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From assumption we get immediately i e ¢ is null homotopic in BSO, . But BSO, is
a bundle over BSO,., with fibre S¥, therefore by the lifting homotopy property,
¢ is homotopic to a map :
@' M?-S*cBSO,,

and hence ¢ restricted to the (b—1)-skeldton of M; is null-homotopic and hence
o; =0 for i<k—1. ‘

COROLLARY. If M? and MY are two 1-connected closed manifolds which: are
tangentially equivalent then:

(4] If 5<m<l15,  then
@ . nx DF =

mx Dt = MEx DY, kzim+4),
7x DY kzm~2, mz5. '

Proof. The corollary follows from the theorem, Proposition 3 and the remark.
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Idempotent gemerated algebras and Boolean pairs ‘
by

Carlton J. Maxson (College Station, Tex.)

Abstract. Let R be a commutative ring with unit. In this paper we introduce the category
of Boolean R-pairs and obtain a full faithful functor B from the category of idempotent generated
R-algebras to the category of Boolean R-pairs. We also determine an adjoint for $. Results are
given to.point out some applications of these functors.

0. Introduction. If A is a commutative algebra over a commutative ring R,
then it is well-known that the set of idempotents of A can be made into a Boolean
ring. However this functor is not full, We consider the category, R-IGA, of commuta~
tive idempotent generated R-algebras and obtain a full faithful functor % on this
category to 'the category of Boolean R-pairs (defined below) which contains full
subcategories isomorphic to the category of Boolean rings. This result is then applied
to the recent problem of finding categories in which the objects are determined
(up to isomorphism) by mionoids of endomorphisms. For related results on this
problem see [31, [4], [51, 7], 81, 191, [10].

For the particular case of torsion free idempotent generated rings, George
M. Bergman (see [1]) indicates a left adjoint for the functor #. That is, given any
Boolean ring B he constructs an idempotent generated ring Z[B] with torsion free
additive group such that the Boolean ring of idempotents of Z[B] is isomorphic
to B. Here we present the construction of such an adjoint for the category R-IGA of
commutative idempotent generated R-algebras. Upon restricting to a certain sub-
category of pairs, we obtain an equivalence with R-IGA which contajns results of -
McCrea [5] and Stringall [10] as special cases.

Conventions. In this paper, all rings will be associative, commutative, with
unit and all algebras will be unitary. For an R-algebra 4, let

Endgd = {f: A —>Al@+B)f = af+Yf; @)f = aftf, ¢af) =r(ef), a,bedr €R}.

‘We give a short outline of the paper. In Section 1, we show that the Boolean
ring of any R-algebra is determined by Endg 4. In Section 2, the category of Boolean
R-pairs is defined and the. functor & is constructed. Applications of these results
give the results of McCrea [5], Smith and Luh [8], and Stringall [10]. In Section 3,
the left adjoint of 4 is constructed and in Section 4 an equivalence between R-IGA
and @ ceftain subcategory of -pairs is .obtained which generalizes the work of

" McCrea [5] and Stringall [10].
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1. Endgd determines 4. Let #(4) denote the set of idempotents of the R-algebra
A = {4, +,.>. (Recall that 4 is a commutative ring.) For e, fin % (4), if we define
e@f = e+f—2ef, then B(4) =<{B(4), ®, > is a Boolean ring. We now show
that Endg 4 determines #(A4) in the sense that whenever Endp 4, and Endg 4, are
semigroup isomorphic, #(4,) and #(4,) are ring isomorphic.
+ Let E = {¢ € Endgd|p® = ¢}. Partially order E by o<y if oY = Yo = o.
For ¢ B(A), define ¢,: A—A by ap, = ae. Then e—¢, is a monomorphism
and hence an order preserving map of #(4) into E. Clearly, ¢, and ¢, are respectively
the minimum and maximum elements. of E. For ¢eE let C(p) denote
{y e El Yo = oy} .

LemMma 1.1. For ¢ € E the following are equivalent:

(1) there exists ee B(4) such that ¢ = @,;

(2) there exists W e E such that C(@) = C(), 0o = g.1.b.{¢, ¥} in E and
¢, =1lub.%p,y} in E

Proof. Suppose (1) holds. It is easily verified that ¢,_, = y satisfies (2). To
see that (2) implies (1), let e = 1o and f = 1. From the fact that C(¢) = C(@})
we find Yo <¢ and Yo <y which in turn gives Yo = @y = @,. From this we obtain
@, Y<@+y which implies that ¢ +y = ¢,. Hence e-+f = 1. It is easily verified
that @+ is in E and ¢+, ¢, . Thus ¢p+¢, = ¢, and ¢ = ¢,.

If ¢: Endg4;—+Endg 4, is a semigroup isomorphism and H; = {p,| ¢ € #(4)}
i-=1, 2, then we see from the above characterization of the H, that the restriction
of @ to H, is a semigroup isomorphism onto H,. Thus #(4,) and #(4,) are semi-
group isomorphic and hence are ring isomorphic (see [4]).

Tueorem 1.2. For R-algebras A; and A,, if Bndgd; = Endgd, then
B(4,) = B(4).
The converse of this theorem is not true. In fact, for ‘A, = Z, xZ, and
Ay = ZyxZ, we have B(4;) & B(4,) but End, 4, = Bnd,4,. Moreover, as is
well-known, #(4;) = %(4,) does not in general imply 4, & d,. In the next section,
we consider this problem further and do find classes % of algebras such that for
. Ay, 4, €%, from Endpd; = Endyd, we obtain 4,  4,.

2. The category of Boolean R-pairs. An R-algebra A is said to be . idempotent
n
generated if for each aed, a=Y re,r,eR, e eB(d). Recall that a set
=1
{fi: /5, ... .} of idempotents is pairwise orthogonal if f; f; = 0, i % j. Thus if a has
u .

representation, a = 3 r,e;, then >
151

n

a=a(]] (e+e)) = iiriei(jﬁ[ (e;+ep),

Jj=1 =1

wh.ere' €; = 1—e;. Consequently a can be represented as a linear combination. of
pairwise orthogonal idempotents whiglg,,..we call an orthogonal representation for a.
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We let R-IGA denote the category of idempotent generated R-algebras. We now
introduce the category of Boolean R-pairs. )

Let £ (R) = {(¥(R), <) denote the collection of ideals of R under the inclusion
relation. Let B = (B, @, -) be a Boolean ring and let §: B—~.2(R) be a function
such that for e, fe B, : ' .

i) (evf)d = ed N f6 where evf = e@ f'Def,

(i) (ef)62es+f3 ('+' denotes sum of ideals),

(iii) e6 = R if and only if e =0,

(B, &> is called a Boolean R-pdir.

For a fixed R, we consider the collection of all Boolean R-pairs as objects of
category in which the morphisms ¢: (B, 6;>—{B;, 8, are those Boolean ring mor-
phisms ¢: B, B, such that §; S pé,. Because of the similarity of this category to the
“comma categories” of MacLane [2], we denote our category of Boolean R-pairs
by <Z { R.

{B,, ;> and {B,, 8, are said to be isomorphic in (A R) if there are morphisms
@2 {By, 8,>+(By, 8,0, W1 {By, 5,)—+{By, 0;> such that oy = 1p,, Yo = 1p,. This
is equivalent to ¢: B;~B, being a Boolean ring isomorphism with §; = @6,

Let 4eRIGA. For ec®(4) we let 5 = ann(e) = {reR| re =0} and
obtain a Boolean R-pair (#(4), ) associated to 4. For an algebra morphism
@ 4,4, we obtain a morphism ¢ = &/#(4,): (B(4,),8:>+{B(42), ;> and
consequently a functor #: RIGA—(#|R). We now show that A is full.

Let @: {B(4,), 6;>—(B(4,), d,> and let x € 4y have orthogonal representa~
tion x = iriei. We now show that ¢: x——r}:llriei(p is a well-defined algebra

i=1 \ i=
morphism. .

LemMa 2.1. Vr, e R, Ye, fe B(d,), if re = sf then r(e9) = s(f0)-

Proof. From re = sf, we find ref = sf = re = sfe which in turn gives
(r—s)ef = 0. Since 8,Spd,, (r—5)(efHe =0 or r(efe) = s(efo). Furt?mr, ;
rie—ef) =0 implies r((e—ef)p) =0 and similarly s((f—ef)@) = 0. Since
e = ef®(e—ef), rlep) = r(efp) and similarly s(fp) = s(efp).

Lemma 2.2. & is well-defined. : .

Proof. We must show that & does not depend upon the orthogonal representa-

n m

tion used. for x € 4. Suppose x has orthogonal representations 12'1riei and j;lsj A
n m

Lete =Y e, f=} f; and note () ex = x, fx = x; (wx) 118, = Xe; = fxe; =fi:ief
for all i, and s, f; = xf; = exf; = es; f;, for all j: (exx) rie,f; = syef;, for all i, 7.

From (#xx) and Lemma 2,1, r{(e, /)¢ = s{(e; Meorrepfip = (e:0)s;(f;0)-
Summing over j gives ' :

m L _m
rie Y fie = ?;‘stj(fjfp)

2 — Fundamenta Mathematicae XCIII
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and now summing over i gives

n m n m

Yriew Yo =Leao L5k
Since the ¢; (and f;) are orthogonal (8163 @e)p = (e +

fo = Zj}(p) and therefore f(pZne Q= e(pZij}(p From (++), rfe,0) = rfe. /e
= (fp)r{e;p). Now summing over I gives

Zri(ei‘;o) = f(/’zri(et‘{’) .

n m . . n
Similarly ¥ s5;(fj0) = e Y, 5;,(fj). Hence we have Y, rie;¢)
desired. L

wte)e = ep (and

= fs,(qua) as

LemMA 2.3. @ is an algebra morphism.
m
Proof. Let x = z rie;, ¥ =Y. 5;f; be orthogonal representations of x and y
in 4;. Then xy = 22 r:8;¢,f; 15 an orthogonal representation for xy and 1t is clear

that (xy)di = x®y®. Also for re R, (rx)P = r(xP). As above let e= 2 e; and

f= ij Then
x = xf+x(1—f) = (Zr e)Z]"j+Zr,e,(I —f) = EZr,e,fﬂ-Zr e (l—f).
Similarly
y= ye+y(1,—.e) = izmsjeifj+isjfj(l—e) .
Thus

nm n m
x+ty=%% (ri+sj)eiﬁ+z rie{l =)+, 8 f(1—e)
is an orthogonal representation of x+y and we find that (x+3)9 = xP+yP.

THEOREM 2.4. B: RIGA~{(BLR> is a full faithful functor.

Proof. This follows from the above lemmas and the observation that
B/B(Ay) = o.

CORDLIARY 2.5. For Ay, A, € RIGA, A, = A, < {B(4y), 6> = (B (4y), 8;3).

We say A4 € R-IGA is R-torsion free if for a e 4, ani1(a) = (0). Thus, in the
associated Boolean R-pair (% (4), 8, 06 = R and ed = (0) for ¢ # 0. Combining
Theorem 1.2 and the above corollary gives the next result.

THEOREM 2.6. Let Ay, Ay e RAIGA. If A1 and A, are R-torsion free, then
Endgd, = Endpd, <4, =~ d,.

The above theorem generalizes results in  [5], [7], [8] and [10]. Thc special cases
can be recovered by specifying the rings R.

3. Construction of the left ad]omt of #. Consider a Boolean R-pair (B, d)
and denote the collection of maximal ideals of the Boolean ring B by .#(B). For

/
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each me (B), define R(m) = {re R| reed, for some e ¢m}. Usmg the proper-

ties of & and m, we find that R(m) is an ideal of R.

"For each me M (B), B/m =~ Z, and so there is a Boolean ring embeddlng
0w Bim—R/R(m). We then have a Boolean ring monomorphism VB H(B/m)

~T](R/R(m)) where [T denotes the product of the indicated rings. (For fe I_[(B/m),
m m
(f)¥: m— (mf)e,.) Since B can be embedded in [](B/m) (e—& where (m)& = e+m)

we obtain a Boolean ring monomorphism ¢: BAH(R/R(m)). Let A be the R-sub-
m
algebra of [J(R/R(m)) generated by the set of idempotents Bo.
m

Applying 4 to the above constructed algebra, we obtain the Boolean R-paif
{AB(4), 5>. We now show ¢ = J.

LEMMA 31 For ee B, epd = ﬂ R(m).

e¢m :

Proof. Since egp = &}, epd = ann(@y)). Recall thatif e ¢ m, (m) (&) = 1+R(m)
while if e e m, (m)(&y) = R(m). Now r e ann(&y) if and only if, r[(m)&y] = R(m)
for all m. But thls is equivalent to € R(m) for all m such that e ¢ m.

Lemma 3.2. For b;,e; in B, i=1,2,..,n, let e =Dbe;®D..Db,e,, then
€2 ﬂ (bien$.

Proof For a and ¢ in B, (a®c)(ave) = a@c which in turn implies
(a®c)d=(avc)d = ad n ¢5. The desired result now follows by induction.

LeMMA 3 3. For e€ B, e6 = ﬂR(m)

eﬁm
Proof. It is clear that e R(m) for all m such that e ¢m. Conversely, for
re () R(m), there exists e(m) in B such that e(m) ém and ree(m)d. Let Ky(r)
m .

egm
denote the collection of all such idempotents; i.e., Ko(?) = {¢,] e,€ B, e, ém for
some m in % (B) such that e &m, and r € g,6}.- Let K be the ideal of B generated

by Ko(r). If ecK, then e = b, ®...0b,e,,; b,e B. From (3.2) ed= ) (be,)d
i

and since (b;e,)52b;5+e,,0 we have r € ed. If, on the other hand, e ¢ K then using

‘Zorn’s lemma we obtain a maximal ideal m, of B such that K&m, and e ¢ my.

Consequently, re R(mg) and thus there exists e(mg) & m, such that ree(my)d.
But this means that e(my) is in Ko(r) and thus in K which is impossible. Hence e & K
and r e ed.

THEOREM 3.4. For every Boolean R-pair {B, 38> there exists an algebra A in
RIGA and a Boolean ring monomorphism ¢: B—~%(A) such that p8 = & where
(B (A), 8 is the Boolean R-pair associated with A

For (B, 8> in (B{R) let o(B) denote the idempotent. generated R-algebra
given by the above construction. As in Theorem 2.4, we find that a morphism
2
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@i {By, 61)—-)(122; 5,> of Boolean R-pairs extends to an-algebra morphism
#(B)—oL(By). Thus : (BLR)—->R-IGA is a functor. (Note that %(s/(B))=2 B.
None-the-less, B (better. an isomorphic copy) generates «/(B).) For 4 e R-IGA
and (B, 8) e (BLR), a map & in Hom(s/(B), 4)induces a map ¢ in Hom({B, &3,
{%B(4), 8Y) and conversely a map o & Hom({B, &), {#B(4), 5)) gives rise to a map
Y:e Hom (o4 (B), A). Since these processes are inverses of each other and natural in
both 4 and (B, §> we have the following result.

THEOREM 3.5. &/ is a left adjoint of A.

4. Equivalence results. In this section we obtain an equivalence between a sub~
category of (B | R) and R-IGA. Restricting our ring R of scalers, we obtain some
new (and some old) special cases.

For A€ RIGA and me M (B(A) let i =Y Ae. 7 is an ideal of 4 and for

eem
each ec #(4)—m, e = lmodulom. In fact, if egm, (1—e)em and therefore
a—ae = a(l—e) e m, for each ae 4. :
LemMma 4.1. A/m has only the trivial idempotents.
k
Proof. If x-+mis anidempotent of A/ then x> —xe /. Hence x*—x =Y a,¢;,
=1

. k
a;€ 4,'e;em. Thus 1—e; = e ¢m. Consequently, if e = []¢j, then edém and
i=1
(x?—x)e = 0. If welet y = xethen yis an idempotent in 4 and x—y = x(1—e¢) € 7R,
Since y € #(4) we have the desired result..
1t is clear that 4/m e R-IGA and since 4/m has only one non-zero idempotent,
we have A/ = R(1) and R(T) & Rjann(l) where T = 1+7.

Lemma 4.2. ann(1) = R(m) where R(m) = {re R| reann(e) for some e ¢ m}.

C Proof‘ If reann(l) then r-T=m which in turn give r-1eim. Fence
rl= Z rie;.

that reR(m) On the other hand, if re = 0 for some e ¢ m then l—eem and
r-l1 =r(l—e)em; ie., reann(l. ' '
Combining these two lemmas we obtain the next result.

COROLLARY 4.3. For A & RIGA and me # (#(4), RIR(m) has only the trivial
zdempotents

Let (B, &) be a Boolean R-pair and construct «/(B). For cach ee B, let
N (e) = {me #(B) ed&m}. It is well-known that these sets determine a topology
on .#(B) in such a manner that .# (B) is a Boolean space (compact totally discon-
nected Hausdorff space). We note that .7 (B) is a set of functions from .4 (B) to D
where D denotes the disjoint union of the quotient rings R/R(m), m e .4 (B). ITn
order to define a topology on D so that each fin s (B) becomes a continuous map,
we need the following analogue of a result of Pierce ([6], Lemma 4.3, p. 16). -

If we again let e = ]__[ ¢; then e gmand 0 = (-1)e = re which shows

i=1

v
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LeEmMA 4.4. Let a, be o (B). If there exists me M (B) such that (m)a = (m)b
then there exists an e in B such that me N (¢) and (h)a = (A)b for all he A (N

Proof. Let a =} r;&
' =1

resentations of a and b respectively. Suppose mé, = 0 for all i. Then for all i i,e;em
: n

g, b= Zs i€ T, 51, € R, &, & € Bo be orthogonal rep-
i1

and conseqliently e, = H e; ¢ m. Then m e A (e;) and for ke N (eg), €, & h implies
e eh,i=

. Thus (Wa = (h)b. If for some i, me; 0, then (m)a = ri+R(m)
= +R(m)

(m)b Thus r,—s; € R(m) and so by definition, r;—s;e/8 for some

' SeB, fém. Now me A (e,f) since e;ém and f¢m. If he A (e,f), e;f&h which

means that ;0 +f5=(eif)5CR(/z) or ry—s; eR(h) Since e; ¢ b, (Wa = r;+RG)
= si+R(h) (h)o.

Following Pierce ([6], pp. 16-18) we are now able to define a topology on D
so that the functions in.e/ (B) are continuous and have compact support ([6], p. 37)
(Support of f = Supp f = {me 4(B)| mf # 0}.)

Lemva 4.5. If fe B(af (B)) is such that mfe{0,1} for each me M(B) then

Je Bo. %Recall that ¢: B—~%B (s (B)) is the Boolean ring monomorphism constructed
above.)

Proof. Since fe #(B), f = 2 e, ri € R and the g; are orthogonal idempotents
=1

in By and thus it suffices to show for arbitrary i, 1<i<n, ré; is in Bp. For

me Supp(rg;), (m)ré; = 1+ R(m) which is equivalent with 1~ € R(m). Thus there

exists e, é m such that 1—ree,d. Now, me A (e;e,) and for he A (e;e,)(H)rE;.
(h)e e, since 1 —r e ,6 =(e;e,)8 = R(A). Since Supp (v&) is compact there is a finite

subcollection A (e; eM), vy A (ese,) with Supp(rel) U (e;e,). But then rg;

= eie, V. veie and since each ee,, e, is in Bo so is re;.

TrEOREM 4.6. For a Boolean R~pazr {B, 8, Bop = B(#£(B)) if and only if
RIR(m) has only the trivial idempotents, for each m in (B

Proof. Every maximal ideal of Be has the form m¢q where me #(B). If
By = %(s£(B)) then from Corollary 4.3, R/R(m¢) has only the trivial idempotents.
However, r & R(mg) if and only if 7 e 25 for some & ¢ mo; i.e., if and only if r € epd
for some e ¢ m. Using the fact that @d = §, this last condition is equivalent to
r'e R(m). Hence R/R(m) has only the trivial idempotents. Conversely, we "have
Bo < B(a (B)). For fe B (sl (B)), me M (B), mf is an idempotent in R/R(m) and
consequently mfe {0,1}. By the previous lemma, fe Bop.

We say a Boolean R-pair is reduced if it satisfies the conditions of the above
theorem and we denote the subcategory of reduced Boolean R-pairs by K#{RD.

THEOREM 4.7. R-IGA is equivalent to (B R).

Proof. We first note that for 4 € R-IGA, {#(4), &) is reduced (Corollary 4.3).
Thus B(sf(#(4))) is isomorphic to #(A4) and this isomorphism induces (as in
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Theorem 2.4) an isomorphism between of (.%(A)) and A. That is, &4 is naturally
isomorphic to the identityfunctor on R-IGA. On the other hand, for a reduced
pair (B, 8, #(+(B)) = Bp and & = ¢4. Thus - A/ is naturally isomorphic to the
identity functor on (BVRD>.

We conclude by considering some special cases. In paltlculzu the collection of
Boolean R-pairs (B, 8,y where ed; = 0 if € # 0 and 05, = R are the objects of
a full subcategory of (% R). Since this subcategory is isomorphic to the category of
Boolean rings, we denote it by Borng. If R has only the trivial idempotents then
{B, 8 is reduced. The following corollary is a generalization of a result of McCrea
for the special case in which R is the ring of integers.

COROLLARY 4.8. If R is a ring with only the trivial idempotents then the category
of R-torsion free idempotent generated R-algebras is equivalent to the category of
Boolean rings.

CorOLLARY 4.9. If R is a ﬁeld R-IGA is equivalent to Borng.

Thus for fields F; and F,, F;-IGA and F,-IGA are equivalent. In particular,
for prime integers p, we obtain the result of SergalI [10] that the categories of p-rings
are equivalent.
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3-dimensional AR’s which do not contain 2-dimensional ANR’s

by
S. Singh* (Altoona, Penn.)

Abstract. There exists an upper semicontinuous decomposition' G of 3-dimensional cell B?
such that the decomposition space B%G is a 3-dimensional AR which does not contain any 2-di-
mensional ANR. )

1. Introduction and terminology. By an AR (ANR) we understand a compact
metric absolute retract (compact absolute neighborhood retract). One may consult [9]

‘for additional information on AR’s (ANR’s) and related terminology.

If G is an upper semicontinuous decomposition oft a topolo gical space X we de-
note the associated decomposition space by X/G and by p: X—X/G the canonical
projection, unless otherwise stated. For more information on upper semicontinuous
decompositions see [21]. A survey of results on upper semicontinuous decompo-
sitions can be found in [2] and [21].

Let n denote a positive integer. By E” we shall always mean an zn- dlmensxonal
Euclidean space, by B" the closed ball of unit radius, and by §"~* the boundary
sphere of B". By a disc we shall always understand a space homeomorphlc to B>
All maps will be continuous.

A family (collection, sequence) C of subsets of metric space X is called a null
family (collection, sequence) provided that for each >0 at most a finite number of
elements of C are of diameter greater than e.

The purpose of this paper is to provide an affirmative answer to the following.
question wh1ch arises in Bing and Borsuk [8] and Armentrout (4]:

Do there exist 3-dimensional AR’s which do not contain 2-dimensional AR’s
or even 2-dimensional ANR’s?

In [8], Bing and Borsuk described an upper semicontinuous decomposition G
of B® whose nondegenerate elements form a countable null family of arcs such that
the decomposition space B3/G is a 3-dimensional AR which does not contain any
disc. They asked whether their 3-dimensional AR B3|G contained any 2-dimen-
sional AR. Armentrout [4] described an upper semicontinuous decomposition G
of B? similar to the one described by Bing and Borsuk [8] such that B%/G is a 3-dimen-
sional AR which does not contain any disc but does contam 2-dimensional AR’s.

* The author wishes to thank Professor Steve Armentrout of The Pennsylvama State Uni-
versity for many belpful suggestions. .
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