Distant bounded variation and products of derivatives
by

Richard J. Fléissner (Milwaukee, Wisc.)

Abstract. Let 4 denote the class of real-valued functions defined on [0, 1] whose product
with every derivative is a derivative. In [2] it is shown that every continuous function of bounded
variation belongs to 4 and an example of a discontinuous member of A is presented. In the present
note it is established that each member of A is a bounded derivative and can have an at most finite
number of points at which it is of unbounded variation. A bounded derivative f is said to be of
distant bounded variation (BVD) at x, if the integral of s(¢) = |t— x,| with respect to the measure
induced by the total variation of f exists and satisfies.a Lipschitz condition at x,. Then fe A4 if
and only if fe BVD at x for each x in [0, 1].

Throughout the following, |E| will denote the Lebesgue measure of E. For
a function f and an interval £, [ f(x)dx will denote its Lebesgue integral,
i

(D) | f(x)dx, its wide-sense Denjoy integral, O(f, I), its oscillation and W(f, I),
f :
its total variation. If F is of bounded variation on I, | g(f)dF(z) will denote the
N I

Lebesgue-S.ieltjes integral of g(r) with respect to F(f) on I

Our study of the class 4 begins with four elementary theorems.

THEOREM 1. If f(x) and g (x) belong to A, then f(x)g (x) and f(x) + g (x) belong to 4.

Proof. This follows immediately from the definition of A.

THEOREM 2. If f(x) is in A, then f(x) is a summable derivative.

Proof. Since f(x)e 4, 1-f(x) and f(x)f(x) are derivatives. Then f*(x) is
D-integrable and since f3*(x)20, f*(x) is summable [4, p. 242]. Since
|G| <max(L, f3(x)), f(x) is summable.

THEOREM 3. If Hi(x) = h(x) on [a, b] and H3(x) = h(x) on [b, ], then H'(x)

= h(x) on [a, ] where H(x) = H,(x) on [a, b] and H(x) = H,(b)—Hy(b)+H(x)-

on (b, ¢].
Proof. By hypothesis,

lim H,(x)—H(b)/x—b = h(b) = lim H,(x)—H,(b)/x—b.
x~+h~ x-+b+
The theorem follows by noting that H(x) is continuous at b and differs from

H,(x) by a constant on [b, c].
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THEOREM 4. Every member of A is approximately continuous.

Proof. W. Wilcosz [5, p. 151] showed that if f(x) and f2(x) are derivatives,
then f(x) and f2(x) are approximately continuous. (The condition that f(x) is bounded
is not used in this part of his proof). .

For future reference, we state the result which is proved in [2].

THEOREM 5. If F(x) is a continuous function of bounded variation on [0, 1], then
F(x) belongs to A.

By relaxing the requirement that F(x) be of bounded variation on the entire
interval, we obtain a generalization of Theorem 5 which leads to the concept of
distant bounded variation.

THEOREM 6. Let F(x) be a bounded derivative on [0, 1] such that F(x) is of bounded
vanatlon on [8,1] for every 6>0. Let V(@) = -W(F, [t 1]) Suppose that

Ixmj' tdV (1) = K<oo and that there exists an M >0 such that —j 1dV(t) < M (where

ﬁ-'O L]

j' dv() = K— j tdV (1)) for each x € (0, 11. Then F(x) belongs to A.
°
Proof.” We first note that since V'(f) is increasing on (0, 1], K> _[ tdV (1)

jrdV(l)>0 whenever 12x,>x,>0. Consequently, j'th(t)>0 for xe(0, 1].

Let g(x) be a derivative. Since F(x) is a derlvatlvc, F(x)g(x) is a derivative
if and only if F(x)(g(x)— g(0)) is a derivative and we may assume that g(0) = 0
x

Let G(x) = (D) | g(ydt.
[}

Since F(x) is a derivative and is of bounded variation on [§, 1] for each 6>0,

it is continuous on [4, I] By Theorem 5, Fi (x)g(x) is the derivative of its D-integral
n [5, 1].

To 1show that F(x)g(x) is D-integrable on [0, 1], it suffices to show that
}’in;(D) £ F(D)g(f)dt exists and is finite [4, p. 258]. By [4, Theorem (2.5), p. 246],

1 ] 1
(D),;[ F@)g(ndt = FQ)G(1)—F(S)G(&) ~ | G(1dF() .
3
Since F(x) is bounded and limG(s) = G(0) =0, it suffices to show that
50

1
lain; S[G(t)dF(t) exists and is finite. If O<a<p, then
B B B
‘fG(t)dF(tN SJIG(t)]dV(t) = H —(—;? lrdV(t) .

) ) H
Since lmno ‘T' =9g(0)=0 and lim [ V() =0, for each &>0, there
—

§=0 0
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isad = () >0 such that
3 3
1 f Gar)| < f lc—t@
|

. .
such that 0<a<d. Hence, lim [ G(2)dF(?) exists and is finite, F(x)g(x) is D-in-
603

tdV(f)<e for each «

tegrable on [0, 1], and
1 1
(D) j' F()g@dt = FQ)G()—F(0)G(0) —6[ G(OdF(D) .

To show that llmx'l(D) jF(t)g(z)dt F(O) g(@) =0, we note that

[x~ YD) jF(f)g(t)dtl = T {FEGx)~-FO)GO)— g G(AF(0))|

|F( )G(x) i G( Neave

G(x G(t hd
<|F(x) -(—)’ <o<zs ()D x7t a[th(r)l
F(x)ﬂ) (osug GT(O)-M .-

Since G'(0) = g(0) = 0 and F(x) is bounded on [0, 1], both terms tend to O as
x—0 and the proof is complete.

It f(x) is a continuous function of bounded variation on [0, 1], then f(x)
satisfies the hypotheses of Theorem 6, since if W(f, [0, 1]) = M, then V(0) = — M,
V(1) = 0 and V() is increasing on [0, 1]. Hence,

X1 j dV () <xtx j AVOKVE)-VO)<M.

- Moreover, if f(x) is the discontinuous member of A presented in [2], then
W(f, la,, b,]) = 2 and V{(?) is constant on [b,, a,—,]. If x & [ay, by], then

x 0 by 0
xav@<xt Y [hdv<az' Y 25,0
1] k=N ax k=N

by condition (iv) of the example. Therefore, Theorem 6 generalizes Theorem 5.
1 x
In the following definition, the condition : § tdV({H)<M is translated to an
7]
arbitrary point x, € [0, 1].

DEFINITION. A bound derivative f is said to be of distant bounded variation
JSrom the right at xo (f€ BVD™ at x,) if there exist x, , K5, and M}, such that x, > X,
1*
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£ is of bounded variation on [xo+ 8, x,] for each & such that 0<d<x;~x,, and
Vi) = —W(f, [t, %)) for € (x0, x4l :

lm | (—x)dVi) =K and  (x—x))"' [ (t—x0)d

8-0%F xo+38 xo

letting
V() <M
for each x e (x,, x,]

(where j'(t—xo)dV ") = K — j(t-—xo)dV;g(t)) We say that f is of distant

bounded vztrzatwn from the left at X, (fe BYD™ at x) if f(1—=x)e BVD™* at 1—x,.
Then f is of distant bounded variation at x, if fe BVD™ and BVYD™ at x,.

TuEoREM 7. If a function f satisfies (i) f is a bounded derivative on [0, 1], (ii) there
exist at most finitely many points 0<x; < ... <x,<1 at which f is of unbounded vari-
ation and (i) f is of distant bounded variation at x;, i = 1, ..., n, then f belongs to A.

Proof. If g(x)isa derivative on [0, 1], thenf(x)g(x) is a derivative on [0, x,],
[x.» 1] and [x;-(,x], i= ,n by Theorem 6, By Theorem 3, f(x)g(x) is a de-
rivative on [0, 1] and f belongs to 4.

Our next objective is to show that each of the hypotheses (i), (ii) and (iii) of
Theorem 7 is a necessary condition for membership in A4.

We first show that every member of A is bounded.

THEOREM 8. If f(x) is a unbounded derivative, there exists a derivative g(x) such
that f(x)g(x) is not a derivative.

Proof. If there is no such g(x), then f(x) is in 4. Since f(x) is unbounded,
f3(x) is also an unbounded member of 4 by Theorem 1. Thus we may assume that
F(x)=0. Without loss of generality, im f(x) = +o0.

x—+0+

Let E, = {x| f(x)>4"}. By the Denjoy-Clarkson property [l], |E,[>0 and
we may choose a sequence {x,}:- decreasing to 0 such that for each n, x, is a point
of density of E,. We choose a sequence of sufficiently small intervals I, = [a,, b,]
satisfying

@) a,<m,<a,-1<1 = ay,

(ii) x, is the midpoint of I,

(i) x,/a,<2,

(iv) if J is any subinterval of I, such that x,eJ, then |J n E,|/[J]>1—1/2"

Let I, = [a,, b;] be the interval of length }|7,] whose midpoint is x,

. Denote by k(x) the function whose value is 27" on 75, 0 on [0, 1]— U (@, by),

and is linear on the intervals [a,, a;] and [b;, b,]. Then k(x) is a continuous function
of bounded variation on [0, 1] and, therefore, belongs to 4. By Theorem 1, i(x)
= f(x)k(x) belongs to 4 and to obtain the desired contradiction, it suffices to
construct a derivative g(x) such that A(x)g(x) is not a derivative. Noting that
h(x) = 0 on each interval [b,, a,_,] and that h(x)>2" for xe I, n E,, we are ready
to proceed.
Leta, =27"-x, Forxel,, let g(x) = &,|I;|" . Let g(a,) = g(b,) = g(0) =

Define g(x) to be linear on the intervals [a,, a,] and [b},, b,}. Since || = 3|7,| and;
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since above I, the region bounded by the x-axis and the graph of g (x) is a trapezoid,

it is easily seen that jg(x) dx = 3a,. On (b,, a,~,), let g(x) be any continuous
In .

function such that g(x)<0 on (b,, @,—1), lim g(x) = lim g(x) = 0, and siich that

x=b* x-+a
n n-1
n—1

. © 1
| g(x) = —3a,. Since o, =27"x,, Y 3w, is finite and [ g(x)dx exists and
b, n=1 0

equals 0. To show that g(x) is a derivative, we note that it is continuous at each
point x in (0, 1] and, thereforc, we need only show that

1imx'1fg(z)dx =g(0)=0.
o

x>0

Let x € [a,, a,—4). Then
IX”l;f‘g(t)dtl = |x"‘aljg<f)dtlSx“-%a,.sa:‘-%a,-
Since «, = x,27" and since a; 1x,<2 by condition (iii),
[zt t_f‘g(z‘)dt[<35-2"' for xela,, 1) .

Hence, g(x) is a derivative on [0, 1].
To show that A(x)g(x) is not a derivative, we note that h(x)g(x)>0 for all x
1

in [0, 1] and that A(x)g(x)>2"a,|l,|* for x in I, N E,. If | h(x)g(x)dx does not
()

exist, there is nothing to prove. Otherwise, let J, = [a}, x,]. Then,

xR Wdizxt | k(g dizxy 2| T, A E|
[

JnnEn

= {17V 0 E>3(1-277)>%,

since o, = 27", |[J,| = 3|1, and |J,|7*|J, N E,|>1—2"" by condition (iv). Since
h(0)g(0) = 0, h(x)g(x) cannot be a derivative.

To show that a member of 4 can -have only finitely many points in every
neighborhood of which it is of unbounded variation, we need the following lemma.

Lemma 1. Let f(x) be a derivative on [0, 1] such that 0<f(x)<1. Let I = [a, b]
be a subinterval of [0, 1] such that O(f, I)>n>0 (or W(f, I)>n>0). Then for each

- pair of positive numbers w>0 and £>0, there exists a piecewise linear continuous

function g(x) on I such that

@) g(@ =g®) =0,

(i) JgGodx =0,

1

(iii) O(jf g@dt, <o,
(iv) !f (*) g (x)dx>wn—e.

e ©
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R.J. Fleissner

Proof. We shall first prove the lemma for the case O(f, I)>n and then extend
it to the case W(f,I)>n. In the proof we shall write g(x) for ga 4,0, (x) and show
that for sufficiently small choices of &, &, and &;, g (x) satisfies the conditions of
the lemma.

Since f(x) has the Denjoy-Clarkson property and since O(f, I)>n, there exist
positive numbers « and § such that f—a>7 and the sets - E; = {xel| f(x)>p}
and E, = {xel| f(x)<a} are both of positive measure. Hence, for any & >0,
we may choose intervals I) = [ay, b,] and I, = [a;, b,] in (a,b) such that
distZ;, I)>0, |I;] = |L,], and |E; A L[| >1—g for j=1,2.

Given g,>0, let g(x) = @(I—g)ly|™* on Iy and g(x) = —(l—g)|l| ™
on I,. Then

o Ij'g(x)dx = o(l—e,) and Ij'g(x)clx = —o(l ;‘52) .
Since f(x)>0 on [a, b],
@ Iff(x)g(x)dx>E ‘[1 FX)g(x)dxzPo(l—e), | By 0 1)

2po(l—e)(1—e) .
On E;n1I,, f(X)g(x)>a-g(x) and on I;—E,, f(x)g(x)>g(x) since 0<f(x)<1
on I, g(x)<0 on I,, and f(x)<« on E,. Therefore,

©)] Jf®gd = [ fg@dx+ [ flx)g(x)dx
Iz Eanly I—-E;
> —aw(l—e || " Ex 0 | —o(l—&)| L™ - B,
> —aw(l—&)(1—e)—o(l—e)e (M),
the last inequality following from 0 <a< 1, |[I,] ™| I,— E;| <ey, and ||+ |E; n L]+
+|I,|71-{[,~ E,| = 1. Combining inequalities (2) and (3) yields

@ | f@g()dx>B-a)o(l—e)(l~e)~w(l—s)8,

Iz .
>o(l—e)(1—e)—w0(l—ey)e, .
Without loss of generality, a<a; <b; <a,<b,<b. Let ¢3>0 be small enough
so that a<a;—e3<b;+e3<a,—e3<by+8;<b. Let K =[a,—es, 4], K,
= [by, by+es], Ky = [a,—&3,a,] and K, = [b,, by+23]. Now set g(x) =0 on
[a, a,—es), [6,+&;5,a,~¢3] and [b,+e5, b] and define g(x) to be linear on Kj,

() Since LI Ey N Li+ LI E,— L] = 1,
LI Ey Bl + L7 Ee— L] = (1— &) + &,
Since 0<a<1 and |LI"YE, N L] > 1—¢,
allo[7Ey N Ll + L[ 7HE — Ll < a(l—6)+ &«

Note that multiplying the first term on each side of this equality by a reduces the left side
more than the right,
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j=1,2,3, 4 Then‘g(x)is a piecewise linéar, continuous function on 7 and clearly
satisfies conditions (i) ‘and (ii) of the lemma. Moreover,

&) ' [KSJQ(X)de =3ol-g)L| e (=1,2,3,4
and ‘
©® |J0gax<tol —e)h e (7=1,2,3,4)
since 0<f(x)<1. By (4) we may choose &, and ¢, small enough that
o | ‘ J S@g@ds>no=ie.
Choosing &5 so small that *
®) 2w(1—&,)|I,| " *es<min(e, w, L&)

bites

x
and noting that O([ g(A)dt, I) = § g(®d, it follows from (1), (5) and (8), that

O(Ig(t)dtdt,1)<w‘ From (6); (7) and (8), it foHoWs that [f(x)g(X)dx>nw—e
a ’ . 1 ) '

and the proof for the case O(f, I)>n is complete.
It 6>0 and >0 are given and W(f, I)>1, there exist non-overlapping closed

s
intervals I,<I, k = 1, ..., 5, such that if O(f, ) = m, then Y m>n. On I let
k=1
g(x) be a piecewise linear continuous function satisfying (i), (ii) and (iii) of the

lemma and { f(x)g(x)dx>n,o—gfs. Let g(x} = 0 on I— U . Then g(x) satisfies
T k=1

@), (i) and (i) on I and § F0)g(¥)dx>Y n.o—e/s>nw—e. This completes
i k=1 .

the proof.

THEOREM 9. If f(x) belongs to A, the set of points in every neighborhood of which
f(x) is of unbounded variation is finite.

Proof. By Theorem 8, we may assume that f(x) is bounded and, without loss
of generality, that 0<f(x)<1. Assuming the theorem false, we may select a strictly
decreasing (or increasing) sequence {x,}{ of points, in every neighborhood of which
f(x) is of unbounded variation. We assume, without loss, that limx, = 0. Let I,

n—=w
= [a,, b,] be a sequence of intervals such that a,<x,<b,<a,-y forn=1,2,3, ..
- Let o, = 27 "-a,. Since f(x) is-of unbounded variation in I,, we may choose pairwise

n

disjoint, closed intervals L, ..., I,,N,; such that if 7, = O(f, s then Op* > M > 2.
. k=1

On I, = [@u buls let g(x) be a piecewise linear, continuous function satisfying

conditions (i), (ii) and (iii) of Lemma 1 (where I = I and = ,) such that

| f(x)g () dx>Lw, M. Let g(x) =0 for x in [0, 11— U I;. Then for each n,
Ik nk

- Nn
Iff(X)g(x)dx>szn‘k=Xl’1,.k>1 .

8 . R.J. Fleissner

Since f(x)g(x) = 0 for x not in U L, it follows that f(x)g (x) is not D~integrable
nk

on [0, 1] and cannot be a derivative.
Since

fgx)dx =0, | gxdx=0,
Inke [0.1]"Hklnk

and
0( Ig(t)dtsInk)<wn = 2_”dna

8nk
it follows from [4, Theorem (5,1), p. 257], that g(x) is D-integrable on [0, 1]. Be-
cause g (x) is continuous on (0, 1], we need only show that ‘

X
limx~*(D) [ g(Hydt = g(0) = 0
x~+0 0
in order to establish that g(x) is a derivative. If x € [a,, @,—1), then
D) [gBd = xTID) [ gD <x e, = 27T e, <27
0 ap

This completes the proof of Theorem 9.

COROLLARY. Iff(x) belongs to 4, then f(x) has at most finitely many discontinuities.

Proof. Members of 4, being themselves derivatives, can have discontinuities
only of the second kind.

It was shown in Theorem 8, that if f(x) is a non-negative unbounded derivative,
then there exists a summable derivative g (x) such that f{x)g(x) is not a derivative.
To show that the derivative constructed in Theorem 8 is not in general summable,
we give the following example.

ExaMpLE. There exists a continuous function f(x) such that fis of unbounded
variation at @, = 27" for n = 1,2, 3, ..., f is of distant bounded variation at a,,
n=1,2,3, .., and f(x)g(x) is a derivative for each summable derivative g(x).

Construction. Let J, = [27%,27"+47"]. Let M, be an integer such that
1227"**M,>1/n. Partition J, into M, abutting closed intervals J,y, ..., Jurr,e
On Jy, let p(x) denote the function whose graph is an isosceles triangle of height 27"
and whose base is J,,. Set p(x) = 0 on [0, 11— U J,. Then 1227""*M, = W(p, I,)

. n
>1/n and p is of unbounded variation at 0, 0<p(x)<x for each x in [0, 1] and
2'Y QT4 (p, J)<4  for cach N.
Since for x e Jy, ‘
. * ©
b7t vl <2" L @744 W(p,J), peBVD* at 0.

For tel, = [27", 27", let p,(d) = 27"p(2""x+2"") where t = 2™ "x+27",
xe[0,1]. Th(?n the graphs of p and p, are similar figures and p, is of unbounded
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variation at a, = 27", 0<p,()—p,a)<l‘|t—a,, tel,, and p,,eBVD*I at a,.
Since p(x) = 0 on [3,1], ppes(f) =0 on [2,—3-27"73, a,]. Letting f(x) = p,(x)
for x e I, and f(0) = 0, we have that f is continuous on [0, 1}, f is of unbounded
variation at &, and fe BVD at g, for all n. Moreover, f satisfies a Lipschitz con-
dition at each point of [0, 1]. (The Lipschitz constant may be chosen to be 1 at
each a, and at x = 0.) .

Since f is continuous, f i is a summable derlvatlve and, by a result of Tosi-
fescu [3], if g is 2 summable derivative, fix)g(x) is a derivative since f satisfies
a Lipschitz condition at each point of [0,1]. QE.D.

To show that if a member of ‘4 is of unbounded variation in every neighbor-
hood of a point x, (without loss, x, = 0), then it must be of distant bounded vari-
ation at x,, the following lemma is needed.

LemMaA 2. Let f(x) be a bounded derivative on [0, 1] such that f(x) is of bounded
variation on [5,1] for each §>0. Let V(1) = —W(f, [1,1]) and suppose that there

b

exist numbers 0<a<b and M>0 such that | tdV(£)>Mb. Then there exisis a piece-

wise linear continuous function g(x) on [a, b] such that g(a) = g(b) = 0,

x

ljg(t)dt
X

b b

Jg(t)dt=0 and J‘f(x)g(x)dx>g_

a

1
<— r each xela,b],
i for each x e [a,b]

»
Proof. Since [ dV(f)>Mb, there is a partition, @ = gp<d;<..<a, =b
a
such that
Zak (V@) =V(a,-)) = Zak W, L)>Mb, where I, = [ak_ , A -

Let w, = @,_,/M. By Lemma 1 there exists a piecewise linear continuous function
g(x) on I, such that g(a.-1) = g{@) =0

I_f gdt =0, O( ij g(Ddt, )<,

-1
and '

ffm 90> W R 2.

Then [ g(Hdt =0 and if x€ 1,
b
e

ll v[g(t)dt‘ = 1— j gdy <
X X A1

a B -1 fe-1

] < !
—m = —,
g 4y ¥ M

10 R.J. Fleissner

Moreover

B T r
w,
ff(t)g(r)dt - Z ff(t)g(z) p >Z w1 %
a ' k=1 .

k=1 I
1 1 b
= — Wy L)>== Mb = —
2MZ”" U 1>75 2
k=1

and the proof of Lemma 2 is complete.

TaeoreM 10. If f(x) belongs to A, then f(x) is of distant bounded variation at
each point x, € [0, 1].

Proof. By Theorems 8 and 9, we may assume that fx) is a bounded deriva-
tive and that there exist at most finitely many points x;, i = 1, ..., m, at which
f(x) is of unbounded variation. We have already noted that if xp#x;,, i=1,..,m,
then fe BVD at x,. Suppose that f¢ BVD at x, for some k, 1<k<<m. Wlthout
loss of generality f¢BVD® at 0. '

Then for each £>0 and M>0, there exists a number b such that j tdV(ty>Mb

- \
and 0<b<s. Hence there exists an a such that 0<a<b and jth(t)>Mb. (We
a

1
note that @ and b can be so chosen in case lim j' tdV(f) = oo). Thus we may choose
a sequence of intervals I, = [a,, b,] such that a,<b,<a,-, for all n and [ dV(r)

In
>2"b, for all n.
By Lemma 2 there exists a piecewise linear continuous function g(x) on I
such that g(a,) = g(b,) =0,

In

x
: . 1
J‘g(t)dt =0, l;Jg(t)dt.<2"" for each x eI,
and

Jf(ng(z)d»%",

i
Let g(x) =0 for xe[0,1]— U I,. The D-integraﬁility of g(x) follows from
[4, Theorem (5.1), p. 257] and since

x

i)jg(t)dt\ = ’}C jg(t)dt‘q'",
0 an
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it follows that

x

1
lim —(D) | g(Ndt = g(0) =0.

x=0 X
o
It f(x)g(x) is not D-integrable, there is nothing to prove. If it is, then
b bn .

o
5@ Jf(X)g(x) dx >bin ff(x)g(»c) @t
0 an

Since 7(0)g(0) = 0, f(x)g(x) cannot be a derivative and the proof .of Theorem 10
is complete.

THEOREM 11. A function f(x) belongs to A if and only if it is of distant bounded *
variation at each point x of [0, 1].

Proof. Necessity is shown in Theorem 10. To see that this condition is suf-
ficient, we note that the definition of distant bounded variation entails that f(x)
be a bounded derivative. If there were infinitely many points at which f{x) is of
unbounded variation, they would have a limit point xo in [0, 11. Then f(x) would
be of unbounded variation in every interval of the form [xo 48y, %9+8,] (or
[xXo—85, Xo—8;] for all §,>0 and all sufficiently small §,>0. Consequently,
fé&BVD at x,,. Hence, there are at most finitely many such points and fis of distant
bounded variation at each of them. Thus sufficiency follows from Theorem 7 and
the proof of Theorem 11 is complete.'
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Baire category from an abstract viewpoint *
by

John C. Morgan I (Syracuse, N. Y.)

Abstract. The object of Point Set Theory is the investigation of methods of classifying point
sets, their common properties, and their interrelationships. Included in the domain of this subject
are Baire category, Lebesgue measure, Hausdorff measure, dimension, and sets of uniqueness for
trigonometric series. In this paper we present a general framework for these investigations.

Introduction. In 1905 H. Lebesgue proved some basic theorems concerning
sets which have the Baire propérty and, in particular, he proved the fundamental
theorem that a linear set of the second category is everywhere of the second category
in some interval (see [10], pp. 185-186). This theorem was undoubtedly known to
R. Baire and he had stated earlier the analogous. theorem for sets of the second
category in the space of all infinite sequences of natural numbers (see [1], p. 948).

S. Banach [2] generalized the fundamental theorem to arbitrary metric spaces
in 1930 and subsequently to topological spaces (see [9]). A further extension of
this theorem was obtained in [13] (see Theorem 2 below). This new generalization
forms the basis of an abstract theory of Baire category, an outline of which is
presented in this paper. One of the main consequences of this abstract point of view
is the unification of certain analogies which have been observed between properties
of Lebesgue measurable sets and sets which have the Baire property (see [51.
pp. 19-22, [7], [17], [20]; and [22] concerning these analogies).

1. Si-familieé. Let X be a (nonempty) set. Members of any family & of sub-
sets of x will be called o7-sets.
DerNITION 1. A family € of subsets of X is called a K-family if the following

axioms are satisfied. .
1. For each point x € X there is a @-set containing x; i.e. X = U¥%.
2 Let 4 be a @-set and let 2 be a nonempty family of disjoint @ -sets which

has power less than the power of %.
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