

Monotone decompositions of continua

b

Z. M. Rakowski (Wrocław)

Abstract. The aim of the paper is to prove that for every metric continuum X and for every class $\mathcal H$ of metric continua there exists a unique upper semi-continuous monotone decomposition of X which is minimal among all upper semi-continuous monotone decompositions of X, each of which has the property that each subcontinuum of X in $\mathcal H$ is contained in some element of the decomposition. The results are applied to continua irreducible about a finite subset.

1. Introduction. A continuum is understood to mean a compact connected metric space. By a mapping we mean a continuous function. If X is a continuum, then by a decomposition of X we mean a family \mathcal{D} of mutually disjoint closed subsets of X the union of which is the whole X. The reader is referred to [3] and [4] for the definitions of terms not defined here. In this paper it is proved that for every continuum X and for every class \mathcal{A} of continua there exists a unique upper semicontinuous monotone decomposition of X which is minimal among all upper semicontinuous monotone decompositions of X, each of which has the property that each subcontinuum of X belonging to \mathcal{A} is contained in some element of the decomposition. The structure of this minimal decomposition is shown in the third section. The fourth section contains investigations of the decomposition space of an \mathcal{A} -admissible decomposition (see below) of a continuum. The results are used to generalize J. M. Russell's results concerning monotone decompositions of continua irreducible about a finite subset.

The author is very much indebted to Professor J. J. Charatonik for his valuable advice and help during the preparation of this paper.

- 2. Admissible decompositions. Let X be a continuum and let $\mathscr A$ be an arbitrary class of continua. A decomposition $\mathscr D$ of X is said to be $\mathscr A$ -admissible if
 - 10 D is upper semi-continuous,
 - 2° \mathscr{D} is monotone (i.e., each element of \mathscr{D} is a continuum),
- 3^0 every subcontinuum of X which belongs to $\mathscr A$ is contained in some element of $\mathscr D$.

For every class $\mathscr A$ of continua, every continuum X has an $\mathscr A$ -admissible decomposition, for instance the trivial one, i.e., such that the whole X is the only element of the decomposition.

Let X be a continuum. Consider the family $\mathscr L$ of all layers of all irreducible subcontinua of X. Putting $\mathscr L$ for $\mathscr A$ in the definition we obtain the admissible decomposition in the sense of [2], p. 115.

If $\mathscr D$ and $\mathscr E$ are upper semi-continuous monotone decompositions of a continuum X, then $\mathscr D \leqslant \mathscr E$ means that every element of $\mathscr D$ is contained in some element of $\mathscr E$, i.e., $\mathscr D$ refines $\mathscr E$. Clearly \leqslant defines a partial ordering on the family of upper semi-continuous monotone decompositions of X.

THEOREM 1. For every continuum X and for every class $\mathscr A$ of continua there exists a unique $\mathscr A$ -admissible decomposition of X which is minimal among all $\mathscr A$ -admissible decompositions of X.

Proof (cf. [6], the proof of Theorem 3, p. 8 and [2], the proof of Theorem 3, p. 118). Let $\{\mathscr{D}_{\alpha}: \alpha \in A\}$ be a chain of \mathscr{A} -admissible decompositions of X, and for $z \in X$ and $\alpha \in A$ let Z_{α} be an element of \mathcal{D}_{α} containing z. For fixed $z \in X$ $\{Z_n: \alpha \in A\}$ is a chain of continua and we denote by Z the intersection of this chain. Denoting by \mathcal{D}_0 the collection $\{Z: z \in X\}$ we see that \mathcal{D}_0 is a decomposition of X into continua. Let K be a subcontinuum of X containing z and belonging to \mathcal{A} . The decompositions \mathscr{D}_{α} , $\alpha \in A$ are \mathscr{A} -admissible, and thus we have $K \subset Z_{\alpha}$ for each $\alpha \in A$; hence $K \subset \bigcap \{Z_{\alpha} : \alpha \in A\} = Z$. Therefore \mathcal{D}_0 satisfies condition 3° . To prove the upper semi-continuity of \mathscr{D}_0 suppose that U is an open subset of X containing Z which belongs to \mathcal{D}_0 . For some $\alpha \in A$ we have $Z_n \subset U$ and since \mathcal{D}_n is upper semi-continuous, some open subset V of U contains Z and is the union of elements of \mathscr{D}_{α} . Thus V contains Z and is the union of elements of \mathscr{D}_{0} . Therefore \mathcal{D}_0 is upper semi-continuous according to [3], § 19, II, Theorem 4, p. 185. Thus \mathcal{D}_0 is \mathcal{A} -admissible. Since \mathcal{D}_0 refines each \mathcal{D}_{α} , it is a lower bound for the chain. Applying the Kuratowski-Zorn lemma we conclude that there exists a minimal \mathscr{A} -admissible decomposition of X. Let \mathscr{D} and \mathscr{E} be two \mathscr{A} -admissible decompositions of X, and suppose that some element of $\mathscr E$ meets two different elements of $\mathscr D$. Further, let \mathscr{E}' be a decomposition of X into components of the non-empty intersections $D \cap E$, where $D \in \mathcal{D}$ and $E \in \mathscr{E}$. We show that \mathscr{E}' satisfies condition 3° . In fact, if K is a subcontinuum of X which belongs to \mathcal{A} , then there are elements D and E in $\mathscr D$ and $\mathscr E$ respectively such that $K\subset D\cap E$. Since K is a connected set it is contained in a component of $D \cap E$, i.e., in an element of \mathscr{E}' . The decomposition \mathcal{E}' is upper semi-continuous (see [2], Lemma 3, p. 118) and monotone. Thus \mathscr{E}' is admissible. Since \mathscr{E}' refines \mathscr{E} , \mathscr{E} is not minimal. It follows that a minimal \mathcal{A} -admissible decomposition of X refines every \mathcal{A} -admissible decomposition of X, and thus the uniqueness is established. This completes the proof.

Another form of Theorem 1 is the following

Theorem 2. For every continuum X and for every class $\mathcal A$ of continua there exists a unique monotone mapping φ of X onto $\varphi(X)$ such that for each monotone mapping f of X onto f(X) with the property that each subcontinuum of X belonging

to $\mathcal A$ is mapped onto a point under f, there exists a unique mapping q of X onto f(X) such that the diagram

$$(2.1) X \xrightarrow{\varphi} \varphi(X)$$

$$f(X)$$

commutes and g is monotone.

Proof. Consider the minimal \mathscr{A} -admissible decomposition of X described in Theorem 1 and denote by φ the quotient mapping of X onto the induced decomposition space. Taking an arbitrary point $z \in X$, we infer that $f(\varphi^{-1}(z))$ is a point. Denote this point by g(z). If $z = \varphi(x)$, then g(z) = f(x); thus $g(\varphi(x)) = f(x)$ for every $x \in X$, i.e., diagram (2.1) commutes. We infer that g is continuous, unique and monotone in the same way as in the proof of Theorem 7 in [1], p. 30.

Let \mathscr{A} be a class of continua. A continuum M is said to be \mathscr{A} -monostratic if the minimal \mathscr{A} -admissible decomposition of M is trivial, i.e., the whole M is the only element of the decomposition.

THEOREM 3. Let $\mathcal A$ be a class of continua. Every $\mathcal A$ -monostratic subcontinuum of a continuum X is contained in some element of the minimal $\mathcal A$ -admissible decomposition.

Proof. Suppose that there exist two different elements D' and D'' of the minimal \mathscr{A} -admissible decomposition \mathscr{D} of X such that $D' \cap M \neq \emptyset \neq D'' \cap M$. Therefore the decomposition \mathscr{D}' of M into components of the non-empty intersections $D \cap M$, where $D \in \mathscr{D}$, is upper semi-continuous (see [2], Corollary 1, p. 117) and not trivial. Since \mathscr{D} is \mathscr{A} -admissible, if K is a subcontinuum of M belonging to \mathscr{A} , then there exists an element D in \mathscr{D} such that $K \subset D$. The continuum K is a connected set, hence it is contained in a component of $D \cap M$, i.e., in an element of \mathscr{D}' . Therefore \mathscr{D}' is \mathscr{A} -admissible. Hence M is not \mathscr{A} -monostratic and the proof is complete.

COROLLARY 1. Let $\mathcal A$ be a class of continua. If every element of the minimal $\mathcal A$ -admissible decomposition of a continuum X has an empty interior (with respect to X), then every $\mathcal A$ -monostratic subcontinuum of X has an empty interior.

The conversion of Corollary 1 is not true (see [2], the example on p. 128).

3. The structure of the minimal \mathscr{A} -admissible decomposition. We use the basic ideas employed in [2] to describe elements of the canonical decomposition of a continuum, and earlier in [1] to describe elements of the canonical decomposition of a λ -dendroid.

Let a continuum X and a class $\mathscr A$ of continua be established. Firstly, for $x \in X$, we define (by transfinite induction) an increasing sequence of continua $A_{\alpha}(x)$ each of which contains the point x.

Let $x \in X$. Consider all subcontinua K(x) of X belonging to $\mathscr A$ such that $x \in K(x)$. Put

$$(3.1) A_0(x) = \overline{\{x\} \cup \bigcup K(x)}$$

where the union on the right side of the equality runs over all continua K(x) belonging to $\mathscr A$ and such that $x \in K(x) \subset X$. Now suppose that the sets $A_{\beta}(x)$ are defined for $\beta < \alpha$, and put

(3.2)
$$A_{\alpha}(x) = \begin{cases} \bigcup \left\{ \operatorname{Ls} A_{\beta}(x_n) \colon \lim x_n \in A_{\beta}(x) \right\}, & \text{if } \alpha = \beta + 1, \\ \bigcup A_{\beta}(x), & \text{if } \alpha = \lim_{\beta < \alpha} \beta, \end{cases}$$

where, in the case $\alpha = \beta + 1$, the union is taken over all convergent sequences of points $x_n \in X$ with $\lim x_n \in A_{\beta}(x)$. So the sets $A_{\alpha}(x)$ are well defined for $\alpha < \Omega$. The sequence $A_{\alpha}(x)$ is increasing, i.e.,

$$(3.3) x \in A_0(x) \subset A_1(x) \subset \dots \subset A_n(x) \subset \dots$$

Indeed, $x \in A_0(x)$ by (3.1). Assume

$$x \in A_0(x) \subset A_1(x) \subset ... \subset A_{\beta}(x)$$
 for all $\beta < \alpha$.

If $\alpha = \beta + 1$ then putting $x_n = x$ in (3.2) we have $\lim x_n \in A_{\beta}(x)$ and $\operatorname{Ls} A_{\beta}(x_n) = A_{\beta}(x)$; hence $A_{\beta}(x) \subset A_{\alpha}(x)$. In the case $\alpha = \lim_{\beta < \alpha} \beta$ the last inclusion follows immediately from (3.2). Therefore (3.3) is established.

Now we shall prove that

(3.4) The sets $A_{\alpha}(x)$ are continua.

Apply transfinite induction. If $\alpha = 0$, then we see that $\{x\} \cup \bigcup K(x)$ is a connected set because each K(x) is a connected set and contains the point x; hence $A_0(x)$ is a continuum by (3.1). If $\alpha > 0$, then the proof of (3.4) runs exactly as the corresponding part of the proof of Lemma 1 in [1], p. 19. So (3.4) follows.

Thus $\{A_a(x)\}$ is an increasing sequence of continua. Since the space is separable as a metric continuum, there exists a countable ordinal ξ such that

(3.5) If
$$\xi < \eta < \Omega$$
, then $A_{\xi}(x) = A_{\eta}(x)$

and we put

$$S(x) = A_{x}(x).$$

Repeating sentence by sentence the proofs of Lemmas 2 and 3 and of Theorem 2 in [1], pp. 22-24, writing "a subcontinuum K of X belonging to $\mathscr A$ " instead of "a tranche T of an irreducible subcontinuum of X", we can prove the following properties of the sets S(x)

(3.7) If
$$\lim x_n = x$$
, then $\operatorname{Ls} S(x_n) \subset S(x)$.

(3.8) If
$$S(x) \cap S(y) \neq \emptyset$$
, then $S(x) = S(y)$.

Therefore for various x the sets S(x) are either disjoint or identical. Since they are continua by (3.4) and (3.6) we have defined a monotone decomposition of X into the sets S(x). Just as in [1], Theorem 3, p. 25 we can obtain

(3.9) The decomposition of X into the sets S(x) is upper semi-continuous.

The main result of this section is

THEOREM 4. The decomposition $X = \bigcup \{S(x) : x \in X\}$ coincides with the minimal \mathcal{A} -admissible decomposition of X.

Proof. Since for each point $x \in X$ and for each subcontinuum K(x) containing x and belonging to $\mathscr A$ the continuum K(x) is contained in the set S(x) by (3.1), (3.3) and (3.6), condition 3^0 holds for the decomposition of X into the sets S(x), and so this decomposition is $\mathscr A$ -admissible. Let $\mathscr D$ be an arbitrary $\mathscr A$ -admissible decomposition of X and let $D \in \mathscr D$. We shall prove the following

(3.10) If
$$x \in D$$
, then $A_{\alpha}(x) \subset D$ for every $\alpha < \Omega$.

Apply transfinite induction. Let $\alpha=0$. Taking a point $x\in X$, let K(x) denote a subcontinuum of X containing x and belonging to \mathscr{A} . Since the decomposition \mathscr{D} is \mathscr{A} -admissible, the condition $x\in D$ implies $K(x)\subset D$ by 3^0 . This leads to $\bigcup K(x)\subset D$, where the union is taken over all members of \mathscr{A} such that $x\in K(x)\subset X$. The element D of \mathscr{D} is closed, and hence $\{x\}\cup\bigcup K(x)\subset D$, which means $A_0(x)\subset D$ by (3.13). If $\alpha>0$ the proof of (3.10) is identical to the corresponding part of the proof of Lemma 4 in [1], p. 28. Thus the proof of (3.10) is complete. Therefore, if $x\in D$, then — in particular — $A_{\xi}(x)\subset D$, where ξ is an ordinal for which (3.5) holds. According to Definition (3.6) we see that $x\in D$ implies $S(x)\subset D$ and the theorem is proved.

- 4. The decomposition space of an \mathscr{A} -admissible decomposition. In this section we assume that the class \mathscr{A} of continua has the following property:
- (4.1) If X is a continuum, a mapping f of X onto f(X) is monotone and if the continuum f(X) belongs to \mathscr{A} , then there exists a continuum M in X belonging to \mathscr{A} such that f(M) = f(X).

THEOREM 5. If X is a continuum and the class \mathcal{A} of continua satisfies condition (4.1), then the decomposition space of an \mathcal{A} -admissible decomposition of X contains no non-degenerate continua belonging to \mathcal{A} .

Proof. Let $\mathscr D$ be an $\mathscr A$ -admissible decomposition of X and let q denote the quotient mapping. If K is a subcontinuum of q(X) which belongs to $\mathscr A$, then the partial mapping $q|q^{-1}(K)=f$ is monotone and $f(f^{-1}(K))=K$. Since $\mathscr A$ satisfies (4.1) there exists a continuum $M\subset f^{-1}(K)$ belonging to $\mathscr A$ such that f(M)=K. Clearly $M\subset X$ and q(M)=K. The decomposition $\mathscr D$ is $\mathscr A$ -admissible, and hence K is a point.

A number of families of continua satisfy condition (4.1). In particular, it follows from [4], § 48, V, Theorem 4, p. 208 that the class of all indecomposable continua satisfies (4.1). Therefore Theorems 2 and 5 lead to

COROLLARY 2. For every continuum X there exists a unique monotone mapping φ of X onto a hereditarily decomposable continuum Y such that if a mapping f of X onto f(X) is monotone and each indecomposable subcontinuum of X is mapped onto a point under f, then there exists a unique mapping g of Y onto f(X) such that the diagram

$$(4.3) X \xrightarrow{\varphi} I$$

commutes and g is monotone.

5. Applications to continua irreducible about a finite subset. A continuum X is called *irreducible about a set A* if X contains A and no proper subcontinuum of X contains A. A *dendrite* is a hereditarily unicoherent and locally connected continuum.

LEMMA 1. If a continuum X irreducible about a finite subset is mapped onto a hereditarily arcwise connected continuum Y under a monotone mapping f, then each nowhere dense subcontinuum of X is mapped onto a point under f.

Proof. If a non-trivial continuum X is irreductible about a finite subset, then there exists a natural $n \ge 2$ such that X is irreducible about a set of n, but no fewer, of its points, say $a_1, a_2, ..., a_n$. Clearly Y is irreducible about points $f(a_1) = b_1$, $f(a_2) = b_2$, ..., $f(a_n) = b_n$. Let K be a nowhere dense subcontinuum of X, i.e., such that

$$(5.1) X = \overline{X \setminus K}.$$

Obviously for each b_i we have either $b_i \in f(K)$ or $b_i \notin f(K)$. We can assume without loss of generality that

(5.2)
$$b_1, b_2, ..., b_{k-1} \in f(K)$$
 and $b_k, b_{k+1}, ..., b_n \notin f(K)$

for some integer $1 \le k \le n+1$, where in the case k=1 we assume that no points b_1, \ldots, b_n are in f(K) and similarly, in the case k=n+1, that no points b_1, \ldots, b_n are out of f(K). Since Y is hereditarily arcwise connected, for each i with $k \le i \le n$ there exists an arc $b_i c_i$ such that

$$(5.3) b_i c_i \cap f(K) = \{c_i\}.$$

It follows from (5.2) that $K \cap f^{-1}(b_i) \neq \emptyset$ for each i = 1, 2, ..., k-1; analogously, it follows from (5.3) that $K \cap f^{-1}(b_i e_i) \neq \emptyset$ for each i = k, k+1, ..., n. Thus since the mapping f is monotone, the union

$$K \cup f^{-1}(b_1) \cup f^{-1}(b_2) \cup \dots \cup f^{-1}(b_{k-1}) \cup f^{-1}(b_k c_k) \cup \dots \cup f^{-1}(b_n c_n)$$

is a continuum. Therefore

$$X = X \setminus K \subset f^{-1}(b_1) \cup f^{-1}(b_2) \cup \dots \cup f^{-1}(b_{k-1}) \cup f^{-1}(b_k c_k) \cup \dots \cup f^{-1}(b_n c_n)$$

by (5.1). Hence

$$Y = \{b_1, b_2, ..., b_{k-1}\} \cup b_k c_k \cup ... \cup b_n c_n$$

It follows that

$$f(K) = f(K) \cap Y = \{b_1, b_2, \dots, b_{k-1}, c_k, c_{k+1}, \dots, c_n\}$$

by (5.2) and (5.3). Since f(K) is a connected set, we have $b_1 = b_2 = b_3 = \dots = b_{k-1} = c_k = c_{k+1} = \dots = c_n$, which completes the proof.

Lemma 2. Let X, Y and f be as in Lemma 1. If M is an indecomposable subcontinuum of X, then the image f(M) is a point.

Proof. Consider a composant C of some point p in M. If x is an arbitrary point of C, then by the definition of a composant there exists a proper subcontinuum K of M, which contains both p and x. The continuum K has an empty interior as a subcontinuum of C, which has an empty interior itself (see [4], § 48, VI, Theorem 6, p. 212). Applying Lemma 1, we conclude that f(K) is a point, hence f(x) = f(p). Since x is an arbitrary point of C, it follows that f(C) = f(p). Finally $f(M) = f(\overline{C}) \subset \overline{f(C)} = \{f(p)\}$ and the proof is finished.

LEMMA 3. Let X, Y and f be as in Lemma 1. If T is a layer of an irreducible subcontinuum of X, then T is mapped onto a point under f.

Proof. If T is a layer of an irreducible subcontinuum of X, then T is the union of a (finite or infinite) sequence of nowhere dense continua and indecomposable continua (see [4], § 48, VII, Theorem 4, p. 216). Therefore by Lemmas 1 and 2 the image f(T) is the union of a sequence of points. Since f(T) is a connected set, it is a point.

LEMMA 4. For every hereditarily decomposable continuum Y which is irreducible about a set of n, but no fewer, of its points, where $n \ge 2$, there exists a unique monotone mapping ψ of Y onto a dendrite Z such that if a mapping g of g onto a dendrite g (g) is monotone, then there exists a unique mapping g of g onto g (g) such that the diagram

$$(5.4) Y \longrightarrow Z$$

commutes and h is monotone.

Proof. It follows from [5], Theorem 2.4 and Corollary 2.5, pp. 260-262, that there exists a unique upper semi-continuous monotone decomposition $\mathscr D$ of Y, with a dendrite as the decomposition space, which is minimal among all monotone upper semi-continuous decompositions of Y having a dendrite as the decomposition

space. Denoting by ψ the quotient mapping of Y onto Y/\mathcal{D} , we complete the proof similarly to the proof of Theorem 2.

The following is a generalization of J. M. Russell's results stated in [5] as Theorem 2.4, p. 260 and Corollary 2.5, p. 262.

THEOREM 6. For every continuum X irreducible about a finite subset there exists a unique decomposition $\mathscr D$ of X such that

- (1) D is upper semi-continuous,
- (2) D is monotone,
- (3) the decomposition space X/\mathcal{D} is a dendrite (possibly degenerate),
- (4) \mathcal{D} is minimal among all decompositions of X satisfying conditions (1), (2) and (3).

Proof. Let φ be a mapping of X onto a hereditarily decomposable continuum Y described in Corollary 2. Clearly the continuum Y is irreducible about a finite subset. Consider two cases. Firstly, let Y be degenerate. Then the trivial decomposition of X, i.e., such that the continuum X is the only element of the decomposition satisfies conditions (1), (2), (3) and (4). Secondly, if Y is not degenerate, then there exists an integer $n \ge 2$ such that Y is irreducible about n, but no fewer, of its points. Let ψ be a mapping of Y onto a dendrite Z described in Lemma 4. The mapping $\psi \circ \varphi$ is monotone, and thus the decomposition $\mathscr D$ of X into the sets $(\psi \circ \varphi)^{-1}(z)$, $z \in Z$, satisfies conditions (1), (2) and (3). To see that condition (4) holds consider a decomposition $\mathscr E$ of X satisfying conditions (1), (2) and (3). Let f denote the quotient mapping of X onto the decomposition space $X/\mathscr E$. Thus the mapping f is monotone and according to Lemma 2 has the property that each indecomposable subcontinuum of X is mapped onto a point under f. Therefore, applying Corollary 2, we conclude that there exists a unique monotone mapping g of Y onto f(X) such that diagram (4.2) commutes, i.e.,

(5.5)
$$g(\varphi(x)) = f(x)$$
 for each $x \in X$.

Further, it follows from Lemma 4 that there exists a unique monotone mapping h of Z onto g(Y) such that diagram (5.4) commutes, i.e.,

(5.6)
$$h(\psi(y)) = g(y) \quad \text{for each } y \in Y.$$

Therefore the diagram

commutes by (5.5) and (5.6). It follows that \mathcal{D} refines \mathcal{E} . So we have proved that \mathcal{D} refines every decomposition of X satisfying conditions (1), (2) and (3). Therefore \mathcal{D} satisfies condition (4) and the uniqueness is established. Thus the proof is complete.

The following is well known (see [2], Theorems 1, 2 and 3, pp. 116-118).

- LEMMA 5. For every continuum X there exists a unique decomposition $\mathscr C$ of X such that
 - (1) & is upper semi-continuous,
 - (2) & is monotone,
- (3) for each irreducible subcontinuum I of X each layer of X is contained in some element of \mathcal{C} ,
- (4) ${\mathcal C}$ is minimal among all decompositions of X satisfying conditions (1), (2) and (3).

Furthermore, the decomposition space X/C is hereditarily arcwise connected.

THEOREM 7. Let X be a continuum irreducible about a finite subset. If $\mathcal D$ is the decomposition of X described in Theorem 6 and if $\mathcal C$ is the decomposition of X described in Lemma 5, then $\mathcal D=\mathcal C$.

Proof. It follows immediately from Lemmas 3 and 5 that $\mathscr C$ refines $\mathscr D$. Further, since $X/\mathscr C$ is a monotone image of the continuum X irreducible about a finite subset, the continuum $X/\mathscr C$ is itself irreducible about a finite subset. Thus, the continuum $X/\mathscr C$ being hereditarily arcwise connected, it is easy to verify that $X/\mathscr C$ is a dendrite. Therefore $\mathscr D$ refines $\mathscr C$ by Theorem 6. Finally $\mathscr D=\mathscr C$.

References

- [1] J. J. Charatonik, On decompositions of λ -dendroids, Fund. Math. 67 (1970), pp. 15-30.
- [2] On decompositions of continua, Fund. Math. 79 (1973), pp. 113-130.
 [3] K. Kuratowski, Topology I, New York-London-Warszawa 1966.
- [4] Topology II, New York-London-Warszawa 1968.
- [5] J. M. Russell, Monotone decompositions of continua irreducible about a finite set, Fund. Math. 72 (1971), pp. 255-264.
- [6] E. S. Thomas, Jr., Monotone decompositions of irreducible continua, Dissertationes Math. 50 (1966).

INSTITUTE OF MATHEMATICS, WROCŁAW UNIVERSITY (Instytut Matematyczny, Uniwersytet Wrocławski)

Accepté par la Rédaction le 18. 1. 1975