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Characterizations of real functions by continua
by

M. H. Miller, Jr. (University, Ala.)

Abstract. For a real-valued function f with domain an open interval, definitions for the
functional concepts of Darboux at a point and connected at a point are examined and two-sided
conditions in these definitions are reduced to one-sided conditions. The existence and character- .
izations of two new subclasses of Darboux functions are obtained and several examples are given
to indicate that none of the four classes mentioned above are equivalent.

1. Introduction. This paper deals with properties of real functions which can
be characterized by the types of continua which they intersect. A function f is said
to be a Darboux function if f(C) is connected whenever C is a connected subset
of the domain of £, Equivalently, a real function f is a Darboux function if every
horizontal interval which meets f(+) and f(~) meets f. A function which has
a connected graph is called a connmected function. In a paper published in 1965, [3],
Bruckner and Ceder define what it means for a function to be Darboux at a point
and in a paper published in 1971, [4], Garrett, Nelms, and Kellum define what
it means for a function to be connected at a point. The main theorems in this paper
reduce these definitions and still retain the results of [3] and [4]. Also, we exhibit
two new classes of real functions each of which are subclasses of the class of Dar-
boux functions and each of which contain the class of connected functions. The
author wishes to express his appreciation to Harvey Rosen for many helpful ideas.

2. Notation. If M is a subset of the plane E then (M)x denotes the X-projection
of M and My denotes those points of M which have X-projection in K where K is
a subset of the X-axis. We denote the vertical line through the point (x,0) by L.
It Fis a real function with domain a subset of the real line R then f(+) denotes
the subset of E consisting of all ordered pairs (x, y) where x is in (f)x and y>f(x).
‘We define f(~) similarly. A contimuum is a closed connected subset of E. A horizontal
segment is a bounded open connected subset of a horizontal line and a horizontal

_interval is the closure of a horizontal segment, Unless otherwise stated, all functions

considered are real functions with domain an open conneoted subset of R. No
distinction will be made between a function and its. graph.
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3. Preliminaries.

DerINITION 1. The function f is said to be Darboux from the left (right) at
the point z of its domain if whenever (z, @) and (z, b) are two limit points of f from
the left (right) then the horizontal interval H contains a point of f whenever (H)y
has right (left) end z and the point H, is between (z, @) and (z, b) [4], [3].

PropERTY 1. Let fbe a function which has the property that each point (z, 1)
belonging to f is a limit point of f from the left and the right. If A4 and B are
mutually separated sets, 4 U B = f, and K denotes the boundary of (4)y relative
to the domain of f, then relative to (f)x, K is the boundary of (B)y, K is a perfect
set, and each of (d)y n K and (B)y n K is dense in X [7].

ProPerTY 2. No compact Hausdorfl' space and no complete metric space is
both perfect and countable [5], p. 88.

PROPERTY 3. Let P be a perfect set in R and let 0 be a horizontal segment of R
such at 0 meets P. Then 0 contains a point of P which is a limit point of P from both
the left and right.

PrOPERTY 4. Let f be a connected function whose domain is a connected sub-
set of R.If M is a contimum such that (M)y is a subset of (f)y, M intersects f(+),
and M intersects f(—), then M intersects f [4]. ’

4. Darboux at a point.

LemMa 1. Let f be a function which has the property that each point of f is a limit
point of f from the left and right. If f is not Darboux, then there exists a horizontal
interval H meeting f(+) and f(~) but missing f and furthermore there is a point p in
the interior of (H)y such that (p, a) and (p, b) are two limit points of f from the left
with (p,a) above H and (p, b) below H.

Proof. If fis not Darboux, then there exists a horizontal interval H meeting
f(+) and f(—) which misses f. Now f restricted to (H)y is disconnected. Hence
by Property 1 we have boundary of (4)y in (H), = boundary of (B)y in (H)y =K
where 4 = H(+) nfand B = H(-)nf, K is a perfect set in (H)y, and each of
K n(4)x and K n(B)y is dense in K. .

For each positive integer i, denote by D, the sct of all ordered pairs (x,y)
with x in K and (H)y+i<y<(H)y+i+1 and denote by D_; the sct of all ordered
pairs (x, y) with x in K and (H)y~izy>(H)y~i~1. Also for cach positive integer
JsJZ2, denote by F; the set of all ordered pairs (x, y) with x in K and (&), + 1/(j—1)
>y2(H)y+1/j and denote by F_, the set of all ordered pairs (¢, ») with x in K
and (H)y—1/jZy>(H)y~1/(j—1). Now since K which is a subsct of (H)y, is
a complete metric space and

K = [ U (Dm)X] v [ U (EI)X] 2
m=%i n=kj

one of the (D,)x or (F,)x is dense in some open subset of X,
.For sake of argument, suppose for some i>0 we have (D))y is dense in some
subinterval O, of (H)y N K, that is, 0, = Cn K where C is a horizontal sub-
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interval of (H)y such that the interior of C meets K. Let k be an element of O,
which is a limit point of O, from both the left and the right. If % is in (B)yx we may
use k as the desired p since D is a subset of 4. If & is not in (B)y then k is in (A)x
and since K N (B)y is dense in K, there is a point k; to the right of k such that kyis
in the interior of Oy N (B)x. If k, is a limit point of K from the left, k, is the
desired p to satisfy the lemma. O:herwise, if k, is not a limit point of X from the
left, then there exists an interval O, (an interval in (H)y) with right end k; which
lies entirely in (B)y and hence inside C. We consider the component containing O,
in (B)x. This component is of the form [k,, k,], where k, is in (B), (since each
point of fis a limit point of f from the right and left). Now [k,, k] is a subset
of C and k, is the desired p of the lemma.

TueoreM 1. Let f be a function having the property that each point of fis a limit
point of f from the left and right. Then the following statements are equivalent:

(1) f is Darboux from the left at each point of (f)y,

(2) f is Darboux from the right at each point of (f)x,

(3) f is a Darboux function.

Proof. We first show (1) implies (2) using a proof by contradiction. Suppose
(x, b) and (x, a) are two limit points of f from the right such that (x, c) is between
(x, b) and (x, @) and (x, ¢) is a left endpoint of a horizontal interval H containing
no point of f. Now H meets f(+) and f{~) but misses f and hence by applying
Lemma 1 there is o point p in the interior of (H)y such that (p,#) and (p, s) are
two limit points of ffrom the left with r>c¢>s. Since f satisfies (1), f must meet H,
and this is a contradiction. Hence our assumption that f does not satisfy condition (2)
is false and therefore (1) = (2). '

By using a symmetric argument we see (2) = (1) and by similar arguments
we see (2) and (1) hold if and only if (3) holds. This reduces the definition of Dar-
boux at a point given in [3] and [4].

5. Connected at a point. The next theorem reduces the definition of connected
at a point given in [4].

DermNiTION 2. The function f has property CL (property CR) at the point z
of its domain when the following condition holds: if (z, @) and (z, b) are two limit
points of ffrom the left (right), then the continuum M contains a point of f whenever
(M)y is o nondegencrate set with right (left) end z and M, is a subset of the vertical
segment with ends (z, @) and (z, b).

THEOREM 2. Let f be a function with the property that each point (z,.f(2)) in f is
a limit point of f from the left and right. Then the following statements are equivalent:

(1) f has property CL at.each point of (f)x,

(2) f has property CR at each point of (f)x,

(3) f is connected. '

Proof. We first show (1) = (2) using a proof by contradiction. Let f have
property CL at each point of (f)y and assume there exist two points (r, a) and
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(r, b), each limit points of f from the right, and a continuum M such that (M)y is
a nondegenerate subset of (f)y with left end r, M, lies between (r, @) and (r, b),
and M misses f. Now (M)y is a connected set and from Property 4 we know f re-
stricted to (M)y is disconnected. Hence there exist two open sets (open in f re-
stricted to (M)y) 4 and B, 4 U B = f restricted to (M)y, such that boundary of
(d)x in (M)y= boundary of (B)y in (M)yx = K, K is a perfect set, each of (4)y n K
and (B)y n K is dense in K, and 4 and B are mutually separated.

Also there exist mutually separated sets O, and Oy (open in [(M)yx X R]~M)
containing 4 and B respectively such that O4 U Oy = [(M)yx R]—~M. Now
since f is Darboux by the preceding theorem, we find a point z, as in Theorem 1
of [4], such that z is in the interior of (M )y and such that there is a limit point (z, )
of fin O, and a limit point (z, b) of fin Op. If each of (z, a) and (z, b) are limit
points from the left, we use the following argument referenced as Case I and obtdin
a contradiction.

Case 1. Suppose (z, ) and (z, b) are limit points of £ from the left lying in O 4
and Ojp respectively with a>b. We choose two circles C; and C, with interiors as
well as boundaries contained in O, and Oy respectively such that (z, a) is the center
of Cy, (z, b) is the center of C,, and both Cy and C, have radius r. Denote by S the
subspace of E such that (x, ) is in § if and only if z—r<x<z and there are two
points (x, r;) and (x, r,), belonging to C; and C, respectively, such that r, <y<ry.
Now M n § is closed and S— M is disconnected since O4 and O, are separated.
By Lemma 1 of Roberts [9], we know there is a continuum M, separating (z, @)
and (z, b) from each other in S such that A, is.a subset of M, Now M, must meet /,
between (z, @) and €z, b). Since f satisfies (1), we know f meets M, and hence f and
this is a contradiction.

Case 2. Hence each of (z,4) and (z, b) are limit points of f from the right
and ‘only one is a limit point of f from the left. We will assume without loss of
generality that (z, @)= (z, f(2)) is the point which is a limit point of f from both
the left and right. Repeating the argument used in Case I from the right instead
of the left (i.e. S consists of all ordered pairs (x, y) where z<x<z+r and there
are two points (x, r;) and (x, r,), belonging to C; and C, respectively, such that
r,<Y<r;) we obtain a bounded continuum M, such that M, is a subsct of M,
M, intersects I, strictly between the points (z,d) and (z, b), and M, has non-
degenerate X-projection with left end z.

Now f restricted to (M,)y is disconnected. Hence there exist two mutually
separated open sets (open in f restricted to (My)y) 4’ and B', 4’ v B’ = f restricted
to (M))x, such that boundary of (4')x in (M,)y = boundary of (B')y in (M,)y = K,
K’ is perfect, and each of (A N K" and (B'Yy n K’ is dense in K. Also there
exist mutually separated open sets (open in (M,)yx R) O, and O, containing 4’
and B’ respectively such that O, U Op = [(M2)y % R]—M,. M, is a closed, com-
pact set. Hence there exists a sequence of domains Dy, Dy, ... such that (a) for
each n, D, contains M, and the closure of D, 4 is a subset of D, and (b) M, is the
common part of the domains of this sequence ([8], p. 172).
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Now let ko be a point in K’ such that &, is a limit point of X’ from both the
left and the right, in particular from the left. Now (., f(k,)) is eitherin O, or Oy,
say for arguments sake in O,,. Then there exists a sequence of points {(b,, SO
in Oy such that the sequence {b;}{2, converges to k, from the left and since M, is
bounded and f is Darboux, the sequence {(b;,f(5))}2, has a convergent subse-
quence which converges to some finite point (kq,p) on L, Now (k,, p) cannot
be in O, since O is open. Hence (ky, p) is in Oy or M,. If (ky, p) is in O, We
repeat Case I and reach a contradiction. Therefore assume (kg,p) is in M, -and
without loss of generality we may assume for each such sequence {b;} 7= converging
to ko from the left the convergent subsequences of {b;, f(b,)} - converge to a point
in M,.

Hence there exists an interval s, = [hy, kol, ho # kg, such that if g is in
(BYx N K’ 0 [hy, o), (g, (@) is in Dy. Let a; be a point of (4)y n K" 1 Thy, ko),
a, # ko, a, # hy. Let y, be a point of (B)x n K’ n s, such that y, is'to the right
of a;. Now y, is either a limit point of K’ from the left or it is not. If y, is a limit
point from the left, we either have Case 1 or an interval s; = [k, y;], Ay # 1,
which is a subset of 5, such that if g is in (4")y A K’ v sy, (¢,(q) is in Dy Iy, is
not a limit point of K’ from the left, there is an interval w, of the form [m,, »,]
such that if ¢ is in [mg, ¥,], then (g, f(g)) is in B’. Let J, be the component con-
taining wy in (B)y. Jy is of the form [ng, ¥,] and n, is in (B)x since each point
of fis a limit point of f from the left and right. Now there is either an interval s
of the form [fo, no] such that if g is in [ty, n] N (4)x N X', (g,f(g)) is in D, or
we have Case T as applied at the point n, for z. Hence we either use Case I and
obtain a contradiction or obtain an interval j, equal to s, or 57 such that if g is in
Jo N (A% 0 K, (g, f(q)) isin D,. Now since j, is a subset of s, We have f restricted
to jo N K’ is in D;. By a symmetric argument replacing 4" by B and B’ by A’ and
starting with y, instead of ko if we used s, for j, or starting with n, instead of k,
if we used s, for j, we obtain an interval j, such that j; is a subset of j, and fre-
stricted to j; n K" is in D,.

Repetition of this process yields a sequence of closed sets such that K' O\ jm
is a subset of K’ M j,, for cach positive integer m. Thus there is a point ¢ in

w
T = 8 (K’ N j,) such that (¢, f(9) is in M, = 01 D, and this contradicts- the as-
m=0 n=
sumption that £ misses M. Since Case I or Casc IT leads to a contradiction, we sce
that (1) = (2). In [4] it is shown that (1) and (2) together are equivalent to 3).
Using a similar argument as above we see (2) = (1) and the equivalence of the
three statements is completed. o

4. Examples. The next property was proven in [4] and motivates the following
definitions.

PROPERTY 5. A necessary and sufficient condition that a function f be con-
nected is that every continuum M in E intersect f whenever (1) (M)g is a subset
of (f)y, (2) M intersects f(+), and (3) M intersects f(—).
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DEFINITION 3. A real function f is said to have property A if and only if each
continuous function g (with a closed connected nondegenerate domain) which
meets f(+) and f(~) meets f, where (g)y is contained in (f)x.

DEFINITION 4. A real function fis said to have property B if and only if each
arc 4 intersecting f(+) and f(—) meets f, whenever (4)y is contained in (f)y .

We have the following implications holding for real functions with connected
domain. Almost continuous [10] =+ connected => property B =+ property A = Dar-
boux = each point of /' is a limit point of f from the left and right. However none
of these is reversible unless further hypothesis is stated. For instance, if a real
function f'is of Baire Class 1, all of the above are equivalent ([2] and [7]).

* In [6] as well as many other places, an example is given showing connectivity
does not imply almost continuous, Example 4.1 in [3] is Darboux and fails to have
property A. The function g defined to be zero if x is rational and 1 if x is irrational
is an example of a function in which each point of g is a limit point of g from the
left and right but which is not Darboux. In 1969, Brown [1] gave an example of
a function having property A but not property B. We now construct other examples
concerning property A and property B.

ExampLE 1. There exists a function f with property B which is not connected.

Proof. We first construct a continuum- K with the following properties:

(a) (K)x is nondegenerate,

(b).the set of all z in (K)y such that K, is nondegenerate is a countable dense
subset B of (K)y,

(¢) for each z in (K)y, K, is degenerate or a vertical interval, and

(d) the only arcs in K are vertical intervals.

The continuum K will be the limit of a sequence of sets {K;}{2, each of which
is a countable union of “square sin(1/x) curves” plus a countable union of lines.

(0,1): S Ly [(CARITE |‘r ) ;M(l,])

Ko : K,

:H_L “am

We picture K, and K; above. K., is obtained from K by replacing each horizontal

segment in K; with a “square sin(1/x) curve® whose vertical intervals are % the
length of those vertical intervals placed in K.

We now construct a function f with domain (~1, 2) and range (—1, 2) with

, the desired properties. Let g be a connected function dense in (—1,2)x(—~1,2).

0,00 L Lo oMk
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We define f as follows: if (x, g(x)) is in X, f(x) = % and if (x, g(x)) is not in K,
f(x) = g(x). We first show f has property B.

Let A be an arc in (=1, 2)x(—1, 2). If 4 misses X or (4 n K)y is degenerate
we know A meets f provided (4)x is nondegenerate. Hence we assume that (4)y is
nondegenerate and that @ and b are two points of 4 n X with (a)x # (b)y. Then
since 4 N K is closed and K has condition (d) there exists a subarc H of 4 such
that H misses X and H separates @ and b in 4. Now either for some two points s
and tin 4 n K with (s)x % ()x there exists an arc H such that (H)y is nondegenerate,
H misses K, and H separates s and 7 in 4 or there exists no such arc. I such an arc H
exists, we know H meets g(+) and g(—) and hence H meets f since H misses K.

On the other hand assume no arc H exists such that (H)y is nondegenerate
and H misses K. Then every subarc k of 4—K separating two points of 4 n K
has X-projection a point. We see each endpoint p of a maximal vertical subarc D
of 4is in K provided p is a cutpoint of 4. To see this, suppose p is a cutpoint of 4,
pis not in K, and p is.the endpoint of a maximal vertical subarc D of 4. Then there
is a circle C with center p and radius r such that K misses C and its interior and-
(Q)y is a subset of (4)y. Since 4 is locally connected at p, there is a subarc F of 4
such that F lies in C and its interior and (F)y is nondegenerate and this is a contra-
diction. Therefore we may assume each maximal vertical subarc M of 4 which
misses the noncutpoints of 4 meets K in the endpoints of M. Now since K, is con-
nected for each x in (K)y, M is a subset of K. Let O = {z: zis in M and M is
a vertical subarc of A}. Now O is not dense in 4 for if it were K would contain
a nonvertical arc. Hence there exists a point N in 4 and a disk S containing N in
its interior such that S misses 0. Now there exists an arc Uin 4 n § such that U
misses O, that is, U contains no vertical subarcs. Hence there exists an arc U’ such
that U’ is in 4 n S and (U")y is nondegenerate and this is a contradiction. Hence
we may conclude f has property B. Since f misses K and K meets f(+) and f(-),
by Property 5 we see f is not connected.

Remark. The question whether such an example as above existed was asked '
by B. D. Garrett. The next example is due to B. D. Garrett and is similar to
Example 1 of [1].

ExXAMPLE 2. There exists a function f which has property A but not property B,

Proof. We construct a continuum M in the following manner. Form the
middle-thirds Cantor set on the interval [0, 1] of the Y-axis. Take the interval
[4, %] of the Y-axis and move it horizontally to the vertical line /;;, . Now construct
a pseudo-arc M, from the point (%, %) to the point (%, 3) such that M, lies in the
rectangle with vertices (3,%), 3,4, 2,%), ¢, %). Next take [§, 3] horizontally
to I3, and [§, §] hotizontally to Jy,. Construct pseudo-arcs M, and M; such that
M, is constructed from the point (2, ) to the point (3, 3) lying in the rectangle
with vertices (2, 2), (2,2), G+®? 5, G+®&)? 3) and M; is constructed from the
point (+,2) to the point (%, 8) lying in the rectangle with vertices (4, §), (%, %),
E+®3 D, G+(1)3, ). Continuing this process, construct an appropriate pseudo-

5 — Fundamenta Mathematicae XCIII
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]
arc M; for each segment removed to form the Cantor set. M = closure of ( J M)
i=1

is a compact continuum in I%, I = [0, 1], which contains no arc. Now let f be a con-
nected function dense in I x [0, 2] such that f(x) = 0 whenever x is a dyadic rational.
Define 2 function g from I to [0, 2] such that if x is in (f N M)x, g(x) = 2 and if
x is not in (f n M)y, g(x) = f{x). Then g has property A since any continuous
function which has a closed connected nondegenerate domain and which meets M
intersects M in at most a set whose X-projection is nowhere dense in (M)y. How-
ever, g will not have property B since D misses g where D is an arc such that for
each dyadic rational x in (D)y, D n I, is an interval with its endpoinis in M.

The above method of construction may not be used for an arbitrary continuum
and a dense function to construct functions which have property B but which
are not connected, for if M above had been used for K in Example 1, we will
not get a function with property B.

COROLLARY. Let f be a connected function from I to I, and furthermore sup-
pose f is dense in the unit square. Then there exists a function g which has property A
but not property B such that if x is in I—D, f(x) = g(x), where D is a dense sub-
set of I such that I—D is dense in I

QuEsTION 1 (). Let £ be a function with property B. Characterize the continua
which must meet f whenever they meet f(+) and f(—). For example, does the
pseudo-arc have this property? ‘

Remark. It is not hard to construct examples of functions f with property A
which miss a pseudo-arc meeting f(+) and f( —) or to construct functions g which
meet every pseudo-arc meeting f(+) and f(—) but do not have property A. This
is becauge the intersection of a continuous function and a pseudo-arc has a nowhere
dense X-projection.

7. Property A and B at a point. We now state a few natural definitions and
results pertaining to property A and property B.

DerNITION 5. The function f has property BL (BR) at the point z of its domain
when the following condition holds: if (z, d) and (z, b) are two limit points of f
from the left (right), then the arc M contains a point of f whenever (M)y is a non-
degenerate set with right (left) end z and M, is a subset of the vertical segment with
ends (z, @) and (z, b). We define property AL (AR) at a point z similarly replacing
arc M by continuous function g with domain a closed connected set.

THEOREM 3. Let f be a function with the property that if (z, f(2)) is a point of f,
then (z, f(2)) is a limit point of f from the left and right. Then the following statements
are equivalent using either property B or property A. throughout.

() In a paper by Bruckner and Ceder (see On jumping functions by connected sets, Czech.
. Math'. Journal 22 (1972), p. 443), they seem to answer Question 1 negatively concerning the pseudo-
arc with their function f,. However, they made the false assumption that if M is an indecomposable

continuum and 4 is an arc, then the X-projection of A4~ M is uncountable. Hence Question 1
concerning. the pseudo-arc is still open.

icm°®

Characterizations of real functions by continua 221

(1) f has property BL (property AL) at each point of (f)x,

(2) f has property BR (property AR) at each point of (f)y,

(3) f has property B (property A). )

Proof. The proof that (1) = (2) and (2) = (1) follows as in Theorem 2. Now
suppose f satisfies (1) and not (3). Since f does not have property B, there exists
an arc K intersecting f(+) and f(—) which misses /. Consider (K)xx R. Then
[(K)x x R]—K is disconnected and hence by Property 1 as applied to f restricted
to (K)y, there are mutually separated open sets O, and Oy containing £ and as in
Theorem 2, there is a point z in the interior of (X)y such that there is a limit point
(z,a) of fin O, and a limit point (z,b) of fin Oy. We may take b<a, (z, b)
= (z,/(2)) and (z, a) to be limit point from one side or the other. Since (1) = (2)
we reach a contradiction. Hence f has property B.

It is clear that property B = (1), (2). Hence we have shown equivalence of the
statements for property B. The proofs for property A are the same with the only
change being to replace arc by continuous function with closed connected domain.
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