a,.> )
1~a(d(a,, as))—2y (d(a,, ag))
Let g,>0 be arbitrary and choose &;>0 such that

o< [1 o (80) ~ 2}’(50)]
1+ B(eo) +7 ()

j'd(Tn s To L‘l,,) .
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Since {T} ~ 1 converges uniformly to T, so there is 2 K and a positive integer N
such that for all K>N and for all x, d(Tyx, Tyx)<e,.

CLam. For all i=N, d(a;, ag)<s,.
Suppose not. Then there exists a j> N such that

(1 d(aj,‘ao)>8u .

Since a, B, y are monotonically decreasing functions, so by (11), the relation (10) gives

1+ B(eg) +7y(e0)
1—a(ee)—2y(eo)

which contradicts (10). Therefore a,—a,.

d(a;, ag)< d(T;a;, Toap) <e,

THEOREM 6 (cf. [6]). Let (X, d,) be a compiete metric space for eachn = 0,1,2, ...
and suppose {d,}ny comverges uniformly to d,. Let T,: (X, d)—(X, d,) satisfy the
hypotheses of Theorem 4 with the same continuous o, B, y for all n=1,2, ... and
let a, be the fixed points of T, forn =1,2, ... If a mapping T,: (X, dy)—(X, dy)
is defined as the do — pointwise limits of T,,, then 3> o5 the unique fixed point of T.

Proof. First we shall show that T} satisfies (9) with respect to d,. Now
do(Tox, Toy)<do(Tox, Tpx)+do(Tx, Ty +du(T,p, Tpy)
<do(Tox, Tpx)+ d(Tox, T+ e+ do(T,7, To)
(the latter inequality is valid for n>N)
<do(Tox, T,%)+a(dy(x, 1) d(x, y)+
+B(d,(x, M)A, x, T,x) + 4,0, Ty)l+
+v(d(x, »)d(x, TN+ 4,0, T,0)]+
+do(T,y, Toy)+e
<dy(Tox, T,x)+o(d,(x, ¥)) [dolx, y)+e]+
+B(d(x, M) do(x, T, %)+ e+ do(y, T, ) +e]+
+y(dyx, y) [do(x, T,3) +e+do(y, T, %) +e]+
+do(T,y, Toy)+e.
As n—oo we get
do(Tox, Toy)<a(dolx, Y)[do(x, ¥) +e]
+ B (dolx, 1)) 1do(x, Tox)+e+do(y, Toy) +el

+7 (do(x Y))[do(x: Toy)+etdy(y, Tox)+e]+e.
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Since this is true for every e>0 we get
do(To, Toy)<a(do(x, 1) dol, 1)+ B (dox, 1) [dolix, Tox)+ oy, To )]+
+y{dolx, W) o(xs Toy)+do(v, Tox)] .
Now
do{ay, 6) <o Ty, Tuto)+do(Ta05 To )
KTy, Tyt0)+e+do( T, Todo)
<o (dns 80)A@n> @0+ B (s 60)) 4> Tut) + (a0, T,a0)]+
+7(d(a,, 80))[d(a,, Tyao) +d,(ao, Tya)]+e+do(T, a0, Toao)
(f a, # ap)
Lo (dya,, ap))[dolay, ao)+el+ B(d,(ay, a0)) [do(Tydg, To o) +]+
+9(d (s a0)) (o, @)+ 26+ do(To o, Tya0)+e]
+e+dy(Tpay, Toao) -
Hence .
dy(ay, ag)<oz+ B (d{a, a0) [dol(:’; ag, Toao)+e]+
+9 (dn(ani ao)) [d(Tyao, Toao)+3e]+
e+dy(T, a0, Toap)
I1-o (dn(an > “o)) -2y (dn(ay; s ao)) ’
Thus for any >0 there exists an N(e) such that n>N(e) implies that

3dy(T, a0, Toao)+ 6
1_“(d0(an’ aO))_z'y (do(f’m ao)) )
Let &, >0 be given. Take & = #5[1—a(e;)—2y(e.)]e;. Let n be so large so that

dO(am aO) <

n2=N(e) and do(T,a,, Toae)<%[1—ule)—2y(e;)]e;. For these n, if dy(a,, ap)=e,

we get dgy(a,, ap)<e; and we arrive at a contradiction. This completes the proof.

2. There exists a local form of Banach’s fixed point theorem [7]. Its analogue is
THEOREM 7 (Localization of Theorem 2). Let )

S(xg, 1;) = {xeX: d(x,xp)<r}
be a sphere in X and let T: X—X be such that for every x, y € S(xo, r) we have
d(T, Ty)<ad (s, )+ dx, T) +3d(y, T9)+31d(x, Ty)+d(y, T
for some «, B,7,5 ER+ with a+p+y+28<1. If
(12) d(xg, Txp)<(1—=Ar  where A= (x+B+8)/(1—y=3),-
then T has a unique fixed point. l
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Proof. By (12) x, = Tx, € S(x,,r). Now
d(xy, %) = d(Txo, Txy)
Sod(xg, ¥1)+ Bd(xo, Toxo)+ydixy, Tx )+ 01d(xg, Txy)+ dxy, Txp)]

ie., d(xy, x2)<(1—A)Ar. Hence d(xo, x,) <(1+4)(1-A)r. Suppose

d(xg x) <A+ A+ + 2" H(A=D)r
and that

A Xy X)SAT A=D1, Xy =Txyog, n=1,2, ...
Then
d(x,, Tx,) = d(Tx,—_y, Tx,)
Lod (3, g, %)+ (%, 1, TXy 1) +vd (%, TX,)
+6[d(xyyq, Txp)+d(x,, Tx,- 1,

ie., d(xy, X1 )<= A"r. This implies

d(Xgs Xpr)SU+A+ L +ANA-Dr<r.
Thus the sequence Xo, Xy41 = I%,, n20, is contained in S. Again

A, 5 ) S+ ok (A= Dr<AT—0 a5 mowm.
Since S is also complete, limx, = & for some £ S. But
Aty 11, TE) = d(T,, TE)
<d(%y, O+ B, TH)+9d(E, TO+8[d(xy, TO+d(E, Tx)]
<ad(x,, &)+ Pd(x,; Xy 1)+ 93 (Xps 1, TE+0d(%y, Xps1)
+8d(xys 1, TO+d(E, X)+0d(60115 %) +7d(Es Xpr1) -

Hence x,,,—T¢ as n—oo, ie., & is a fixed point’ of T. Ijniqueness of & is obvious.

3. Ciric’s fixed point theorem can be extended to multivalued mappings. Let
F(X) denote the family of all nonempty closed and bounded subsets of a given
metric space X, H(4, B) the Hausdorff metric [8] for 4, Be #(X) and let D(x, 4)
= inf{d(x,»): yed, where d¢€ F(X)}.

TuroreM 8. Let F: X—X bé a multivalued function such that the diagram of
F is closed and that ' )

H(F(%), FO))<od(x, )+ BID(x, F6))+D(y, FO)+
+7[D(x, F())+D(y, F)]

where a>0, >0, y>0 with a+2p+2y<1. Then F has a fixed point.
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Proof. Pick any x, & X and choose x; € F(xo). If H(F(xo), F(x,)) = 0 then
F(xy) = F(x,) and hence x; € F(x)), ie., x; is a ﬁxe.d point of F. Therefore we
may assume that H(F(xo), F(x,))>0. By definition, if A>H (F(x,), F(x,)), there
exists x, € F(x,) such that d(x;,x,)<h. Let h = A7 "H(F(xo), F(x,)) where A
= (@+2B+29)"? (A,<1 and that we may assume 1, >0). Then

d(xl: x1)<'11_1H(F(xo): F(xj))
<A (g, x)+BID (v, FOx))+ D (x, Fx))]
+91D (xo, F(x))+ D (x4, F(x))]]

<A od (g, x,)+Bld (%o, X))+ d(xy, x)]+y[d(x,, x,)11,
ie.,

d0xys %)<gd(xo, %) where g = A7 a+B+Hp/(1—A7 B-ATp <1 .

Let us suppose that (F(xi_l),F(xi))>0 for i>2. By induction we get Xigq
€ F(x;) such that

d(¥e, Xi41)<qdlx; -1, x)< o <4 (xg, %)
Now, if n>m
A%, X )K"+ + o+ 0" Yd (g, ;)

q

m
< dixy, x,)—0 as m—co .
-9

1

Thus the sequence {x;}{2, is a Cauchy sequence and since X is complete, {x,}2,
converges to Py e X. Since the diagram of F is closed, lim{F(x)}=, = F(Py).
But x;€ F(x;_y) for all i = 1,2, ... Hence Py e F(P,). This completes the proof,
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