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Two closed categories of filters
by

Andreas Blass (Ann Arbor, Mich.)

Abstract. Two categories mentioned in the title each have as objects all filters. The
morphisms from D to E in one of the categories are just the maps sending D to a filter extending E;
The morphisms in the other category are equivalence classes of such maps modulo “equality on
a set in D”. After discussing some elementary relationships between these categories and some
pairs of adjoint functors between them and the category of sets, we showt hat the first of our cat-
‘egories is both left and right complete. The second category is finitely left complete and has co-
products, but we give examples showing that it lacks coequalizers and infinite products. We also -
show. that each of two categories of filters is a closed monoidal (but not symmetric) category, in
the sense of Eilenberg and Kelly, and we briefly discuss some examples of categories over these
closed categories.

A useful methodological principle in modern mathematics is that, when one
defines a type of mathematical structure, one should also define the ‘notion of
a morphism (or map) between-two structures of that type. For a long time, this
principle was ignored in the case where the structures are filters. As far as I know,
the first published definition of a morphism of filters is in [6], where it is only briefly
mentioned. A different definition was proposed, and the resulting category of
filters investigated, in [7]. (This definition was also used, but only for ultrafilters,
in [1]) The purpose of the present paper is to investigate the categories & and
@ arising from these two definitions of morphisms.

In Section 1, we define two categories and develop their most elementary
properties, including various functors between them and the category of sets and
various adjunctions between these functors. This section also contains a discussion
of the heuristic meaning of the difference between the definitions of morphisms
in & and 9. In Section 2, we prove a number of results about the existence or
non-existence of various sorts of limits in our categories. The neatest of these results
is that & is both left and right complete, but perhaps more interesting are some
of the counterexamples to completeness in %. In Section 3, we amplify the dis-
cussion, at the end of Section 1, of the relation between & and ¢ by showing that ¥
can be obtained from & as a category of fractions with respect to a very natural
class of morphisms. We further show that this class admits a calculus of right frac-
tions; this provides an alternate proof of some results in Section 2. Finally, in
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Section 4, we point out that each of our categories is in fact a closed monoidal
category. We briefly discuss and give examples of categories enriched over &
and 4.

1. The categories # and %. A filter F on a set 4 is, by definition, a nonempty
family of subsets of A such that, for any X, Y<4, the intersection X n Y is in Fif
and only if both X and Y are in F. (For the elementary properties of filters used
without proof below, see [2] or any of numerous other general topology books.)
Notice that we allow a filter to contain the empty set, so that on each set 4 there
is the filter N4 consisting of all subsets of A and often called the improper filter
on A. Notice also that a filter F uniquely determines the set 4 on which it is a filter,
for A is the largest set in F (or the union of all the sets in F). When Fis a filter
on A, we define UF (the universe of F) to be 4. (We are reluctant to call UF the
underlying set of F, because a different notion of underlying set will be needed in
Section 4.) . -

If Fis a filter on 4 and f: 4—B is any function, then the subsets X of B such
that f ~1(X) € F constitute a filter f(F) on B. If G is a filter on B, then we say that f
maps Finto G, and we write f: F—G, if f(F)2G. It is easy to verify that we obtain
a category & if we take as objects all filters, as morphisms from F to @ all functions
f: F-G, and as composition ordinary composition of functions. The identity mor-
phism of F is just the identity function on UF.

The “universe” operator U from filters to sets becomes a functor from & to
the category & of sets if we define Uf to be f for all morphisms f of &. The “im-
proper filter” operator N also becomes a functor if we define Nf to be f for all £,

TeeorEM 1. U is faithful. N is a full embedding. N is left adjoint to U.

Proof. The first two assertions are obvious. For the third, notice that, if
Jf: A—B and G is a filter on B, then f(N4) = NB2G, so f: NA—G. It immediately
follows that # (N4, G) and ¥(4,UG) are not only naturally isomorphic but
identical. @ '

We shall need two other functors between & and &. For any set 4, there is
not only a largest filter N4 on 4 but also a smallest, namely P4 = {4}. (P stands
for “principal”.) We obtain a functor P: ¥— by defining Pf = f on morphisms.

THEOREM 2. P is a full embedding and right adjoint to U.

Proof. Since f(F)2PB for all f: A—B and all filters F on A, we have that
& (UF, B) and # (F, PB) are naturally identical. m .

By Theorems 1 and 2, we may think of & as embedded in % either as a full
reflective subcategory by (by P) or as a full coreflective subcategory (by N).

For any filter F, we define its core CF to be the intersection of all the sefs in F.
‘We make C a functor from & to & by defining Cf to be the restriction of fto CF
whenever f: F—G is a morphism in &

THEOREM 3. C is right adjoint to P.

icm

Two closed categories of filters

131

Proof. For any set 4 and filter F, (P4, F) consists of those functions f
from A = UPA to UF for which

F < fe4)
= {XSUF| fT'(X) e PA = {4}}
= {X<UF| fd)<cX},

which means f(4) €CF. But these functions are just the elements of #(4,CF). m
From Theorems 1, 2, and 3, we have the following sequence of adjunctions:

N-HUAHP~C.

This chain cannot be extended in either direction. N has no left adjoint because
it maps the terminal object 1 of & to a nonterminal object in 4. At the other end,
if € had a right adjoint Q, we could obtain a contradiction by calculating, for any
set B, that
UQB = (1, UQB) & #(CN1,B) = #(@,B) x 1
while
. CQBz=Z(l,CQB) = ¥(CPL,B)= ¥(1, B) = B;

when B has more than one element this contradicts the obvious fact that CFSUF
for all filters F.

Before turning to the definition of our second category of filters %, we apply
some of the adjunctions obtained above to characterize various kinds of morphisms
in #. These characterizations will be useful when we discuss the relationship between
F and 9,

THEOREM 4. (a) f: F—G is a monomorphism in & if and only if f is one-to-one
(as a function from UF 10 UG).

(b) f+ F—G is an epimorphism in F if and only if f maps UF onto UG.

(€) f: F—> G is an isomorphism in F if and only if f maps UF one-to-one onto UG
and f(F) = G.

Proof. Having a left adjoint N and a right adjoint P the functor U must
preserve monomorphisms and epimorphisms; being faithful, U also reflects them.
This proves (a) and (b). The “it” part of (c) is easy because f~*: UG—UF satisfies
FNG) = ff(F) = F, so f~* maps G into F and serves as the inverse of f in &#.
As for the “only if” part, f must be a bijection and its inverse in & must be its in-
verse /™ in & because U is a functor. For f~* to map G into F, it is necessary
that f(F)=G. The converse inclusion holds because f: F—G, so f(F) = G. W

Notice that & is not balanced; that is, a morphism can be both monic and
epic without being an isomorphism. The simplest example is the unique morphism
from NI to PI. :

We turn now to the definition of 4. Essentially, it will be a quotient of &,
two functions being identified if they agree “almost everywhere”. More precisely,
let F be a filter on A, let B be any set, and consider functions whese domains are
4 — Fundamenta Mathematicae t, XCIV
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subsets X of 4 with Xe F and whose ranges are subsets of B (partial functions
from 4 to B, defined almost everywhere). Call two such functions equal modulo F
(written f = gmod F) if their restrictions to some set in F' are the same. It is easy
to see that equality modulo F is an equivalence relation; the equivalence class [f]r
of a function f is called its F-germ (see [2], 1. 6). Notice that any f: X— B with
Xe Fis equal modulo F to any extension of fto a total function f’: A—B. Thus,
each germ contains a total function unless B is empty. And when B is empty there
are no germs at all unless Fis improper, in which case there is a unique germ. This
observation usually allows us to assume (with at most a slight loss of generality)
that any germ under consideration contains a total function.

The -definition of f(F) makes sense when f is a partial function of the sort
considered above, if we let f~(X) mean {x e Domain(f)| f(x) € X'}. Furthermore,
f(F) depends only on [f]g, for, if f and g are equal modulo F, we have a set X' e Fon
which fand g are defined and equal, so for any YEB, f"{Y) n X = g Y (¥V)n X.
Since ¥ ef(F) means f*(¥) e F or, equivalently, f~*(¥Y) n X € F, it follows im~
mediately that f(F) = g(F) as claimed. It therefore makes sense to speak of the
image of F under an F-germ: [f](F) = f(F).

We define ¢ to be the category whose objects are all the filters, whose
morphisms from F to G are all the F-germs [f]y (with /1 X—>UG, X e F) such
that [f]r(F)= G, and whose composition rule assigns to [f]p: F~G and [gle: G—H
the germ [gf1p: F—H. We leave to the reader the easy task of verifying thaicompo-
sition is well-defined and ¢ is a category.

‘ There is a forgetful functor V from & to ¢ which is the identity on objects
and sends each % -morphism to its germ. By composing the functors N and P
‘ jwith V we obtain functors from & to % which we still call N and P. The former
is, however, rather uninteresting as N4 is an initial object of ¥, no matter what
set A.is; the unique %-morphism from N4 to Fis the NA~germ of the empty partial
function. On the other hand, P retains in ¢ many of the nice properties it had in #.

THEOREM 5. (a) For any set A and any filter F, 9(PA, F) and F(PA, F) are
naturally (with respect to both A and F) isomorphic (the isomorphism being V).

(b) P is a full embedding of & into %.

(0) P has a right adjoint C: $—% which is the unique functor making the dia-
gram

F

I\.c
&

N
LA \

@ .

v

RS

commute.

l

Pr? of. (a) This i4 trivial once we notice that the PA-germ of f consists of justf
(and f is total). o
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(b) This is immediate from (a) and Theorem 2.

(¢) The existence of a functor C: ¥— & making the diagram commute follows
from the observaﬁon» that the F-germ of a function f completely determines the
restriction of £ to the core of F. Its uniqueness follows from the fact that V maps &
onto all of ¢ except for the morphisms NA—N& and a trivial verification to take
case of these exceptions (recall CNA = ©). Finally, we have

G(PA,F) = F (P4, F) = ¥(4, CF)

naturally in both 4-and F, by (a) and Theorem 3. ® ‘ )

Unlike C the functor U: F—& does not factor through V, because the germ
of f does not determine f uniquely. Thus, the long chain of adjoint functors
(N=1U ~{P— C) that we had between & and & is broken and we have only P—C
between @ and &, We shall see in Section 2 that P: #—% does not preserve in-
finite products, so it cannot have a left adjoint. Nor can C have a right adjoint
Q: &—%. Although the argument we gave for the analogous statement about & is
not directly applicable (for U is no longer available), half of that argument is still
correct and yields CQA =2 A. Now let F be any proper filter with empty core (for
example, the filter of cofinite subsets of some infinite set) and let 4 have at least
two elements. Then there are at least two distinct constant functions from UF
into CQA. Their F-germs are distinot (because F is proper) &-morphisms from F
to Q4. Since Q is supposed to be right adjoint to C, there must be two distinct
maps from CF to A. As CF is empty, this is absurd.

Thus, for ¥, the adjunction P~ C is the best we can do. (It is true that N has
a right adjoint ¥—%, mapping all filters to the terminal object 1, but this is of no
importance.) Incidentally, V has no adjoint on either side, for it preserves neither
infinite products nor coequalizers, as we shall see in Section 2. '

Parts (a) and (b) of the following theorem are due to Koubek and Reiterman [7].
It is the analog for ¢ of Theorem 4 for #.

THEOREM 6. (a) [f1p: F—G is a monomorphism in 4 if and only if there is
a set X e F such that, on X, f is defined and one-to-one.

(b) [f1ei F—G is an epimorphism in % if and only if f(F) =G.

() @ is balanced; that is, [f1p: F—~G is an isomorphism if and only if it is
both a monomorphism and an epimorphism. § :

Proof. For parts (a) and (b), see [7], and verify that our use of germs of partial
functions (rather than total functions as in [7]) makes no difference. The “only if”
part of (c).is, of course, true in any category. For the converse, assume that f is
defined and one-to-one on X &F and f(F) = G. As f~Yf(X)=2XeF, we have
J(X) e f(F) = G. Let g: f(X)—X be the inverse of the restriction of fto X, and
notice that {g]s is an inverse for [flr in 4. B )

Note that part (c) of the theorem would be false if we did not allow partial
functions in defining ¥.

By comparing Theorems 4 (c) and 6 (c), we find that in # a filter F should
be thought of as being on a particular set UF, while in & the same filter is, in some

4
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sense, no longer associated to any particular set. For example, if a filter F on a un-
countable set 4 contains a countable subset B of A4, then its restriction to B,

FIB={XeF| X<B} = {X B| Xe F}

is essentially the same as F in ¢ (more precisely, the inclusion of B into 4 induces
an isomorphism F| B = F) despite the change in underlying set, whereas in &%
these two filters are not isomorphic. Heuristically, an object of ¢ is thought of as
an “abstract” filter, where the abstraction consists of ignoring the universe, whereas
an object in & is a “concrete” filter. (Compare the fact that 47 is almost trivially
a concrete category — it has the faithful functor U to & — with the more difficult
proof in [7] that & is concrete — the forgetful functor in [7] is far more complex
than U.) This heuristic idea can be made precise by noticing that from any object
of # we get not only the object VF(=F) of ¢ but also the object PUF of ¢ and
a morphism (natural in F) np: VF—PUF (the F-germ of the identity map on UF,
or, if you prefer, the V image of the adjunction F~PUF in #), Altogether, we
have a functor from & to the comma category (%, P) (see [8] for information on
the comma construction) which can be shown to be an equivalence from & to the
full subcategory of (%, P) generated by those ‘objects of the comma category which,
as morphisms in &, are monic. In less abstract terminology, this means that, if we
identify & with its image under P in & (as we may, by Theorem 5 (b)), then an
object F of & (a conrete filter) may be identified with the triple (VF, UF, n;) con-
sisting of the abstract filter F, the ambient set UF, and the embedding of F into
this ambient set.

One can draw an analogy between the present situation of abstract vs. con-

-crete filters and the situation in topology where usually one considers abstract
spaces and homeomorphism is the appropriate equivalence relation, but in some
areas (e.g. knot theory) one must consider spaces as embedded in some ambient
space and the appropriate equivalence relation (e.g. ambient isotopy) involves the
ambient space.

It appears that most uses of filters in mathematics do not depend on the
availability of an ambient set; in other words the essential properties of filters are
invariant under ¢-isomorphism. For example, if Fis a filter on 4 and fis afunction
from 4 into a topological space, then all questions about limits or adherent points
of f with respect to F depend only on the F-germ of S (in fact most such questions
depend only on f(F)). For another example, if [f]p: F—G is a %-isomorphism
and (S} ae4) is a family of structures indexed by 4 = UG, then the reduced
product (see [4]).:[1; S8./G is isomorphic tobI'IIZ Syl F, where B = UF. (If £ is partial,

€

some of the factors Sty are undefined, but they do not affect the reduced product
?myway 5 almost all the factors are defined, and that is all we need .) Furthermore,
if we view the indexed family of structures as a function (¢t S,) on 4, the reduced
product depends only on the G-germ of this function. (Incidentally, the reduced
power of a set S with respect to a filter F is just @ (F, PS).)
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In view of examples like these, showing that abstract filters suffice for most
purposes, I suggest that & deserves to be called the category of filters. To indicate
that an object of & is viewed as an abstract filter plus an ambient set, I will call #
the category of filtered sets. (It is perhaps characteristic of the category-theoretic
point of view that we assign different names to the objects of ¢ and those of %,
although they are the same objects —remember that # and ¢ differ only in their
morphisms. The true nature of a thing is determined not by what it “really is” (as
a set) but by how it is related to similar things surrounding it.)

2. Completeness properties. It turns out that the category & of filtered sets
behaves much better than the category ¢ of filters with regard to both left and
right limits. Accordingly, we begin our study of completeness by considering .

THEOREM 7. F Is both left and right complete.

Proof. The construction of both limits and colimits in & is facilitated by the
observation that they are preserved by U, because U has adjoints on both sides.

Consider first the case of limits (= left limits). Let D: #—& be a diagram in &,
ie. a functor from a small category # into &. By the preceding paragraph, we know
that lim D, if it exists, must be a filter F on the set 4 = limUD. For each object I
of £, let p;: A—UDI be the canonical projection. The fact that U is faithful and
preserves limits shows that the canonical projection from F to DI must be p,. But
for p; to even be a morphism in & requires that, for each X'eDI, pr YX)eF.
Not wishing to put any unnecessary sets into F (for we shall need lots of morphisms
into F to show that it is lim D), we define F to be the filter on 4 generated by all
sets of the form py !(X) with e # and X e DL The above discussion shows that
we have # -morphisms p;: F—DI. These form a cone p: F—D; that is, they com~
mute with the maps Df, where fis 2 morphism of #. To prove the commutativity,
just observe that the diagrams in question become commutative when U is applied
to them, and U is faithful. If G is another filter and ¢g: G—D is a cone, we claim
there is a unique % -morphism r: G—F such that ¢ = p o r. We observe first that
Ug: UG—UD is a cone from UG to the diagram UD whose limit is UF = 4 with
the cone p. Hence, there is a unique map (in &) r: UG—UF such that ¢ = peor.
Since U is faithful, this r is the only possible choice for the required r in &, and
we need only check that r maps G into F. This means, we need (YY) e G for all
Y & F; by the definition of F, we need only check this when ¥ = 7 (X) for some
Ie # and some X eDJ. But then r~(¥) = r~p; {X) = gr "(X) € G because g
maps G into DJ. This proves that F, with the projections py, is limD.

Turning to colimits (= right limits), we again let Di #—% be any diagram.
Let 4 = limUD in &, with injections j;: UDI—4. Arguing as before, we see that
LimD, if it exists, must be a filter F on 4 and that the injections D/—F must be j;.
For these injections to be morphisms in &%, we need F<j,(DI). We want F to be
as large as possible (for we shall need lots of morphisms out of F), so we define F
to be () j,(DI), the intersection being over all objects I of 4. It is then easy to check

I
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that j: D—F is a cocone, the required commutativities being clear after one applies
the faithful functor U. If i: D—G is any other cocone from D, we claim there is
a unique % -morphism k: F—G such that i = koj. Since i = Ui: UD—-UG is
a cocone and UF = limUD with injections j, there is a unique k; UF—UG such
that i = ko j. As U is faithful, this & is the only possible choice for the required k
in &, and we need only check that it maps F into G. For each ¥ & G, we must prove
k~}(Y)eF, which, by definition of F, means j;'%k~'(Y)eDI for all I But
i3 ¥) = if }(Y)eDI because i; maps DJ into @, Therefore, F with the
injections jy, is imD. | .

Our next theorem is that ¢ inherits certain kinds of limits and colimits from %
via the forgetful functor V. In the proof of this result, and again in Section 3, we
shall need the following simple lemma.

LemMA 8. Let f and g be & -morphisms from F to G, and suppose Vf = Vg in 4.
Then there is a set B € F such that the inclusion map i: F| B—I satisfies foi = goi
in &. For any such i, Vi is an isomorphism in 4. i

Proof. The first assertion just restates the definition of equality modulo F
used in defining . The second assertion follows immediately from our character-
ization of the isomorphisms of % in Theorem 6(c). "

THEOREM 9. (a) ¢ has coproducts and V preserves them.
(b)  has finite products and V preserves them.
() ¥ has equalizers and V preserves them.

Proof. (a) Let a set {F,| me M} of filters be given, and let G be their co-
product in &, with injections j,: F,—G. We must show that G is also the co-
product of the F,’s in ¢ with injections [f,] = Vj,. Suppose we are given some
filter H and % -morphisms [ £,,]: F,,~H; we claim that there is a unique ¥ -morphism
[g]: G—H such that [f,] = [g]° [j,] for all m. Suppose first that the morphisms
[f] contain total functions f,, so [f,] = Vf,,. Then, in &, there is a (unique)
g: G—H such that f,, = g o j, for all m; then [g]: G-+H is a %-morphism as re-
quired. Before proving its uniqueness (and disposing of the exceptional case where
[f] contains no total function), we remark that the preceding argument proved
the following general fact. }

PropoSITION 10. A full functor that is surjective on objects preserves weal; co-
products. B

' (Weak coproducts are defined like coproducts except that the factorization
is not required to be unique. See [8].) ‘
Returning to the proof of Theorem 9(a), we note that, when some [f,]
contains no total function, H must be N@. Since N@ is isomorphic in % to N4 for
any other 4, we can reduce this case to the one already treated.
. To show that the factorization is unique, suppose we also had [¢']: G—H
thhl [j.”,,,] = [g']e [j,] for all m. This means £, = g’ o}, modF,, say g oj, = fa
=g °ojnon X, ek, Theng = g’ on j,(X,) for each m. Therefore, g and gragree
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on UJju(X,), which is in G (see the construction of £ -coproducts in the proof

m
of Theorem 7). So [g] = [g'] as required. .

(b) Let {F,| me M} be a finite set of filters, and let G be their & -product
with projections p,,. Unless some F, is N@, G is a weak ¢-product of the F,’s with
projections [p,,], by the dual of Proposition 10. The exceptional case (F, = N@)
is easily handled by a direct argument. Thus, given morphisms [f,]: H—F, there
exists [g]: H—G with f,, = p,, o gmod H for all m. We must show that if g’ has
the same properties then [gly = [g'ly. Since pnog’=f, = pyog'modH, let
X, € Hbesuchthat p,og = pog on X, Let X' =) X,.- As M is finite, X e H.

m

And, since p,, o g = p,o g on X for all m, we have g = g’ on X (for the p, are
collectively monic in &).

(¢) Let [f] and [g] be ¥-morphisms from F to G. If either morphism contains
1o total function, then F = N4 for some 4 and f = gmod F, so the identity map
of F serves as equalizer. Henceforth, we assume both fand g are total. Let e: E—~F
be their equalizer in #; we show that [e] is the equalizer of [ f] and [g] in &. Sup-
pose [A]: H—F satisfies fo h = g o hmod H. We may assume h is total (for, if [A]
contains no total function, H is initial in %), Applying Lemma 8 to fo hand g o A,
we find i1 H B—H with fohei=gohoiin & and Vi an isomorphism in 4.
Then & o i factors through e. Applying V and composing with (Vi)™ ! we find that [A]
factors through [e]. To prove the uniqueness of the factorization, we observe that,
by Theorems 4 (a) and 6 (a), V preserves monomorphisms; since ¢ is monic in &,
[e] must be monic in . &

We will obtain an alternative proof of parts (b) and (c) of Theorem 9 in Section 3.

The rest of this section will be devoted to examples showing that we cannot
strengthen Theorem 9 by changing “coproducts” to “colimits™ in (&) or by removing
the finiteness hypothesis in (b).

ExampLE 11. A pair of ¥-morphisms with no coequalizer. Let @ be the set

" of natural numbers, let i be its identity map and s the successor map (ne>n+1),

and let F be the filter on @ consisting of those sets whose complements are finite.
Then the pair of morphisms [1], [s]: F~Po has no coequalizer. To see this, consider
any morphism [p]: Po—H with pei=po smod F. We shall show that [p] is not
the desired coequalizer. Let X e F be such that p o i= pos on X. Being in F, the
set X must contain all integers from some # on; thus p(k) = p(k+1) for all k=n,
so there exists ¢(e CH) with p(k) = ¢ for all kzu. Let ¢: 0—w be defined by
qik) = k if k<n+1 and g(k) = n+1 if k>n+1. Then [g]: Po—Pw in ¥, and
goi= qosmodF because g(k) = g(k+1) for all kzn+1. If [p] were the desired
coequalizer, there would be a morphism [f]: H—Pw such that g = fo pmod Pao.
Then g = fop as functions on ® (see Theorem 3 (a)), so

n = g) = f(p0) = F©) = F(p(r+D) = gt 1) = nk1, .

a contradiction.


GUEST


138 A. Blass

ExAMPLE 12. A set of filters with no product in 4. For each m € w, let F,, = P2,
where 2 = {0, 1}. Suppose F, with projections [p,]: F—P2, were their product
in @. Having a left adjoint, the core functor C preserves products, so CF, with
projections Cp,, = p,, | CF, is a product of @ copies of CP2 = 2. Let G be the filter
of cofinite subsets of w (the F of Example 11), and define functions f,,, g,, from o
to 2 as follows. f,(k) = 1 for all kand all m. g,,(k) = 0 for k<m, g,,(k) = 1for k=m,
Then f,,=g,,mod G for each m; let o, = [ f,]= [9,,]: G—P2 (actually, o, is indepen-
dent of m). Since CF is the product of w copies of 2, we have (unique) functions
f»g: o~CFcUF with p,, o f = f,, and p,, o g = g,, for all m. Notice that therelore
F&) # g(k) for all k € w. Therefore, [f] and [g] are distinct morphisms from G
to F whose composites with [p,,] ate o,. This contradicts the uniqueness clause
in the definition of products. '

These two examples show that % is neither left nor right complete. They also
show, as promised in Section 1, that V preserves neither coequalizers nor infinite
products, so it has neither a right nor a left adjoint. Also, Example 12 shows that
P: #—% has no left adjoint for it fails to preserve infinite products.

Although these examples show that limits and colimits do not exist in ¢ in
general, they leave open the possibility that ¢ might have certain special types
of limits or colimits, for example directed ones, not covered by Theorem 9. We
show next that & has neither directed limits nor directed colimits. The former is
easy, given Theorem 9 and Example 12, for if ¢ had directed limits then we could
construct infinite products as limits of finite partial products:

I By =lim [] F.,

meM M’ meM'’
where M’ ranges over finite subsets of M, directed by inclusion, and the morphisms
of the inverse system are just projections. The nonexistencg of directed colimits
is harder.

ExaMpLE 13. A directed system of filters with no colimit. Let 4 be the set
of those infinite sequences s of natural iumbers such that s, = 0 for all but finitely
many z. Let p: A—4 be the function defined by p(s), = 5, 1. Thus p is the operator
deleting the first term of any sequence; its iterate P¥ deletes the first & terms. The
subsets X< 4 such that, for some k, p4—-X) < {0} (where 0 is the identically zero
sequence in ) clearly form a filter F on A, and p maps F into F. We shall show
that the direct system D:

FEFErY
(indexed by w) has no colimit in %. .

Suppose G, with injections Lil: % e o, were a colimit of this system; we may
assume that each j is total. For each k, we have j, = JeP*mod F, so, by definition
of F, there exists n(k) e @ such that jy(s) = 7,p(s) Whenever 7"®(s) 5 0. In other

words, for sequences s with non-zero terms beyond the n(k)-th, jo(s) is independent
of the first & terms of s.
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Choose a strictly monotone function m: w—o such that n(k)<m(k) for all k.
Define iy A—A by setting iy(s) = p(s) whenever p™®)(s) 2 0 but "I = 0.
Thus io(s) is independent of the first & terms of s whenever s has non-zero terms
beyond the m(k)-th. More explicitly, let z,: A—A be the function which puts »n
zeros at the beginning of a sequence '
] 0 if
lSk—u lf

k<n,

Z\Sh =
n( )k k?]’l,

and let #, = iy © z,. Then io(s) = i,p"(s) whenever p"™(s) 5 0. Thus, iy = i,p"mod F,
and the ¢-morphisms [4,] form a cocone from our direct system D to PA. Let
[F]: G—PA be the unique factorization of this cocone through the direct limit G
of D. Then iy = fo jymodF, so, by definition of F and the monotonicity of m,
we can find kew so large that 7o(s) = f(jo(s)) whenever p"®~1(s) # 0. If we
restrict attention to those s e A such that p™®~1(s) # 0 but p"¥(s) = 0, then, in
addition to iy(s) = f(jo()), We have iy(s) = p*~1(s) by definition of 7, and jy(s)
= j.p"(s) by choice of n(k) and m(k)—1=n(k). Combining these equations, we
find p*~*(s) = ff,p*(s), for the s under consideration. But this is absurd, for the
left side depends on s,_; while the right side does not.

We leave to the reader the verification of the details of the following example.

ExampLE 14. A colimit in ¢ not reflected by V. For each ne o, let F, be the
filter on wx w consisisting of sets X such that (a) {k} x @< X for all but finitely
many k € o, and (b) if m<n, then (m, p) € X for all but finitely many p € w. Clearly
F,2F, ., so the identity function on wx ® maps F, into F,,,. The proof of The-
orem 7 shows that in & the direct system D;

11 1
Fo—Fi—>Fy—...
has as its colimit the filter [} F, on wxw, the injections all being the identity
n

function. ‘

The image in ¢ of the diagram D has, however, an entirely different colimit
which can be described as follows. Its underlying set is the disjoint union of two .
copies of wxw. A set belongs to the filter F iff (a) it includes {k} x o in the first
copy of o x w for all but finitely many &, and (b) for each m € o it contains (m, p)
in the the sccond copy of @ x w for all but finitely many p. The injection of F, into
Fis the germ of the map taking (m, p) to the point (m, p) in the first (resp. second)
copy of wxe if mzn (resp. m<n).

3. A caleulus of fractions. In Section 1, when we discussed the relationship
between & and ¥, we showed that a concrete filter Fe & can be identified with
the triple consisting of the abstract filter VFe ¥, the ambient set UF, and the em-
bedding VF—PUF. Thus, & can be defined (up to equivalence) ln terms of ¢
(and P) as the full subcategory of (¢, P) generated by the monomorphisms. In
this section, we shall prove a result in the other direction, showing that one can
obtain @ from & simply by inverting certain morphisms. We let Z be the class of
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all morphisms in & of the form i: F B—F, where Be F, F1B={XeF| X<B},
and 7 is the inclusion map from B to UF. Such an { can be viewed as changing the
underlying set without affecting the abstract filter. Each {€X becomes an iso-
morphism in %, and our brief discus§ion in Section 1 of the “abstraction” involved
in passing from & to % indicates that the invertibility of the morphisms in ¥ is
essentially the only difference between # and %. The following theorem gives a precise
statement of this heuristic idea.

THEOREM 15. &, with the forgetful functor ¥, is the category of fractions F[Z~1],

Proof. By Lemma 8, V is a functor taking morphisms in £ to isomorphisms.
Suppose 8: F—% is any functor taking all the morphisms in 2 to isomorphisms;
we shall show that there is a unique functor T: $—% with S = To V. Since V i;
the identity on objects, we have no choice but to set TF = SF for all filters F. If
a @-morphism [ f]: F—G contains a total function £, then we are forced to define
T[f] = Sf. This is well-defined, for if [ f] = [g] then Lemma 8 provides an ie X
'such that foi = goi; then S(f)°8() = S(g)oS(i) and, because S(i) is an
isomorphism, S(f) = S(g). We must still define T[f] when [f] contains no total
fnnction: This happens only when [ f]: NA—N@ is the inverse in & of [i]: NG—NA
where i ls-the unique map @—4. As i€ X, we can (indeed, we must) define T[f i
to be the inverse in % of T[i] = 8i. This proves the uniqueness of T; existence will
foll_ow once we check that T is a functor (for S = TV is obvious). Since this
verification is trivial, we leave it to the reader. @ \

THEOREM 16. X admits a calculus of right fractions.

Proof. We recall the definition [5] of admitting a calculus of i i
oot ¥ g a calculus of right fractions.

(a) I contains all the identity morphisms of &,

(b) £ is closed under composition,

. . I s . .
squaiz) Given morphisms F-> Ge G' in & with seX, there is a commutative

A6

r-L.¢

in & with s e 3.
(d) If £, g are #-morphisms = sg for 3
or TS0 P such that §f = sg for some se X, then fi = gi
. itClalms? (a) and (b) are trivial, and (d) follows immediately from Lemma 8,
o sr?ma;;ns. ’Fo prove (0). Suppose BUG is the set in G such that G’ = Gl B
is the inclusion B—UG. As f maps F into G, the set 4 = f~1(B) is in F.

Let F' be FI 4 and let s' inclusi .
of fto d. & o l?e the inclusion A—UF. Finally, let f* be the restriction
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These theorems give a new, more abstract, proof of part of Theorem 9.

COROLLARY 17. % has, and V preserves, finite limits.

Proof. Immediate from Theorems 7, 15, and 16 by the dual of [5] Prop-
osition 1.3.1. M .

4. Closed monoidal structure. It is well-known [6] that, in addition to the usual
product of filters (as in Theorems 7 and 9), there is another notion of product suit-
able for reducing iterated limits in topology to ordinary (single) limits and iterated
reduced products in model theory to single reduced products. This product is
defined by .

FRG = {XsUFxUG| {aeUF| {beUG| (a,b)e X} e G} e F};

thus, X € F®G iff, for F-almost all ¢ it is the case that for G-almost all b, (a, b € X.
Note that ® is, in general, not symmetric; there is no isomorphism between FQG
and G®F. Tt is however, associative; the obvious bijection from (UFxUG)xUH
to UF x (UG x UH) is an isomorphism from (FRG)@H to FR(GRH). We make ®
a bifunctor by defining f®g, when f: F—F' and g: G—G', to be the cartesian
product map fxg: UFx UG—UF'xUG'; it is trivial that this maps F®G into
F'®G". It is also trivial that the associativity isomorphism described above is
natural, that there are natural isoniorphisms

P(YQF = F= FRP(1),

and that all these isomorphisms are coherent, so that & is a (non-symmetzric)
monoidal category with the product ® [3].

I f=f'modF and g =g'modG, then Qg = f'®¢g'mod FQG. We can
therefore also define @ as a bifunctor on %, and we verify easily that & is also
a monoidal category (with respect to ®) and that Vis a monoidal functor. (Strictly
speaking the monoi dal functor is not just V but V together with the identity natural
transformation from VF®VG to V(F®G) and the identity map from P1 to VPI;
see [3]. Henceforth, we omit such technicalities.) It is also easy to see that U: F—&,
C: 9, and C: F—F are monoidal functors. In fact, C is (up to natural iso-
morphism) the “underlying set” functor for both & and ¢, because (by Theorem 5)

F(P1,F) = 9(P1,F) = ¥(1,CF) = CF.

Tt is this fact that made us reluctant in Section 1 to call UF the underlying set of F.

The operation @ deserves this “tensor product” notation because, for each F,
the functor . @JF has a tight adjoint, an internal Hom-functor. (Note that the
ordinary product .. x F, where F is the filter of cofinite subsets of w, has no right
adjoint for it does not preserve coproducts, not even the coproduct of countably
many copies of P1.) The right adjoints for ® are defined as follows. In Z,
Homy (F, G) has as its underlying set the set &(UF, UG) of all maps from UF
into UG, and it is generated by the subsets

{1 f M eF) = {fl Xefth} for XeG.
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(Thus CHomg(F,G) = #(F,G).) In ¢, the underlying set of Homy(F, G) is
the set of all F-germs of maps from sets in Finto UG, and a basis for qug (F, @)
consists of the sets {[f1;| Xef(F)} for XeG. (So again CHom,(F, Q)
= 9(F, G).) We can describe Homg (F, G) as the filter on & (F, PUG) generated
by the sets & (F,PX) for XeG; then we can describe Homy(F, G) by just
changing all #’s to ’s in this formulation. We leave it to the reader to verify that
the functors we have described give right adjoints for ® and that both 4 and @
thus become closed monoidal categories [3].

We close with a brief discussion of categories over & ; with obvious modifi-
cations, the same remarks apply to categories over ¥, especially since every & -cat-
egory induces a #-category via V [3]. An & -structure on a category @ assigns to
each pair C, D of objects of % a filter Hom, (C, D), on some set 4 = UHom, (C, D),
with core ¥(C, D), the ordinary Hom-set. The elements of 4 can be thought of
as “approximate ¢ -morphisms” from C'to D, and the sets in the filter Hom,(C, D)
correspond to conditions on the degree to which an element of 4 resembles an
actual morphism (so that all these conditions together imply that the element is
an actual morphism).

For example, the category . of metric spaces and uniformly continuous maps
admits the following % -structure. UHom L«(C, D)is the set of all functions from C
to D. Hom,(C, D) is generated by the sets "

4, ={f: C=D| 36>0)(Vx, y € C) (de(x, ) <6—dp(f(x), f(3)) < &)}
for £>0. Thus, CHom,,(C, D) = 1 4, = #(C, D) as required, The composition
>0

operation of . lifts to the map Hom,,(C, D)®Hom (B, C)—Hom 4 (B, D)
given by ordinary composition of functions, so .4 is indecd an & -category. It is
clear that, for example, the category of uniform spaces has an analogous
& -structure. .

For another example, consider the category o/ of abelian groups and homo-
morphisms. Again, we let UHom (4, B) consist of all functions from 4 to B.
The filter Hom_, (4, B) is generated by the sets

Xp = 1{f: 4B (Yx,y e F) f(x+3) = f() +/()} )

where F ranges over finite subsets of 4. The core of this filter consisis precisely
of the homomorphisms from A4 to B. The composition operation of & can be lifted
to the ordinary composition operation Hom (4, BY®Hom,, (B, C)—Hom w4, C).
Note that the order of factors on the left is the reverse of that required in the defi-
nition {3] of an & -category. Since # is not symmetric, this reversal cannot be
circumvented. Thus, what we have shown is that the dual of o, not of itself, admits
an & -structure. A similar discussion provides an & -structure for the dual of any
algebraic category.

Finally, we remark that for & - categories (but not for ¢ -categories) the objects
and approximate morphisms also form a category (induced by U from the given
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category). In the preceding éxamples this was the category of sets or its dual, but
it would be easy to give an & -structure for the dual of the category of rings such
that the approximate morphisms are just the homomorphisms of the underlying
additive groups.
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