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Monotone decompositions of continua
by !

Z. M. Rakowski (Wroclaw)

Abstract. The aim of the paper is {o prove that for every metric continuum ¥ and for every
clags st of metric continug there exists a unique upper semi-continuous monotone decomposition
of X which is minimal among all upper semi-continuous monotone decompositions of X, each of
which has the property that each subcontinuum of X in + is contained in some element of the
decomposition, The results are applied to continua irreducible about a finite subset.

1. Introduction. A continuum is understood to mean a compact connected
metric space. By a mapping we mean a continuous function. If X is a contintum,
then by a decomposition of X we mean a family 9 of mutually disjoint closed sub-
sets of X the union of which is the whole X. The reader is referred to [3] and [4]
for the definitions of terms not defined here. In this paper it is proved that for every
continuum X and for every class &/ of continua there exists a unique upper semi-
continuous monotone decomposition of X which is minimal among all upper semi-
continuous monotone decompositions of X, cach of which has the property that
each subcontinuum of X belonging to &7 is contained in some element of the de-
composition. The structure of this minimal decomposition is shown in the third
section. The [ourth scction contains investigations of the decomposition space
of an &/-admissible decomposition (see below) of a continuum. The results are
used to generalize J. M. Russell’s results concerning monotone decompositions
of continua irreducible about a finite subset.

The author is very much indebted to Professor J, J. Charatonik for his valuable
advice and help during the preparation of this paper.

2. Admissible decompositions. Let X be a continuum and let o be an arbitrary
clags of continua. A decomposition @ of X is said to be /-admissible if

1° @ is upper semi-continuous,

2° 9 is monotone (i.c., cach element of @ is a continyum),

3% every subcontinuum of X which belongs to & is contained in some
element of 9.

For every class o of continua, every continuum X has an o/-admissible de-
composition, for instance the trivial one, i.e., such that the whole X is the only
element of the decomposition.
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Let X be a continuum. Consider the family & of all layers of all irreducible
subcontinua of X. Putting & for & in the definition we obtain the admissible de-
composition in the sense of [2], p. 115.

If 2 and & are upper semi-continuous monotone decompositions of a con-
tinuum X, then 9 <& means that every element of 9 is contained in some element
of &, ie., & refines . Clearly < defines a partial ordering on the family of upper
semi-continuous monotone decompositions of X.

THEOREM 1. For every continuum X and for every class & of continua there
exists a unique 7 -admissible decomposition of X which is minimal among all of-ad-
missible decompositions of X.

Proof (cf. [6], the proof of Theorem 3, p. 8 and [2], the proof of Theorem 3,
p- 118). Let {@,: @€ 4} be a chain of .o7-admissible decompositions of -X, and
for ze X and we 4 let Z, be an element of &, containing z. For fixed ze X
{Z,: @€ A} is a chain of continua and we denote by Z the intersection of this chain.
Denoting by 2, the collection {Z: z€ X} we see that 9, is a decomposition of X
into continua. Let X be a subcontinuum of X containing z and belonging to .
The decompositions 2,, ae 4 are of-admissible, ‘and thus we have K<Z, for
each aed; hence K< ) {Z,: we A} = Z. Therefore @, satisfies condition 3°.
To prove the upper semi-continuity of 9, suppose that U is an open subset of X'
containing Z which belongs to @,. For.some « € 4 we have Z,=U and since 9, is
upper semi-continuous, some open subset ¥ of U contains Z and is the union of
elements of 9,. Thus ¥ contains Z and is the union of elements of Dy, Therefore
9, is upper semi-continuous according to [3], § 19, 11, Theorem 4, p. 185. Thus
D, is of-admissible. Since 9, refines each 9,, it is a lower bound for the chain.
Applying the Kuratowski-Zorn lemma we conclude that there exists a minimal
«f-admissible decomposition of X. Let @ and & be two s-admissible decompo-
sitions of X, and suppose that some element of & meets two different elements of 2.
Further, let &' be a decomposition of X into components of the non-empty inter-
sections D N E, where De @ and Ee . We show that &' satisfies condition 3°.
In fact, if Kis a subcontinuum of X which belongs to &, then there are elements D
and E in 9 and & respectively such that K< D A E. Since K is a connected set
it is contained in a component of D n E, i.e., in an element of &”. The decompo-
sition &’ is upper semi-continuous (see [2], Lemma 3, p. 118) and monotone. Thus
&’ is admissible. Since &' refines &, 6 is not minimal. It follows that a minimal
& -admissible decomposition of X refines every -admissible decomposition
of X, and thus the uniqueness is established. This completes the proof.

Another form of Theorem 1 is the following

THEOREM 2. For every continuum X and Jor every class of of continua there
exists a unique monotone mapping ¢ of X onto @(X) such that for each monotone
mapping f of X onto f(X) with the property that each subcontinuum of X belonging
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to o is mapped onto a point under f, there exists a unique mapping q of X onto 00
such that the diagram

Xy o(X)
N
2.0 Ny e

JX)
commutes and g Is monotone.

Proof. Consider the minimal «-admissible decomposition of X described
in Theorem 1 and denote by ¢ the quotient mapping of X onto the induced de-
composition space. Taking an arbitrary point ze X, we infer that f(p~!(2)) is
a point, Denote this point by ¢(z). If z = ¢(x), then g(2) = f(); thus g(p(x))
= f(x) for every x € X, i.c., diagram (2.1) commutes, We infer that g is continuous,
unique and monotonc in the same way as in the proof of Theorem 7 in [1], p. 30.

Lel o be o &ass of continua. A continuum M is said to be &Z-monostratic
if the minimal & ~admissible decomposition of M is trivial, i.e., the whole AL is
the only element of the decomposition.

Turorem 3, Let o/ be a class of continua. Every f -monostratic subcontinuum
of a continuum X is contuained in some element of the minimal o -admissible de-
composition. :

Prool. Suppose that there exist two different elements D' and D' of the
minimal & -admissible decomposition @ of X such that D' n M # & # D" n M.
Therefore the decomposition @ of M into components of the non-empty inter-
sections D n M, where De &, is upper semi-continuous (see [2], Corollary I,
p. 117) and not trivial. Since & is o -admissible, if Kis a subcontinuum of M be-
longing to 7, then there exists an element D in @ such that K< D. The c.onm.luum
K is a connected set, hence it is contained in a component of DN M, ie, in an

“element of @', Therefore @' is 7 -admissible. Hence M is not &/-monostratic and

the proof is complete.

COROLLARY 1. Let o be o cluss of continua. If every clement of the minimal
o ~admissible decomposition of a continuum X has an empty interior (wnt/z respect
to X), then every of ~monostratic subcontinuum of X has an empty interior.

The conversion of Corollary 1 is not true (see [2], the example on p. 128).

3. The structure of the minimal &7 -admissible decomposition. We use Fhe
basic ideas employed in [2] to describe clements of the canonical c}ecomposﬁlon
of a continuum, and carlier in [1] to describe elements of the canonical decompo-
ition of a A-dendroid.

" mieotla L(:(j’lt?l:iljnl X and a class o of continua be established. FJertly, forxeX,
we define (by transfinite induction) an increasing sequence of continua A, (x) each
of which contains the point x.
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Let xe X. Consider all subcontinua K(x) of X belonging to .« such that
x & K(x). Put
G.D) 4o = {x} v UK

where the union on the right side of the equality runs over all continua K(x) be-
longing to &/ and such that x € K(x)<=X. Now suppose that the sets Ap(x) are de-
fined for f<«, and put

U {LSAIJ(xn): lin.lxne Aﬂ("“)} ? if o= /}+l ?
3. / =177
(3.2 4,(x) U400, it . «=limp, -
p<a

where, in the case o = f+1, the union is taken over all convergent sequences of
points x, e X with limx, e Ap(x). So the sets 4,(x) are weil defined for a<©Q. The
sequence 4,(x) is increasing, i.e.,

(3.3) x€ do(xX)cdi() = ... c4(x)c ... #
Indeed, x & Ay(x) by (3.1). Assume
xedyx)cd,(¥)e .. = dy(x) for all f<a.

If « = f+1 then putting x, = x in (3.2) we have limx, & 4,(x) and Ls 4,(x,)
= Ap(x); hence Ay(x)c4,(x). In the case « = lim f the last inclusion follows im-

X B<a
mediately from (3.2). Therefore (3.3) is established.
Now we shall prove that

(34)  The sets 4,(x) are continua.

Apply transfinite induction. If « = 0, then we see that {x} U UK is 2 con-
nected set because each K(x) is a connected set and containg the point x; hence
A(x) is a continuum by (3.1). If a>0, then the proof of (3.4) runs exactly as the
corresponding part of the proof of Lemma 1 in [11, p..19. So (3.4) follows.

Thus‘{Aa(x}} is an increasing sequence of continua. Since the space is separable
as a metric continuum, there exists a countable ordinal & such that

(3.5 If ¢<n<Q, then Ax) = 4,(x)
and we put
(3.6) S() = Adx) .

Repeating sentence by sentence the proofs of Lemmas 2 and 3 and of Theorem 2
n [I], pp. 22-24, writing “a subcontinuum X of X belonging to & instead
of “a tr_anche T of an irreducible subcontinuum of X”, we can prove the following
properties of the sets S(x)

3.7 1t

(3.8 If

then

S NSy = @,

limx, = x, LsS(x,)=S(x) .

S0 = S0).

then
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Therefore for various x the sets S(x) are cither disjoint or identical. Since they
are continua by (3.4) and (3.6) we have defined a monotone decomposition of X
into the scts S(x). Just as in [1], Theorem 3, p. 25 we can obtain

®

(3.9) The decomposition of X into the sets S(x) is upper semi-continuous.

~The main result of this section is

TuroreM 4. The decomposition X = ) {S(x): x € X} coincides with the minimal
& ~admissible decomposition of X,

Proof. Since for each point x € X and for each subcontinuum K(x) contain-
ing x and belonging to o the continuum K(x) is contained in the set S(x) by (3.1),
(3.3) and (3.6), condition 3° holds for the decomposition of X into the sets S(x),
and so this decomposition is .o -admissible. - Let @ be an arbitrary o -admissible
decomposition of X and let D e @. We shall prove the following

(3.10) It xeD, then A4,()=D forevery a<Q. .

Apply transfinite induction. Let o = 0. Taking a point x e X, let X(x) denote
a subcontinuum of X containing x and belonging to «/. Since the decomposition @
is o -admissible, the condition xe D implies K(x)<D by 3° This leads to
U K(x) < D, where the union is taken over all members of & such that x e K(x)c X.
The element D of @ is closed, and hence {x] K(x)<= D, which means Aq(x)<= D
by (3.13). T a>0 the proof of (3.10) is identical to the corresponding part of the
proofl of Lemma 4 in [1], p. 28. Thus the proof of (3.10) is complete. Therefore,
it xe D, then —in particular -~ A4(x)= D, where & is an ordinal for which (3.5)
holds. According to Definition (3.6) we see that x e D implies S(x)<D and the
theorem 1is proved.

4, The decbmposition space of an «/-admissible decomposition. In this section
we assume that the class @ of continua has the following property:

(41 I Xis a continuum, a mapping / of X onto f(X) is monotone and if the
continuum f(X) belongs to o, then there exists a continuum M in X be-
longing to . such that f(M) = f(X).

TusorEM 5. If X is a continuum and the class o of continua satisfies condition
(4.1), then the decomposition space of an & -admissible decomposition of X contains
no non-degenerate continua helonging to .

Prool. Let & be an .o -admissible decomposition of X and let g denote the
quotient mapping. If K is a subcontinuum of g(X) which belongs to 7, then the
partial mapping ¢lg”'(K) = f is monotone and f(f (X)) = K. Since o satisfies
(4.1) there exists a continuum Mcyf ™ '(K) belonging to & such that f(M) = K.
Clearly Mc X and ¢(M) = K, The decomposition & is « -admissible, and hence
K is a point.
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A number of families of continua satisfy condition (4.1). In particular, it follows
from [4], § 48, V, Theorem 4, p. 208 that the class of all indecomposable continua
satisfies (4.1). Therefore Theorems 2 and 5 lead to

COROLLARY 2. For every continuum X there exists a unique monolone mapping ¢
of X onto a hereditarily decomposable continuum Y such that if a mapping f of X
onto f(X) is monotone and each indecomposable subcontimum of X is mapped onto
a point under f, then there exists a unique mapping g of Y onto f(X) such that the
diagram

X2y
AN e
@3) N A
S0

commutes and g is monoione.

5. Applications to continua irreducible about a finite subset. A continuum
X is called irfeductble about a set A it X contains 4 and no proper subcontinuum
of X contains 4. A dendrite is a hereditarily unicoherent and locally connected
continuum.

Lemva 1. If a continwum X irreducible about a finite subset is mapped onto

a hereditarily arcwise connected contimum Y under a monotone mapping f, then

each nowhere dense subcontinuum of X is mapped onto a point under f.

Proof. If a non-trivial continuum X is irreductible about a finite subset,
then. there exists a natural 72 such that X is irreducible about a set of n, but no
fewer, of its points, say a;, a,, ..., a,. Clearly ¥ is irreducible about points f(a,)
= by, flay) = by, ..., f(a,) = b,. Let K be a nowhere dense subcontinuum ‘of X,
i.e., such that
(5.1) X =X\K.

Obviously for each b; we have cither b‘,- € f(K) or b; ¢ f(K). We can assume without
loss of generality that
(52 bisbyy b €f(K)  and By, Bpyys s by & 1(K)

for some integer 1<k<n+1, where in the case k =1 we assume that no points
by, ..., by are in f(K) and similarly, in the case k = n+1, that no points by, ..., b,
are out of f(K). Since Y is hereditarily arcwise connected, for each i with k<i<n
there exists an arc b;c; such that

(5.3) bie,n fK) = {c;}.

It follows from (5.2) that K nf~%(b,) % @ for each / = 1,2, .., k—1; analogously,
it follows from (5.3) that Knf Y bie) # @ for each i = k,k+1,...,n. Thus
since the mapping f is monotone, the union

Kof ' 0) ur ') v e S Boy) VLT ) U U ST, )
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is a continuum. Therefore

X = XNKf ) uf~ by u ... ST ) S TN B) U U )
by (5.1). Hence

Y= by, byy s by U be, U U bee, .
It follows that

JK) =J(K)y\ Y= {by, by, ., by, Ch Cegs vens G}

. by (5.2) and (5.3). Since f(K) is a connecled set, we have by=by=hy=..= by

= ¢ ='Cpt = oo = ¢, Which completes the proof.

Lovma 2. Let X, Y and [ be as in Lemma 1. If M is an indecomposable subcon-
tinuum of X, then the image f(M) is a point.

Proof. Consider a composant’ C of some point p in M. If x is an arbitrary
point of C, then by the definition of a composant there exists a proper subcontinuum

K of M, which contains both p and x. The continuum K has an empty interior as

a subcontinuum of C, which has an empty interior itself (see [4], § 48, VI, Theorem 6,
p. 212). Applying Lemma 1, we conclude that J(K) is a point, hence f(x) = f(p).
Since x is an arbitrary point of C, it follows that £(C) = f(p). Finally f(M) = f(C)
<f(C) = {/(p)} and the proof is finished. -

Lemma 3. Let X, Y and f be as in Lemma 1. If T is a layer of an irreducible sub-
contimum of X, then T is mapped onto « point under f.

Proof. If T"is a layer of an irreducible subcontinuum of X, then T is the union
of a (finite or infinite) sequence of ‘nowhere dense continua and indecomposable
continua (see [4], § 48, VIL, Theorem 4, p. 216). Therefore by Lemmas 1 and 2 the
image f(T) is the union of a sequence of points. Since S(T) is a connected set, it
is a point.

LEMMA 4. For every hereditarily decomposable continuum Y which is irreducible
about a set of'n, but no fewer, of its points, where n22, there exists a unique monotone
mapping  of ¥ onto a dendrite Z such that if a mapping g of Y onto a dendrite g(¥Y)
is manotone, then there exists a unique mapping h of Z onto g( Y such that the diagram

Y. - v A
N 4

N

P18’

(54)

commutes and It 1s monotone,

Prool. It follows from [5], Theotem 2.4 and Corollary 2.5, pp. 260-262, that
there exists a unique upper semi-continuous monotone decomposition @ of ¥,
with a dendrite as the decomposition space, which is minimal among all monotone
upper semi-continuous decompositions of ¥ having a dendsite as the decomposition
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space. Denoting by ¥ the quotient mapping of Y onto ¥/9, we complete the proof
similarly to the proof of Theorem 2.

The following is a generalization of J. M. Russell’s results stated in [5] as
Theorem 2.4, p. 260 and Corollary 2.5, p. 262.

TBEOREM 6. For every continuum X irreducible about « finite subset there exists
a unique decomposition @ of X such that

(1) @ is upper semi-continuous,

2) 2 is monolone, . )

(3) the decomposition space X|9 is a dendrite (possibly degenerate),

(4) @ is minimal among all decompositions of X satisfying conditions (1), (2)
and (3). . :
Proof. Let ¢ be a mapping of X onto a hereditarily decomposable continuum ¥
described in Corollary 2. Clearly the continuum Y'is irreducible about a finite subset.
Consider two cases. Firstly, let ¥ be degenerate. Then the trivial decomposition
of X, i.e., such that the continuum X is the only elementof the decomposition
satisfies conditions (1), (2), (3) and (4). Secondly, if Y is not degenerate, then there
exists an integer #:>2 such that Y is irreducible about n, but no fewer, of its points.
Let ¥ be a mapping of ¥ onto a dendrite Z described in Lemma 4. The mapping
¥ o g is monotone, and thus the decomposition @ of X into the sets (i o )~ !(2),
zeZ, satisfies conditions (1), (2) and (3). To see that condition (4) holds consider
a decomposition & of X satisfying conditions (1), (2) and (3). Let f denote the
quotient mapping of X onto the decomposition space X/&. Thus the mapping f is
monotone and according to Lemma 2 has the property that each indecomposable
subcontinuum of X is mapped onto a point under . Therefore, applying Corollary 2,
we conclude that there exists a unique monotone mapping ¢ of ¥ onto X)) such
that diagram (4.2) commutes, i.e.,

(5.5) 9(p) = ()

Further, it follows from Lemma 4 that there exists a unique monotone mapping A
of Z onto g(Y) such that diagram (5.4) commutes, i.e.,

(5.6) hW (k) = g(»)

Therefore the diagram

for each xe X .

for each ye Y.

X ‘I’U:L——-—) zZ
N A
SX)

commutes by (5.5) and (5.6). It follows that @ refines &. So we have proved that 2
refines every decomposition of X satisfying conditions (1), (2) and (3). Theretore 9
satisfies condition (4) and the uniqueness is established. Thus the proof is complete.

The following is well known (see [2], Theorems 1, 2 and 3, pp. 116-118).
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LeMMA 5. For every continuum X there exists a unique decomposition € of X
such that

(1) € is upper semi-continuous,

(2) € is monotone,

(3) for each irreducible subcontinuum I of X each layer of X is contained in some
element of €,

(4) % is minimal among all decompositions of X satisfying conditions (1), (2)
and (3). .

Furthermore, the decomposition space X)% is hereditarily arcwise connected.

TuroreM 7. Let X be a contimum irreducible about a finite subset. If 3 is the
decomposition of X described in Theorem 6 and if 4 is the decomposition of X de-
scribed in Lemma 5, then 9 = @. v

Proof. It follows immediately from Lemmas 3 and 5 that % refines 9. Further,
since X/% is a monotone image of the continuum X irreducible about a finite sub-
set, the continuum X/% is itself irreducible about a finite subset. Thus, the con-
tinuum X/% being hereditarily arcwise connected, it is casy to verify that X/% is
a dendrite. Therefore @ refines @ by Theorem 6. Finelly 2 = 4.
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