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Morley numbers for generalized languages
by

D. W. H. Gillam (Parkville, Victoriz)

Abstract. Morley numbers (or Hanl numbers for omitting types) are examined for the

 languages L(Q) and Ly It is shown that for L(Qy) theMorley number is at most 2 (, (2151 + %)+

and for Ly, the Morley number is at most 2 (Nn, (2lla»m])+)‘

In this paper upper bounds for the Morley numbers of L(Q,) and L,,, are found.

By the Morley number for L(Q,) we mean the least cardinal A such that for
a theory T and a set of single-variable types & (in L(Q,)), if for each cardinal v
less than A T has a model of power at least v which omits every member of &,
then T has arbitrarily large such models. A similar definition is used for L,,.

For L(Q,) we show that the Morley number is at most 2{x,, 2M*%)*)
where |L| is the cardinality of the set of first-order formulae of L. For L, the Morley
number is shown to be at most 2%, (2"™)*) where |L,,| is the cardinality of
the set of well-formed formulae of L,,. A

The results presented here are contained in Gillam [3].

§ 1. Preliminaries. Throughout this paper «, 8, & ¢ will denote ordinals, and
the remaining lower case Greek letters, with the exception of p, ¢ and W, will de-
note cardinals. The cardinal =(x, &) is defined by induction on &: 2(x,0) = %,
e, E41) =228 and if & is a limit ordinal, 2(¢, & = sup{3(x, A): A<}
For a set 4, |4| denotes the cardinality of 4. )

L will denote a first-order language. L(Q,) is the extension of L obtained by
the addition of the generalized quantifier Q, (interpreted as “there exist at least &,”).
L., is the usual infinitary language considered as an extension of a first-order lan-
guage L. Details on the construction of these languages, and some of their prop-
erties, may be found, for example, in Bell and Slomson [1], Chapters 13 and 14.
Our notation is basicully that of [1].

If 9 is & model for the langnage L and X is a subset of 4, the universe of 20,
then L(X) denotes the language obtained from L by the addition to L of constant
symbols for the clements of X, Similarly, we will use L(Q,}(X) and L,,(X) when
dealing with L(Q,) and L,, respectively. .

T will denote a theory and & a set of types in the appropriate language (eiﬂ?er
L(Qy) or I,). Here, a type is a set of formulae, not necessarily first-order, which
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" we assume to have only the variable v, free. We use |Ll, 1L(Q,)] and lLM?[ to denote
the cardinalities of the sets of formulae of L, L(Q,) and L,, respectively.

We will use n, to denote the sup of the Morley numbers of those languages
which have at most y non-logical symbols; and m, for the sup 'of Motley nfu.mbers
obtained for such languages by requiring the set & of types in the 'deﬁmtxon Fo
have power at most . Further, 7,(Q.), m,(Qa), ny(xw) and m,(se) will be used in

 similar ways for L(Q,) and L,, respectively. .

Lastly, we note for later use the following result of Erdds and Rado.

TeeoreM. If ¥ is a sef, |Y| = 2(A,n=1)*, and {Cy: iel} is a partition of
[Y]™ — the set of n-element subsets of ¥ — such that |\I|<2, then there is a subset X'
of Y of power A such that for some jelI, [X “ec;.

§ 2. Omitting types in L(Q,). We define a Skolem extension L(Q)* of L(Q,)
as follows: first L(Q,)’ is obtained from L(Q,) by the addition of function letters f, .
for &<, and for each formula ¢ of the form (Q,v0)¥ (vgs ..., v,), and also the
usual function letters f, corresponding to formulae ¢ of the form @oo) ¥ (o5 o5 v,);
L(Q)* is the language obtained from L(Q,) by the iteration of this procedure w
times.

For ¢ € L(Q)*, if ¢ isthe form (Q,vo)¥ (v, ..., 1,), for some formula v, put

Rq: = {Vul)---(vvn)((/’”"fxp,x’:(vl’ s un) #fq:,((vla ey Uu)): 65 C<N-z> 5 7& C} u

v {(VTH)(VU,,)((P—’N// (fq,,g(vu e Un)a Uty nney ‘U")): €<ﬂa} H
if ¢ is of the form (Fve)¥ (v, ..
Ry = {(Vo)...(V0,) (oY (S5 (0rs wvrs 0)5 015 o

and otherwise put R, = @.
Then, if T is a theory in L(Q,), let

T*=Tu | {R,P:‘ @ eL(Q)*}.

Call T* a Skolem theory for T.

The next two results follow immediately from the above.

LemMA 2.1. If T'is a theory in L(Q,) then W k T if and only if there is an expansion
W* of A to a model of L{Q)* such that A* k T*,

Lemma 2.2, L(Q)* has power |L(Q)|+ %,

DermarioN 2.3. If <X, <) is an ordered set and U is a model of L(Q,) con-
taining X, then X is a set of Q- indiscernibles (or, more simply, indiscernibles)

in 2, if for each two properly ordered n~tuples {xg, ..., x,> and Jy, e, Ppd in X
and each formula ¢(v,...,v,) of L(Q,),

Wk @lxg, ey x,]

, v,) for some formula v, put

» O}

if and only if Wk @ [yg, v\ 1] -

It 9 is a model of L(Q,)*, and B A then # (B) is the restriction of 9 to the
closure of B in 9 under the functions of L(Q.)*.
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*

In the obvious way, the definitions of < (elementary submodel) -and =
(elementary equivalence) may be extended to corresponding notions for L(Q,)
denoted by =, and =, respectively. =

The proot of the next result is an extension of the proof of the corresponding.
theorem for elementary logic, which proceeds by an induction on the complexity
of the formulae involved.

TueOREM 2.4. [f U is a model of L(Q,)* and B A, then H (B)X o, Y.

AThe following two lemmas will be used to prove the main result (2.9) of this
section; the first is proven using methods similar to those used in Section 2 of
Keisler [4].

For the remainder of this section, if 9 is a model of L and ae A4, then we
shall use « to denote the constant letter which, when added to L, gives the
language L({a}).

Lemma 2.5. Suppose 2* iy a model, n<w and (X, <) is a linearly ordered
subset of A such that any 1wo properly ordered-n-tuples of elements of X satisfy the
same atomic formulae in W If {xyy o, x> and (g, .o, Yy are properly ordered
n-tuples of elements of X and s(v, ..., v,) is a term in L(Q,)* such that s(xy, ..., X,)
and s(py, ..., ¥,) are distinet elements of W*, then there is an integer i, 1 <i<n, such
that, Uf x; 7 X[ and Xy s ooy Xpw s 3], Xpg 1 oon %> 18 properly ordered, S(X(5 0y X,)
and $(Xpy s Xy s X1y Npas wn X,) are distinet elements of 9,

Proof. The proof procceds by induction on 1, the number of variables in the
term S(vy, o, 1), :

Suppose n = [; il

Wk E (3(00) # s())¥e, 4]
then

for some xy, y; € X such that x, # y,,

o

A*E (s(v0) # $(v2))lxr. 1]

Assume that the result holds for n =k, and consider the properly ordered
(et 1)-tuples (x4 iy Xgp 1Dy <Ps s Vet OF X, and a term s(vy, ..., tsy) Of
L(Q,)* such that s(xy, ..., X, () and $(¥(, ., Yprq) are distinct elements of 2A*.

Without loss of generality, assume ygq,SXgeq; then if $(x;, «, X4 ) and
S(PLs ooy Py X 4y) are distinet elements of A*, so also are (¥, .., Xe, Xery) and
S(1s e Yoo X ) and the result follows from the induction hypothesis. (Applied
to the model (Qt, Npa )% the ordered set with universe {y e X y<x..,} and the

for all x{,y, € X such that x, # ¥y -

Tt I CTRE L) = S(J’h"”v”lmxk~|»[) then (g, ooVerr) 804 SOiavens Ve Xes1)
are distinct, so
Wt (9005 0y Opgey) 5 8001y vorn Uy Upae2)) V10 vos Vit 15 X1
and hence also

W (S, ey Vi) # S5 vos Uy O 2)) [Z15 rns Zira]
5 — Fundamenta Mathematicae t. XCIV
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for all properly ordered (k-+2)-tuples <z;, .., Ze.,> in X. Thus, for properly

ordered (k+1)-tuples Xy, i, X1 and <Xy, ooy Xy Xy > SUCh that xg,q #xp,
SOC 5 ey Xgt) F S(VL ey Ko K1) -

LEMMA 2.6. Suppose that for each n<w, 4, is a set of formulae in L(Q,)* with
at most the variables vg, ..., v,y free, and

) if @(Vgs .o Uyeq1) EL(QI* then either pe 4, or “lped,;

(2) if n<m then 4,S4,,; .

(3) for n<w, there is a model W¥ of L(Q,)* which contains an ordered set
{X(n), <) of power >, such that for each properly ordered sequence {xg, ..., X,.,>
in X(n), ¥k @[xg, s X, 1] if and only if @ € 4, for all ¢(vy, ..., v,-y) € L(Q)*.

Then, for any order type <, if cf(#)>w then L(Q)* has a model ¥* containing
a set of indiscernibles (X, <) of order type T such that for xo<..<X,.,in X and
‘/’(vo,'--, vn—l)EL(Qu)*’; v

WrE @xg, ooy Xymr]  if and only if @ed,.

Proof. Let X be an ordered set of power greater than w,, with a subset of
order type 7, and put
T={@(X1, s X1 Xg,y 00y Xy € X, X[ <X, < 0 <X, and
@5 vy Vymy) € 4, Tor n<w}.

Define the equivalence relation ~ on the set of constant terms of L{Q,)*(X) by:

if #; and 1, are constant terms in L(Q,)*(X) then 1, ~1, if and-only if (1, = 1,)
€ T. A* is a model with universe the set of ~-equivalence classes of constant terms
of L(Q)*(X), such that for all atomic formulae Py, .oy Uy—y) in L(QN* and
constant terms fg, ..., f,—; € L(Q,)*(X),

9[*F(p[f0/~,4,.,t,,_1/~] (l)(tO;m,t,,-q)ET-

Obviously U* is well-defined (using the compactness theorem and the con-
ditions on 4,), and %* = #(X); we show that for all formulae (Vg5 e Uyemy)
EL(Q;: * and to/"‘s ey tn—-l/N GA,

Wk @to/~, o, tyay)~] Qs sty )eT.

The proof is by induction on the length of ¢, the interesting case being that when
¢ is of the form (Q,v)¥(vy, vy, ..., v,) for some U L{Q)*™
Suppose the result holds for y, then

W kolty)~, .., t,/~]
A* k ‘p[to/“" ey tn/Nl
and this holds if and only if

(*) Yo, ., t)eT for toe K where K is a set of constant terms such that
(K=, and if ¢, #' € K then the formula (¢ # t') belongs to T

if and only if

if and only if

if and only if

for at least w, distinct ty/~ € 4;
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Let lp(U(), t]; ey ’n) = O(UO: 2:1: e

e L(Qa)* . ) o
It (Quvo) W/ (o, f1s s ) € T then (x) is true since T is a Skolem theory.

Conversely, suppose that (x) holds, and

(Qz"c;)lp(”m rl: cery t!l)¢T; S0 j(Qan)l/I(UO,fl,...,l,,)ET.
L]

Since cf(a)>w and (x) holds, for some /<w there is a set K; of power not less
than w,, of constant terms $(X;, ..., X, Z15 ..., Z)) in L{Q,Y*(X), which belong to
distinct ~-equivalence classes, such that 0(s, x,, ..., X,) € T for each se K|.

Let {pyy oy Yup be a sequence in X (m+1), order isomorphic to <xy, ..., X,

» Xm) Where xy, .., x, €X and 0(vp, ..., 1,,)

" and such that, it y, <y, for some i, j, where 1 <i, j<m, then {y € X(m+D): y,<y<y},

{yeX(m+D: y;<y} and {ye X(m+N): y;>y} all have power not less than ¥,
Such a sequence exists because | X (m+1)|>w,. Then

<“l[;:+l’ x>xEX(lll+l) }: ~] (Qa”o)g(%a .]_"15 [EF) X,,,)

by the construction of T. Let K, be a set of constant terms s'(yys «s Ym» Wiy W)
in L(Q)* (X (m+1)) which represent distinct elements of 2%, and for which

(1) <Q[;rx+l: x>xeX(m+l) k 0(.‘;” ._]fl: avey Zm);

(i) i §7(P1s voer Yurr WY, s W) is & constant -term in L(Q "X (m+1])) and

Aoty XD geximsn F OGP o Yo Wis s WD, V1, wees V)
then

23 "
SiV (s e Pup» Wiy ey W)~ s for some constant term s, € K; .

K, has power less than s, and there is a function f: K,—K, such that if
S(Xy5 eer Xy 215 oy 2,) I8 in K then f(s),:S(ZI,...,)_IM,\_vl,...,E,) for some
W; R W,_e f(nz+lfwhere {X 0y e Koo Z1s woes 20 204 (Pps ey Y Wi .o, W are
order is?nnorphic. Since |K;|>]K,], there exist s,,s; € K; such that F(s1). = f(s3)
and (s, # s;) s in T. Hence, if &5 = 801, s s Zes s Z0) _:nd 1 5
= §(X1, s Xp» Bpays eos Z2g) fOr some term  s(vg, oy ey Of L(Q)*, then

‘ isti lements
s(yla v Sms Wiy ey wl) and S(J__’l s e Yas Wit ""mzl) represent distinet ;er iso
of Q[l’rl'('.'«‘l if <X1., ey Xigs Z19 v Zz¢> and <}’1 3 wees Yins Wis oo wll> are or
morphic.

By 2.5, there is an i</ such that ‘

SQ1s s Vs Wi s W) and S(P1s vees Vs Wi voes Wim s Wis Wi gy o0 1)
represent distinet elements of (X, .1, XDeexemeany I Wi # w), and

Pis , P> Wio s WD ANd CPpy ey o Wis ooes Wints Wiy Wiegs s WD

' . ; ay be re-
are order isomorphic. Since ]X(m+21)|>.~xa,(J{l,-‘-,ymalwu---,m) may
selected so that there are at least ¥, distinct choices for w;.

g
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Since (%121 Drexmean F OE (W1 voos Yoo Wis ooy W1y oy ¥ We  have
U s 2ts Xxexmean F (Qu00)0(vos Y1y s Y-

Hence (Q,vo)¥ (g, ty, ..., 1) is in T —this is the required contradiction.

COROLLARY 2.7. If T* is a Skolem theory in L(Q,)* with a model containing
a set of indiscernibles of power >, and if cf(a)>w; then for any order type 1,
T* has a model containing a set of indiscernibles of type . 5

In fact, the condition cf(2)>w may be omitted in this last result (the proof
then follows that of 2.6, and if X, is taken to be a set of representatives of ~-equiy-
alence classes, with exactly one representative from each class, then the assumption
cf(a)>w is not required). .

CoroLLARY 2.8. If 4,, U, X(n) for n<w satisfy the conditions of 2.6, and

" U* s the model constructed in the proof of 2.6, then each type omitted by all the Rl
Jor n<w is omitted by W*,

THEOREM 2.9. Suppose T is a theory in L(Q,), cl(c)>w, & is a set of types in
L{Q,), and for each cardinal A< 2 (o, @H*™)) T has a model of power not less
than X which omits &; then T has arbitrarily large models which omit & (in fact,
T has such models in every power greater than ).

Proof. Put g = 2™ For each n<w and all ordinals f<u* we construct
a set of formulae 4,, and models A¥,, each of which contains an ordered sct
{X,.p» <) such that conditions (1), (2) and (3) of 2.6 are satisfied by 4,, A%, and
{Xops <> for all B<u*. Furthermore, each Ak, omits &, and X, ; has power
greater than =(x, f).

- Suppose these have beén constructed for n<k—1 and B<u*; first construct
a set of formulae 4, , in L(Q,)*, and a linearly ordered set (X ,, <> for each f,
kSB<u’, as follows: partition [X,.; ,,,]® into classes C, for ie I, where [ is
some index set, such that for any two properly ordered sequences <X, ..., Xj_>
and (o, s Y=1)> Of Xyog pons {Xgs ors Xe—y} and {yg, wes Ye—1) are in the same
class C; if and only if for each formula @ (Vo5 ooy Uy 1) Of L{Q)*

W1 g4k F @xgs s o] if and only if Wk, 5  Folyos s yioi].

There are at most u such classes, so, by the Erdés-Rado theorem, there is

XipSXioi,p+x which is homogeneous for this partition and such that |Xi,l
>2(sg, B). Put ‘

Aip = {p(vg, ..., D)t gk @lxy, oo, Nt 1}

for some properly ordered sequence {Hos vy Xygd in Xy g) For fi, u<f<p®,
.A,\.,,, ian take at most . values, so there is a sequence of ordinals {fe: E<p™y cofinal
in u sth that 4, ,, = 4, , for all &, {<pu*. Let 4y = 4y p,; the models ¥,
and the linearly ordered sets Xip can now be constructed in the obvious way, using
the sequence {B,: E<u*y.

Applylng 2.6 and 2.8, models of T of arbitrarily large powers which omit &
may be obtained; so the theorem is proven.

'
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CoroLLARY 2.10.
n(L(Q)< 2 (%, (27 %97).
The following corollary is an analogue of a result noted by Chang in [2].
CorOLLARY 2.11. If & is of power at most |L|+, then, in the statement of 2.9,
2 (%o, QM SYY may be repluced by a smaller cardinal. So, in particular,
my(L(Q,)) <= (%, (2797,

Proof. Let K be the set of cardinals » such that there is a set of types & of
power <|L|+ ¥, and a theory T'in L(Q,) such that for all A, T has a model of power
at least 4 which omits all the types in & if A<, and no such model exists if A>x.
Clearly [K|<2™" %, and so supx<z (g, (2% HH)*),

§ 3. Omitting types in L,,. We proceed now to find an upper bound for the
Morley number for L,,. Where the proofs are obtained by a straight-forward
reconstruction in this setting of a corresponding proof in the previous section,
we simply refer to the appropriate theorem of that section for proof.

First, add Skolem function letters f,, to L,, for each formula ¢ of the form
o)y (Vg5 «vs 0,) of L,,, and so obtain L,,; L¥, is then obtained by w iterations
of this procedure. If T is a theory in L,,, T* is defined by

T* =Tu U {Sqr: (PEL:(n}’

where S, = {(Y0,)..(V0,) (0 (Fp0gs oos Bds 045 s )} if @ is of the form
@ve)¥ (vg, ..., 1), and S, = G otherwise.

LemMA 3.1. If T'is a theory in Ly, then Wk T if and only if there is an expansion
A* of A to a model of L, such that W*E T*.

DEFNITION 3.2, TF ¢ is a formula of L, then /(¢), the length of ¢, is defined
by transfinite induction as follows:
(1) if ¢ is atomic then /() = 0;
(2) if /(¢p) and I() have been defined then
(M) =lp+1,
1 Atp) = max{l(e), I(Y)}+1 and
(@) = l@+1  for E<ix;

(3) if ¢ is an ordinal, {<x and /{p;) has been defined for E%C, then
I @) = sup{{(@)+1: £<LF.
§<¢

Lemma 3.3, L¥, has power af most |L|*, where L is the first-order language with
the same non-logical symbols as Ly,.
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Proof. Let &, = {p € L, I(p)<&}. Then |By|<|LI". Suppose |@g<|LI" for
each &< If { = &+1 for some &, ®, <L = [L* If { = sup{¢&: £<{} then

IBI< Y P4< Y, 1L = |L9).
& i

- Hence |L,,|<|L% so Lyl = (L)* = |L* and |LE,| = |L["

By analogy with the definitions of the previous section, the notion of a ses
of indiscernibles may now be defined for the language L,,,; also, the Skolem closure
#(B) of a subset B of a model 9* of L¥, and the notation <, and =,,,.

So the following theorem is obt ained; its proof is a simple extension of that
for elementary logic.

THEOREM 3.4. If U* is a model of L%, and BS A, then # (B)=<,, Wk

LeMMA 3.5. Suppose that for each n<w, 4, is a set of formulue in L¥, with at
OSE Vgys vy Dy JYe€, and ’

M) if @(vg, ..., Vy—1) €LY, then either ped, or (T1p)ed,;

) if n<m then 4,54,,;

(3) for n<w there is a model W¥ of L¥, containing an infinite linearly ordered
set {X,, <) such that, if {xy, ..., X,~ 1 15 a properly ordered sequence in X,, then
Wk E@lxg, ..., X4—1] if and only if ¢ € 4,, for all formulae ¢ € L, .

Then for any order type t, L}, has a model ¥ containing a set of indiscernibles
(X, <) of order type <, such that for each properly ordered sequence {xy, ..., X, >
in X, ‘J,[*‘ E X0, s X, (] if and only if @ € A, for all formulae ¢ (v, ..., vy() € LE,.

Furtlzernzore, any type in L¥, omitted by each X is omitted by W*.

Proof. This follows the proof of 2.6, constructing a model on the constant
terms of L},(X) and proving the first condition on 2A* by induction on the length
of the formulae of L¥,.

Following 2.9, 2.10 and 2.11 bounds on the Morley numbers for L
obtained.

THEOREM 3.6. Suppose T is a theory in L,,, & is a set of types in L, and for
each A<2 (%, @Q™")Y), T has a model of power = which omits &; then T has ar-
bitrarily large models which omit & (in Jact, in every power >|L[¥).

CoroLLARY 3.7. n(L,)<3 (%, (2‘7”‘))"*),

COROLLARY 3.8. If S I'fs a set of types in L, of power at most |L|", then in the
statement of 3.6, (v, 3(2/! )V¥) may be replaced by a smaller cardinal. In particular,

nZT(wa) < (NO 3 :(2(?”))+) .

§ 4. Concluding remarks. Let h,, 1,(Q,), h,(xw) and. h(Qy, %w) denote the
supremum of the Hanf numbers for single sentences of the languages L, L(Q,),
L,, and L,(Q,) respectively where L is required to have at most y symbols (here
L,.(Q.) is the language L, enriched by the addition of the quantifier Q,). Simi-

larly H,, H(Q,) etc. are the Hanf numbers of sets of sentences in the approptiate
languages. ‘

are

%
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1. If |L| = |K|=¥%,, where K is one of the languages ntentioned above, then
2 (%, (2|K5+N,)+) = 2(%, 2H)*) :

and this last is the upper bound stated in [2] for n, if |L] = y. It has been shown
that 1, = 2(#y, (2")") —see Shelah [5] —s0 7,{L(Q.)) = 2 (%, @)*) for y=w,.
ProsLiM. What is the vatue of n,(L(Q,) for y<x,.
2. The proof used by Chang in [2] to show that m, = h,(y*®) may easily be
used to obtain n, = H(y"w), m(Q,) = h(y*w, 0,) and n(Q,) = HG* o, ).
CONJECTURE, my(Q,) = m, ~~at least for y2w,.
3. Fotr Lyy. i |Ly,l = y22" then 9" =1y, so Corollary 3.7 yields n,(xw)
= (%, (2")*) —again the upper bound mentioned in [2] for n,. So n,(xw) = n,
2, 217" for y22"
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