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by

Karol Borsuk (Warszawa)

Abstract. Let 2° denote the collection of all compact, non-empty subset of a metric space X.
If A, B 2", then setting 0c(4, B) equal to the least lower bound of the set of all numbers & > 0
such that there are a map f: A~~B and a map g: B—A satisfying the condition Q( fx), x) <€
for every x € 4 and g(g(3), ¥) < & for every y ¢ B, we get a well-known continuity metric g, in 2 .
Replacing, in this definition, maps by fundamental sequences, one obtains another metric g, in 2 2%,
It is o.(4,B) = gF(A B) and if 4,BeANR, then g4, B) = g (4, B). It is shown that if
Ay, A1, Agy ... €2% and if lim gp(dy, 4n) = 0, then some shape properties of 4, (for n=1,2,..)
pass onto A,. n=e

1. Introduction. By a compactum we understand a metric, compact and non-
‘empty space. It is well known that for every metric space X the collection 2% of
all compacta lying in X’ may be regarded as a metric space 2% in which the distance
ou{4, B) of two compacta 4, Be2¥ is given by the Hausdorff formula

(1D 0n(4, B) = Max[Supg(x, B), Supe(y, A)].
xed yeB .

The Hausdorff metric py plays an important role in topology, though the
topological properties of compacta 4, B have no influence on the distance gg(4, B).
So, for instance, each compactum 4cX is in 2§ the limit of a sequence of finite
compacia.

There have been several attempts (see [2] and [4]) to introduce in 2% other
metrics, for which if compacta A;, 4,, ... converge to a compactum 4o, then
some topological properties of all 4, pass onto the limit 4. This is the case, in
particular, with the metric g. (called the mefric of continuity), defined as follows
(compare [2], p. 169):

Let A, Be2¥ and let B* denote the collection of all maps (= continuous
functions) of 4 into B. If fe B4, then let us denote by | f] the supremum of numbers
e(x, flx)) for xed. Setting
12 oc(4, B) = Max{Inf|f], Inf 11,

. feBA  fed®B
we get the metric of the continuity gc. Let 2% denote the collection 2% metrized
by g¢. One shows that if 4, € 2% is in 2% the limit of a sequence 4, 45, ... of com-

2%
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pacta, then some global topological properties of the sets 4, pass onto 4, (see
Corollary (7.7) in the sequel). Observe that the same holds for the important fixed
point property.

In fact, if there exists a map g: dy—4, and a number ¢>0 such that ¢ (x, g (x))

>¢ for every point x € 4, then there is an index v, such that gq(d,,, 4¢) <%e. This.

means that there are two maps i
fi A,;—4, and f: Ag—A,,
such that |f|<4e and |f|<Z%e. Then the map
g9’ =Jaf: A4,

satisfies, for every point x e 4,, the condition

o(g'®), x) = o (Jaf (), x)=0(af(x), 7)) —a (Jaf(x), gf (%)~ o (f(x), x)
>e—te—4e=0.
Hence A, does not have the fixed point property.
Another property of the metric g is given by the following proposition:

(1.3)  Let Ay, Ay, 45, ... be a sequence of compacta lying in a space X such that

lim oc(d,, 4o) = 0. If 4, is, for n = 1,2, ..., homotopically dominated by
n=ow
a compactum B and if Ay € ANR, then A, is homotopically dominated by B.

Proof. The hypothesis that 4, is homotopically dominated by B means that
there exist two maps
fit 4B and f,: B—4,
such that f,f,=~i/4,. Moreover, lim oc(4,, 4g) = 0 implies that there exists a se-

quence of positive numbers &, &, ...
n=1,2,.. there exist maps

converging to zero and such that for every

o A4, and 4, 44,

such that |o,| <g,, |4,/<e,. Setting

In =f;|&n: AO_—)B: gn = dn.ﬁ: B——)AO s

one gets maps. such that §,g,: Ag—4, and
gngn = aﬂﬁlﬁl&nza”aﬂ t
where o, 8,[<2s,. But it is clear that this inequality and the hypothesis 4, € ANR
imply that for ¢, sufficiently small, o, 8,~i[4,. Hence §,g,~i/4, and consequently
4y is homotopically dominated by B.
Observe that (1.3) fails if we omit the hypothesis 4, € ANR. In fact, if 4, de-
notes the diagram of the function

. [(m 2m 1
y=sin|=+ — for - <x<1
2 . x n

©
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and A4, denotes the closure of the set {J 4,, then one easily sees that lim 0c(A4,, Ag)
n=1 =00
= 0 and that 4, is, for n = 1, 2, ..., homotopically dominated by the set B con-
sisting of only one point. However, 4, is not dominated by B.

. Thus the metric ¢; has some important qualities, in particular if we consider
compacta which are ANR-sets. However, in the case of compacta with more
complicated local topological properties, this metric cases to be satisfactory. This
is quite natural, because the definition of g, is based on properties of maps of one
compactum into’ another, For compacta with complicated topological properties
the collection of such maps may be very limited and it does not give a reasonable
base for estimating the distance of two compacta.

In the present paper I introduce another metric in 2%, called the fundamental

‘metric. Its definition is a quite natural modification of the definition of the

metric g, where instead of maps we consider the fundamental sequences, which
are a basic concept for the theory of shaps. We assume as known the most elemen-
tary notions and results of the theory of shape. The reader can find them in [11.

2. Fundamental metric. Let 4, B be two compacta lying in a metric space X’
and let M be an AR-space containing X. By g5 (4, B) we denote the infimum of
the set of all positive numbers ¢ satisfying the following condition:

There exist two fundamental sequences

f={fe4: B, T={f B, Gu
such that

(2.1)  There is a neighborhood (U,V) of the pair (4, B) in (M, M) such that for

almost all k: o(x, filx))<e for every xe U, o(y, fily))<¢ for every ye V.

Let us prove the following
(2.2) THEOREM. Qf s is a metric.

Proof. 1t is clear that gp (4, B) = gp 3(B, 4)>0 and that oru(4,B) =0
if and only if 4 = B. It remains to show that gy, satisfies the triangle inequality.
Let 4, B, Ce2¥ and let

.3) or (4, B)<e and g u(B, C)<y.
In order to prove the triangle inequality it suffices to show that then
or,u(d, C)<e+r.
By (2.3} there exist two fundamental sequences
f={fo 4 Bhun> J={5 B Ahru

satisfying condition (2.1) and two fundamental sequences

g = {gkr B, C}M,Ms é = {glu C, B}M,M
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satisfying the following condition:

(24) There is a neighborhood ( V', W) of (B, C) in (M, M) such. that for almost
all k, g(x, gy(x))<n for every xe V', o (v, gi»)<n for every ye W.

Since we can replace ¥ and ¥’ by arbitrary smaller neighborhoods of B in M,
we may fix U and assume that ¥V =V’ is 50 small that

fdvycU for almost all k.
When ¥ is fixed, we can select a neighborhood U'cU of 4 in M so that
AUV
and we can assume that the nejghborhood W of Cin M is so small that

U

for almost all &,

for almost all k.

Now let us set

b = giufr» Ek=fkﬁk for k=1,2,..
Then

ho={h, 4, Chaupe=9f and h={h, C =14
are fundamental sequences.

If xeU’, then
o (x, I(®) = e(x, g /i) < (x, A+ e (Al%), gufil®) <e+7

for almost all k, because xe U'cU and fi(x) € ¥ for almost all k.
Moreover, if ze W, then §i(z) € ¥ and consequently

e (Za Ek(z)) =0 (z9fk§k(z)) < (Z’ ﬁk(z))'*' 2(gu2), fkgk(z)) <n+e
for almost all k.
It follows that gp y(4, C)<e+# and the proof of Theorem (2.2) is finished.

Thus we have shown that the collection 2% of all compacta lying in X with
the metric gr j is a metric space. We denote this space by 2% -

3. Role of the space M. Now let us show that 2%\ does not depend on the
choice of the space M e AR containing (metrically) the space X.

(3.1) TuEorREM. If 4, Be 2% and if A U B is metrically contained in two AR~
spaces M, M’, then op (A4, B) = gr u (4, B).

Proof. It suffices to show that if gp y(4, B)<sg and if e<1, then op p{d4, B)<7.

It is clear that there exist two maps '

o M—M', & M'—-M

such that

32 a(x) = 4(x) = x for every point xed v B.

icm
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The inequality or a4, B)<s implies that there exist two -fundamental se-
quences

f: {f;cs 4, B}M,M ’

satisfying condition (2.1).
Setting

f= {fk’ B, A}M,M

gr = ofy8: M'>M',  §, = of&: M'—>M'

for every k = 1,2, ..., we get two fundamental sequences

g = {gi, 4, Bhann

It remains to show that

5 = {gks B, A}M’,M"

(3.3)  There is a neighborhood (U’, V') of (4, B) in (M, M') such that for almost

all k: o(x, gy(x))<n for every xe U’ and o(x, §i(x))<n for every xe V.

In order to show this, let us observe that the neighborhood (U, V) of (4, B)
in (M, M) satisfying (2.1) may be replaced by any smaller neighborhood of (4, B)
in (M, M). By virtue of (3.2), we can select (U, V) so that

(3.4) I x,yeUuVand o(x,y)<e then o(x(x), a(y))<e+i(n—e).

Since f and f are fundamental sequences, there exists a neighborhood (Up, ¥5)
<=(U,¥) of (4, B) in (M, M) such that ‘

3.5) flUpeV  and  f(Vo)<U for almost all k.

Now we can select a neighborhood (U’, ¥’) of (4, B) in (M’, M") so that
3.6) @(UN<U,, aWHcV, ‘
and that
3.7 o(at(x), x)<3(n—8) for every xe U' L V"

If xe U’, then (3.6) and (3.5) imply that 8(x) e Uy U and that £,8(x) & ¥ for
almost all k. Thus we infer by (2.1) that

o(fid(x), &) <s
It follows by (3.4) that
o(of,8(), et (x))<e+%(n—e) for almost all k.

for almost all k.

Using (3.7), we infer that for every point x € U’ and for almost all k:

0(g:09), ¥)<e (@8(x), 0d (X)) +¢ (#8(x), %)
<e+i(n—a+i(n—e) =1.
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Similarly, using (2.1), (3.5), (3.6) and (3.7), one gets for every point xe& ¥’
and for almost all k:

0 (0x), ¥) <o (eht(x), ad (%) + e (#a(x), x) <1 .

Thus condition (3.3) is satisfied and the proof of Theorem (3.1) is concluded.

1t follows by Theorem (3.1) that the index M in the notations gr,,, and 2’§,M is
superfluous. Thus in the'sequel we shall write g instead of gr, and 2% instead
of 2§_M. '

4. Some relations between g5, ¢ and gr. Let us prove the following -

(4.1) TuEOREM. If 4, B are compacta lying in a space X then oy(A, B)<gp(4, B)
<gc(4, B). R

Proof. Tf gz(4, B)>&>0, then in at least one of the sets 4, B (say in 4) there

exists a point @ whose distance from the other set (hence from B) is greater than e.
I

_f={ﬁc’AsB}1\l,M’ j= {fksB:A}M,M
are fundamental sequences, then for almost all k the point f;() lies arbitrarily close

to B, and hence g(a, fi(d))>¢. It follows that condition (2.1) is not satisfied, .and
hence gz(4, B)>¢. Thus the inequality

au(4, B)<gs(4, B)
is proved.
Now let us assume that gc(4, B)<e. Then there exist two maps
f: A—B, f: B4
such that
o(fx),x)<e for every xed - and @(f(3),y)<e for evéry yeB.
Then there are two maps ¢, §: M—M such that
g(x) =f(x) for every xed and g()=F() for every yeB.

It follows that there is a neighborhood (U, V) of (4, B) in (M, M) such that

e(g(), x)<e for every xe U
and
) 0(80»),y)<e  for every ye V.
Setting .
gr=4g R

and gp=g for k=1,2,..

ome gets two fundamental sequences

9={004,Bhyys 4 =1{0uB, Ayxn
such that .

o(x, gu(®)<e -for every xe U and o(v, i)<e for every ye ¥

It follows that ge(4, B)<e and the proof of Theorem (4.1) is finished.
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(4.2) ExampLE. Let 4 denote the segment <0, 1> and B —the set consisting
of its two endpoints, and let X = M = E'. Then gg(4, B) = £. Moreover, if
f= {fu» A, B}gs, 5+ is & fundamental sequence, then for almost all & the set f£i(4)
lies in an arbitrarily given neighborhood of one of the points (0) and (1). It follows
that for every positive number <1, the condition g(f;(x), x)<e for every point
xe A cannot be satisfied for almost all k. Hence gz(4, B)>¢ and consequently
or(4, By=1. Thus in this case gp(4, B)<ox(4, B).

(4.3) ExampLE. Consider in the plane X = E? the square K, consisting of
all points (x,¥) with 0<x, y<1 and denote by K,,, for every m = X1, 12, ...,
the square consisting of all points (x, y) with —1/3m<x, y<1+1/3m. Let L de-
note the segment with endpoints (0, 0) and (3, 0) and let B, denote, forn = 1,2, ...,
the closure of the diagram of the function

1 1
y = —sin~ where O<x<%.
4n x

Let A, denote the boundary of the square K, and let

A, =(ANDUB, for n=1,2,..
. e
0,1 (LD
Un 1’ K—n
|
| |
| % Lo
AH
U, |K *
B, z
(Tl())
1
{ (0,0) V L (Lo . )

Consider now, for n =1,2,... a map
. Jur Ag—4y,

and let a denote the point (3, ). It is clear that f, is _null-homotopic in 4,, hence
also in E*\(a). It follows that f, is not homotopic in E>\(d) to the identity map
is,: Ag—Ay. We infer that | f.] =%, because otherwise the point a would not belong
to any segment with endpoints x and f(x) and £, would be homotopic in EXNa)
to iy, Hence '

(4.4) 04, d)zy for n=1,2,..


GUEST


198 K. Borsuk

Now let us set
U,=K\NK_, for n=1,2,..

1t is clear that U, is a neighborhood of 4, and also of 4, in E* foreveryn = 1,2
Moreover, it is clear that there exists a map ’

gt E*—E?
such tl}at 9.(p) is, for every point p e U,, the intersection of the ray starting from
the point (%, 3) and passing through the point p. Then
V2 .
2(g.Ap), P)< I for every point pe U, .
Setting
) _
g9’ =9, forevery k=1,2,..,
we get, for every n = 1,2, ..., a fundamental sequence
g(") = {gl(c")’ An’ A()}Ez,E2 s

satisfying the' condition

43 o(gP®),p)< W for every point pe U, and for k= 1,2, ...

One easily sees that 4, is a fundamental retract of the set U,. Thus, for every
n=1,2,.. there is a fundamental retraction

) _ 77
fn - {rlf:")s U,,, A,,}Ez,Ez

and it is clear tha‘t.the maps r{": E2E? can be selected so that there exists
a sequence of positive numbers {e,} converging to zero and such that

e(ri™p), p)<e, for every point pe U,.
Setting .

(ORI )} )
9% o and “_7" = {g,(‘")’ 4y, An}El,Ez ,

one gets a fundamental sequence §™: A,—A4 £
2 : or eve; =
the condition B o w2

(4.6)

.., satisfying
()
o(g8 (), p)<e, for every point pe U, for n = 1,2, ...

It follows by (4.5) and (4.6) that '

n .

2
ortdo, 4;) < £ +ég
3n
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Con;equently the compacta A, 4,, .. constitute a sequence converging in the
space 2% to A,. By virtue of (4.4) we infer that

4.7)

The function assigning fo every compactum A €2 the same compactum
Ae2k is not always continuous.

Recalling Theorem (4.1), we infer that, in general, the metric gp is essentially
stronger than the metiic gc.

(4.8) Remark. It is clear that the compacta Ay, A,, ... considered in Ex-
ample (4.3) have the fixed point property. However, A, does not have this property.
Consequently the subset of the hyperspace 2% consisting of all compacta with the
fixed point property is, in general, not closed —contrary to the sitpation in the
space 2%

5. Case of ANR-spaces. We have shown that for arbitrary compacta the
distance gx(4, B) can be less than the distance 0c(4, B). There is another situation
as regards compact-ANR sets. Let us prove the following

(5.1) Tueorem. If 4, B are.compact ANR-spaces, then oA, B) = oc(4, B).

Proof. By Theorem (4.1) it suffices to show that if compacta 4, Be M€ AR
are ANR -sets and if o4, B)<s, then for every #>¢ there exist maps

f: A—»B and f: B—4

\

such that |f1, If1<n. .
Since A4, Be ANR, there exist a neighborhood (Us, Vo) of (4, B) in (M, M )
and retractions:

r: Uy—Ad, s:Ve—B.

If we replace (U, Vo) by 2 sufficiently small neighborhood of (4, B) in (M, M )
then we can assume that
rl<q—e and |sf<n—e.
Now let
' f={fis4,Blua and f={fu B, 4huu
be fundamental sequences satisfying (2.1). Then there is an index ko such that

SV, and B U .

Setting

f=sfiJd: A>B, [ =r1fi/B: B4,

we get two maps such that
0 (6, () < (¥, fial) + (o) o) <o+ (1 -8) =11
for every point x € 4, .
0 (%, 709) <0 (3%, Fedd) + 0 (Juo)s thio) <+ (1 —8) =

for every point x €& B. o
Hence |f]<n and | fl<n and the proof of Theorem (5.1) is finished.
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L)
6. Space 2% as a topological invariant of X. Now let us prove the following
(6.1) TueorEM. If X is homeomorphic io Y, then 23 is homeomorphic to 2.

Proof. Assume that X is a closed subset of a space M € AR and Y is a closed
subset of a space N € AR, and let i: X—Y be a homeomorphism. Then there are
two maps

o: M—N and @&: N-M
such that :

(62) «(x) = h(x) for every xeX and &(y) = h~*() for every ye Y.

Let us show that the function assigning to every compactum 4 <X the com-
pactum si(4)< Y is a homeomorphism of 2% onto 2J. 1t is clear that this function
is one to one. Since our hypotheses concerning 4 and ;! are symmetric, it suffices
to show that if 4,, 4, A,, ... are compacta in X such that

(6.3) lim gg(4,, 4o) = 0,
then )
(6.4)

lim gp(h(4,), h(4g)) = 0.

It follows by (6.3) that there exists a sequence &, &,, ... of positive numbers

converging to zero and such that for every n = 1,2, ... there are two fundamental
sequences

f(") = {f;\:(n): An’ AO}M,M and .f = {fljll)o AO: An}M,M

such that for every n = 1,2, ... there exists a neighborhood (U,, U,o) of (4,, 4)
in (M, M) and an index k, such that

(. /() <s,
e (x. /() <e,

Since (U,, U,o) can be replaced by any smaller neighborhood of (4,, 4,)
in (M, M) and since the set

for every xe U,
for k>k,.
for every xe Uy

(6.5)

@
A=A0UUAn
n=1

is compact, one easily sees by (6.2) that there exists a SEqUence #, 5, ... of positive
numbers converging to 0 and such that
(6.6) If x,x'eM, xeU, and o(x, %) <&, then g(a(x), a(x"))<n,.
Setting
9" = ofMa: N—N, 3P = afa: NoN

for every n = 1,2, ... and

A = (s Ay By ™ = (0, B, Andy

On a metrization of the hyperspace of a metric space 201

for m=10,1,2, ..., we get two fundamental sequences
97 = {gl, h(4), B Ao}y = £LOf P9,

9% = {4, h(4y), B4}y, x = 2 f™ 3,
forn=1,2,... .
One readily sees that for every m = 1,2, .. there exists a neighborhood
(V> Vao) of (R(4,), h(4y)) in (N, N) such that

(67) &(Vn) < Un 3 a(VnO) < Uno
and that
(6.8) a(e8(»), y)<n, for every point ye ¥, u V,q.

i yeV, then
o (v, ) = o(y, ofPa(3))
<o(y, B()+e(22(3), 8(y) -
By (6.7), «(¥) € U, and we infer by (6.5) that
0@, /"8 () <s, for

Using (6.6), we infer that o(«8(3), off a(y))<n, for k=k,. It follows by
(6.8) that

69

k>k, .

o, g (y)<2, for yeV, and k>k,.

If ye I},,o, then (6.7) gives &(y) e U,, and we infer by (6.5) that
o(@O), fMa(n)<e, for " kzk,.

Using (6.6), one gets g(o8(y), af,g")o‘c(y))<f7,, for k>k, and by virtue of (6.8) we
obtain :
(6.10) o(y, g)<e (v, M)+ 0 (421), AfPa(3)<2n,
for ye V,o and k>k,.

It follows by (6.9) and (6.10) that

0s(h(4,), h(4o)) <21,
hence lim gp(A(4,), h(4y)) = 0 and the proof of Theorem (6'71) is finished.
n=o

7. Homology properties and the fundamental metric. We use in this paper
the Vietoris homology theory. It is well known that if = {fi, 4, B}_M’ y is a funda-
mental sequence, then for every true cycle y = {y;} in A there exists a sequence
of indices #; <i,< ... such that, for every sequence of indices j;, j,, ... satisfying
the inequality j>i, for k =1,2,.., ¥ = {fily;)} is a true cycle in B. The

homology class of 3’ depends only on the homology class of y, and it does not de-
pend on the choice of the sequence of indices j;, j,, ... In the sequel we shall say
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that the true cycle y’ (just as any true cycle homologous to y in B) is assigned by fto

the true cycle y. - - -
Let f={f, 4, Bly,vand g = {9 A, B}y, be two fundamental sequences

and let ¥ be an open neighborhood of Bin N. The fundamental sequences f and

g are said to be V-homotopic (notation: _fg g) if the condition -

in ¥ for almost all k&

.1

is satisfied.

Now let us prove the following

(7.2) Lemva. Ler [ = {fi, A, B}y,y and g = {gy, A, B}y, y be two V-homo-
topic fundamental sequences, where V is a compact neighborhood of B in N. Then
Jor every true cycle y in A the true cycle y' and y"' in B assigned to y by f and g
respectively are homologous in V. T N

fld=~g/4

Proof. We may assume that

Y ={A0)} v = {a}s

where the sequence of indices j,<j,<... can be selected so that the mesh of the
cycle y;, (i.e., the maximal diameter of simplexes of 752 is so small that the homotopy

SlA=gi/ A

_implies that there exists in ¥ a chain s, with a mesh <1/k such that

inV

0y = i) — Gvs) -

It is clear that x = {3} is an infinite chain in ¥ such that Ox =y —y” Hence
¥ ~y in ¥ and the proof of Lemma (7.2) is finished.

We shall limit ourselves in the sequel to the case of true cycles with rational
coefficients. The maximal number of 7-dimensional true cycles in 4 homologically
independent in 4 is said to be the n-th Betti number of A. We denote it by p,(4).

(7.3) THEOREM. Let Ay, Ay, 4,, ... be compacta lymg ina space M e AR and
let hm gF(Av,AO) = 0. If pd,)<m for every v = 1,2, ..., then p(d)<m.

Proof Since for m = oo the statement is obvious, we can assume that m is
finite. Moreover, Theorem (5. 1) allows us to limit ourselves to the case where M is
the Hilbert cube Q.

Let &, = gx(4,, 4,). Then for every v=1,2,.
sequences

.. there exist two fundamental

{(v)
I ={f 4,, 45},
and a neighborhood ,,

IO = {70, 44, 4.}
Uo) of (4,, 4o) in (0,
o (%, fx)) <28, for
o(x. F(x) <28, for

0) and an index k, such that
xeU,,
xeU,

74 for k>k, .
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Let U be an arb1trary compact neighborhood of Ao in Q. By (7.4) there exists
an index v, such that

(7.5) U is a neighborhood of 4,, in Q,
(7.6) f(vu)%, gy

Consider a system 7, Y25 «s Ym+1 Of m-+1 true n-dimensional cycles in A,.
We infer by (7.6) and by Lemma (7.2) that the fundamental sequence ™ assigns
to those true cycles true z-dimensional cycles ¥}, y3, .vs Yo+ it 4,, homological
in U to the true cycles ¥, 92, «.., Yms1, Tespectively. Since p,(4,,)<m, there exist
integers I, L, ..., I,1y not all vanishing and such that

Lyith Yot o+l Vmer~0 in A, cU.

,m+1, we infer that
in U.

Since y;~7; in U for i =1,2, ..
Ly th vt o Flhys s Yme s ~0

Thus we have shown that the system yy, Y5, ..., Ym+1 1S homologically dependent
in every neighborhood U of 4, in Q. It is known ([3], p. 208) that then this system
is homologically dependent in A,; hence p,(4y)<m and the proof of Theorem (7.3)
is finished.

Theorem (7.3), combined with Theorem (4.1) give the following

(7.7) COROLLARY. If Ag, Ay, 4,, ...
lim oc(4,, Ag) = 0, then the inequality p(A,)<m for v=1,2,..
Y=

pn(AO) m.

8. Quasi-domination and the fundamental metric. If 4, B are compacta lying
in spaces M, N & AR respectively and if U is a neighborhood of 4 in M, then 4 is
said to be U-dominated by B (notation: A%B in M; see [3], p. 198) if there exist

are compacta lying in a space X and if
implies that

two fundamental sequences

[={fis4, By aad J={f, B, Awu
such that ff =iy If the relation A% B in M holds true for each neighborhood U

of 4 in M, then A is said to be quasi-dominated by B (notation: 4 = B). It is known
(3], p. 203) that the choice of spaces M, N e AR containing 4 and B is immaterial

for the relation A%B. Moreover, it is known (3], p. 210) that the relation 4 <q B
implies that p,(4)<p,(B) for every n =10,1,2, ... and that the movability of B
implies the movability of A. :

Let us prove the following

(8.1) THEOREM. Let Agy, Ay, A4, ... be compacta lying in a space. M € AR and

' let lim 05(A,, Ao) = 0. If B is a compactum such that Avé B for everyv=1,2, ..,

then A,<B.
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Proof. By Theorem (5.1) we can assume that 4 and B are subsets of the Hilbert
space E®. Let &, = ox(4,, 4). Hence lime, = 0 and for every v = 1,2, ... there

exist two fundamental sequences e ‘ ‘

f(v) = { M s Ay, AO}E“’,E“‘ s f(v) = {fk(v) 4o, Av}Ew,Ew >
a neighborhood (U,, U,o) of (4,, 4p) in (E®, E®) and an index k, such that
(e, i) <2e,
o(x, k(V)(x)) <2,

We can assume that U, and U,, are closed in E®. Let H, denote the open

for every xe U,,
y " for k=k, .

(8‘,2) for every xe U,

ball in E® with centre (0,0, ..} and radius 2e,. Setting
e(x) = [(x)—x  for xeU,,
a0 = i) —x  for xeUy,
we get for every k>k, two maps:
a: U~H, and &: U,—H,.

Since H, € AR, we can extend o and & (for k>k,) to maps

B, B EoooE, .
Setting, for k>k,:

£ = x+BP(%)
KOG) = x+ BP0

we get maps f'V, f{®: E°—E® which coincide on U, and on U,, with £ and
p v
O respectively and which satisfy the conditions:

0%, i V) <26, 0(x, V() <28,

for every point xeE°. Setting f,™ =™ for k<k,, we easily see that
FO = {f™, 4,, A}po o is a fundamental sequence homotopic to £ and
F o { ), 4y, A,}go g is a fundamental sequence homotopic to 7 o

It follows that by replacing £ by £ and §® by 7™ we may assume
that the neighborhoods U, and U,, in condition (8.2) coincide with the whole
space E: hence

®

for € EY,

(8.3) F1<2e, and  |fP|<2s, for  k>k,.

Now consider an arbitrary open neighborhood U of 4, in E®. Then, for almost
allv, Uis a neighborhood of 4,. It follows by (8.3) that there exists an open neighbor-
hood U’'=U of 4, in E and an index v, such that for vv,:

8.4 fNUY<U  for almost all k&

On a metrization of the hyperspace of a metric space
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and that ‘
(8.5) U’ is a neighborhood of 4,.

Since A,,é B, we infer by (8.5) that A‘,ﬁ B for every v2v,. Consequently for every
v2v,; there exist two fundamental sequences

{g”, 4,, B} ro, pos QM = {4, B, A} pe, po

such that there exists a neighborhood U, of 4, in E® satisfying the condition
(8.6) 991U, ~ i1,

By (8.3)*the map fMf: E°SE® satisfies the  condition 1259 <48, for
k>k,. It follows that there exist sn index vo>v, and a neighborhood W of 4,
in E® such that

g(V)

in U' for almost all k.

8.7 SERE Wil in U for almost all k.
Without‘changing Vo, We can select the neighborhood W of 4, so that
(8.8) FoYwycU,, for almost all k.

Now let us set

ho= R, R =000 for k=12,..

Then
= {hy, Ao, B} o o = g(”")j(""): Ay—B,
= {I, B, Ay}po, g0 = FO%909: B—d,
are fundamental sequences. By virtue of (8.8) and (8.6
S
It follows by (8.4) that
bl W = £E0900 gCORE W fOOF 00w
Using (8.7), we infer that fi,h/W=i/W in U for almost all k, and hence Ao 1s
U-dominated by B. Since U was an arbitrary open neighborhood of 4, in E®
we infer that Aoé B and the proof of Theorem (8.1) is finished.

(8.9) PROBLEM. Is it true that if Ay, Ay, A,, ... are compacta lying in a space X
and satisfying the condition 11rn QF(A\,, Ap) =0 and if B is a compactum such that

Sh(4,)<Sh(B) for v = 1,2, ., then Sh(4g)<Sh(B)?

k
B

in U’ for almost all k.,

in U for almost all k.

9. Movability and the fundamental metric. A compactum A lying in a space
M e AR is said to be movable if for every neighborhood U of 4 in M there exists
a neighborhood U, = U of 4 in M with the property that for every neighborhood ¥
of 4 (in M) the inclusion
’ ir Uy—U .

3 — Fundamenta Mathematicae XCIV
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is homotopic to a map with all values in V. Let us say that U, realizes the movability
of A in U. It is well known that the movability of 4 does not depend on the choice
of the space M e AR containing 4 and that it is a hereditary shape invariant.

Let us prove the following

(9.1) THEOREM. Let A4y, 4., .. be compacta lying in a space X and let
limg(4,, 4g) = 0. If 4, is movable for v = 1,2, ..., then A, is also movable.
V=00

Proof. We may assume that X is a subset of the Hilbert cube Q and that
A, # dyforv=1,2,.. I ¢, = gx(4,, 4p), then for every v = 1, 2, ... there exist
two fundamental sequences

_f(v) = {flg‘,)9 Ava Ao} H] f(V) = {flfv); Aoa Av} -
and a neighborhood (U, U,) of (4,, 4y) in (Q, Q) such that:

%, ()<, for xeU,,
(9.2) QLe i) for almost all k.
0 (e, fOx))<2e, for xeUy,
Consider a neighborhood U of 4, in Q. One easily sees (because lim e, = 0)

Vo0

that there is an index v, such that

(93) U is a neighborhood of 4, , -
- (94) - There exists a neighborhood ¥V, of 4, (in Q) such that if xe ¥V, ye O
and o(x, y)<2s,,, then tx+(1—#)ye U for 0<t<1.
(9.5)  There exists a neighborhood W, of 4,, (in Q) such that if xe lWo, yeQ

and o(x, y)<2s,, then, tx+(1—#ye U for 0<s<1.

Since 4,, is movable, there is a neighborhood W; of A4, in Q realizing the
movability of 4,, in U. Since f*° is a fundamental sequence, there exists a neighbor-
hood Uy of 4, in Q such that Uyc ¥, n U, and that

(.6) P U

Let us show that U, realizes the movability of 4, in U. Consider a neighbor-
hoed ¥ of 4, in Q. By (9.6), (9.2) and (9.4) there is an index k, such that

©.7 FU)ew;  and  JOOUyilUy in U for kzk, .

Since J®) is a fundamental sequence, we infer by (9.2) and (9.5) that there exist
a peighborhood WcW, of 4, in Q and an index ko=k, such that

(9:8) fEW)eV  and SO Wailw
The inclusion Uy ¥, and (9.4) imply that
FeNU,~ijU,  in U.

It( f‘ollows b}lr (9.7) that there is a deformation in U carrying U, onto the set
o’ (Uo) = Wy Since W, realizes the movability of 4, in U, there is a deformation

for almost all k.

in U.

On a metrization of the hyperspace of a metric space 207
in U of the set f°)(U,) onto a subset Z of W. It follows by (9.8) that Z can be carried,
by a deformation in U, onto a subset of the set fo°(W)< V. Thus we have shown
that one can obtain from U,, by a deformation in U, a subset of an arbitrarily
given neighborhood ¥V of A,. Hence 4, is movable and Theorem (9.1) is proved.

(9.9) PrOBLEM. Let o be a hereditary shape property (that is, if Sh(X)=Sh(Y)
and X € o, then Y € «). Is it true that for every sequence Ay, Ay, ... of compacta lying
in a compactum X, the two conditions

1° lim gx(4,, 40) = 0,

V=00

2° dyeaforv=1,2,..
imply that Ay ea?
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