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Abstract. Cardinalities of the power set and the symmetric group of an infinite set are
compared, both in the presence and absence of the axiom of choice. ‘

According to Cantor’s well-known theorem, the power-set operation applied
to any set yields a set of strictly greater cardinality. So we are led to ask: Are there
any other natural, yet inherently different set-theoretic operations with this property ?

To anyone acquainted with algebra, one candidate immediately suggests itself:
the operation of forming the symmetric group of a set. Unfortunately n! = n for
n=1,2, so in trivial cases the analogue of Cantor’s theorem fails. Nonetheless
for n>3, n!>2", so it is natural to inquire what happens in the infinite case. That
question is the subject of this paper.

In what follows we use 2(X) and S(X) to denote, respectively, the power
set and the symmetric group of the set X (assumed infinite unless otherwise stated).
We denote the cardinality of X by |X| and define X! = |S(X)| and 2¥ = |2(X)].
Zermelo-Fraenkel set theory is abbreviated as ZF, while ZFC stands for ZF plus
the axiom of choice (AC). In Section 2 we also use ZFU to denote Zermelo-Fraenkel
set theory weakened to permit a set U of urelements.

‘We show first of all that in ZF, | X| < X! whenever | X| > 3. This result is presum-
ably part of the folklore of axiomatic set theory, but we are aware of no explicit
statement or proof in the literature. Indeed, even such a standard reference as [8]
makes no mention of |S(X)|. Perhaps the reason for this is that those who have
considered the question have come to realize that in ZFC X! = 2% for all infinite X.
In one direction, the most apparent method for demonstrating X’ 122% is to prove

.that for every Y<X such that |X— Y| 5% 1, there is a permutation of X leaving

fixed exactly the set Y. (This approach is taken, e.g., in Bourbaki [1], where the
result occurs as Exercise IIL. 6.5.) On the other hand, the equation | X|* = |X| arises
naturally in showing X 12, so that in either case one is soon led to believe that
some use of the axiom of choice is unavoidable.

Indeed, in the absence of the axiom of choice, any of the three alternatives (i)
X! and 2¥ are incomparable, (i) X!>2%, or (if) X1<2*, are possible. This is
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established is Section 2 below in the context of ZFU by exhibiting appropriate
Fraenkel-Mostowski madels in which X is taken to be the set of urelements. The
transfer to ZF then follows directly by results of Jech and Sochor.

Our methods do not suffice to demonstrate the independence of the axiom of
choice from the assertion that X! = 2¥ for all infinite X. Since the appearance of
the preliminary version of this paper, however, that result has been established
in ZF by David Pincus, to whom we are also indebted for several improvements
to our original exposition.

§ 1. Except where otherwise stated, results of this section are understood to
be proved in ZF. To distinguish tuples from cycles, we separate terms of the latter
by semicolons instead of commas. ‘

Trrorem 1.1. If | X|=3, | X|<X!. .

Proof. Since |X|<|2x X|, we consider two cases.

If | X|<|2 x X] then it suffices to show |2 x X< X!. For this, pick three distinct
elements a, b, ¢ € X and define f: 2x x5 S(X) by f(0,x) = (x;a) and f(1,x)
=(x; b) if x¢{a,b}; f(0,a) = (a; b) and f(0,d) = the identity; and f(1,4)
= (a; b; ©), f(1,b) = (a; c; b).

If [X]=[2xX]| then X! = (2xX)!, so by Cantor’s theorem it suffices to
show 2¥<(2x X)\. Thus, given any 4 & £(X), define ¥, in S@xX) by

_fo;»n it yéd,
”‘)’”“{a;y) it yed,
@y it yéd,
T"(l’y)“{(o;y) it yed.

TrEOREM 1.2, If 1<|X| = |X|?, then X! = 2%,

Proof. Since S(X)c=2(Xx X), we have X1<2¥*¥ = 2%, But the hypothesis
immediately implies |X| = [2x X|, so as in the proof of 1.1, 2¥<X1.

COROLLARY 1.3. For any infinite set X, if X can be well-ordered then X! = 2%
In particular, in ZFC X! = 2% for all infinite X.

CoroLLARY 1.4. AC—(YX) (X well-orderable — S(X) well-orderable).

Proof. This follows immediately from 1.3 and the well-known (but often
misproved) equivalence AC—(YX) (X well-orderable — #(X) well-orderable)
(ct. [7].

'Witl-{ reg?.rd to 1.4, note that any proof of the equivalence of the axiom of
choice with either of the statements (VX) (X well-orderable — £(X) well-order-
able) or (VX) (X well-orderable — S(X) well-orderable) must make essential use

of the axiom of foundation, since both of these statements are true in all Fraenkel-

Mostowski models of ZFU.

Fir%ally, we remark that in the countable case Corollary 1.3 also has a simple
analytic” proof, due to Q. Klein. For if X = {x)| i<}, let cach x, correspond
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©
to a; = 1/(i+1). Then the conditionally convergent series Y (—1)'a; can be
. =0
canonically rearranged to converge to any real number, so 2% = |R|<c!.

§ 2. In this section we show that any of the alternatives X!<2¥, X! and 2¥

. are incomparable, and 2% < X! are possible. This is done by exhibiting three permu-

tation models of the theory ZFU.

We refer the reader to Jech [4] for elementary facts about permutation models.
We first prove that in the ordered Mostowski model of [5], U!>2" where U is the
set of urelements. This is the same model used in Halpern [2] to show the indepen-~
dence of the Boolean Prime Ideal Theorem from AC.

Here is a description of the model: Let M’ be a model of ZFU+AC with
a countable set U of urelements. Let < be an ordering of U with order type that

of the rationals. Let G be the group of all oxder preserving permutations of U.

If e is any subset of U, let

fix(e) = {YeG: VWree(Y(H =1)}.

Let & be the filter of subgroups of G generated by the set {fix(¢): e is a finite subset
of U} and let M be the permutation model determined by U and §.

We will usually observe the following notational convention: When a permu-
tation of U is thought of as an element of G we will use the symbol ¥ (possibly
subscripted or primed) to denote the permutation. If a permutation is thought
of as an element of S(X) the symbol ¢ will be used.

It xe M, a finite subset ec U is a support of x if Vi efix(e), tﬁ(x) = x. An
argument for the following lemma is given in [4], p. 50.

LemMa 2.1. Each element of M has a unique minimal support; further, if e is
a minimal support of x, then

Vefix(e) >y (x) = x. .
Lemma 2.2. If e U and le| = k, then there are at most 2*** subsets of U in M
with minimal support e.
1} where #; <...<f. Let

(={teU: t<ty}),

Proof. Suppose € = {f;, ...,

A1 = (—o00, tl)

A, = {1},

Ay =, 1),
Ay = (-1 1
Ay ={t,
Appry = (1, ) -

1ig2k+1,
ws2k+1}%,

- Suppose BcU has minimal support e. Then for each i,
BAd, =@ or BnA; = A;. Hence Bis of the form UA where Le{1,2,.

and there are 2%** such sets.
3 — Fundamenta Mathematicae XCIII
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LevMa 2.3. If ¢ is a permutation of U in M, then e = {te U: ¢(¥) # 1} is
a minimal support of ¢.

Proof. This is an easy consequence of the fact that for any finite subset e of U
and any Y € G, Y (&) = e~ € fix(e).

THEOREM 2.4. In M, 2V<U! ‘

Proof. For any be M, let S°(%) = {p e S(B): (Vrneb)(p(®) # n)}. I keo,
|S°(k)|~k!/e approaches 0 as k approaches oo, so k can be chosen so that
(k+1)-2%+1 <|8°(k)). Choose such a k and let e be a set of k(k*+k)/2 elements
-of U indexed as follows:

e={I'(,)): 1<r<k, 1<igk, 1<j<sr} .
For each r and i, 1<r<k and 1<igk, let R'() = {#(i,/): 1<j<r} and let R
= {rG,)): 1<i<k and 1<j<r}. Tt will be helpful if we put e in the following,
array which we will refer to as (x).

A1, 1) A ik, 1)
21, D1, 2) 2, 0DR2,2) ... 2k, )2k, 2) g
H1, 1A, 2) o AL E) 42, D02, 2) o 52, E) L B, 1) . R, B
e will be the support of a function from #M(U) 1-1 and into SM(U). We now
proceed to define the function in several steps.
For each finite subset ¢ of U, define

Fla) = a if a2k,
@V R'(i) if |a| =k—n and iis the least natural

number such that R"G) na =@,

ie., if la| = k—n, look at the nth row of the array («) and add to a the first “block™
of n elements which does not intersect . The following four lemmas are conse-
quences of the definition of F. .

Lemma 2.5. |F(a)|2k for every finite a< U.

LevMa 2.6. If la] = k—n and F(a) = b, then [a R = |bn R'| for r # n
and [an R"|+n = |bn R,

Lemma 2.7. If |b] = k and |6~ R"| = j, then there are at most J sets a such
that F(a) = b and |a n R"|<J.

LemMA 2.8. If bSU, there are at most k-1 sets a such that F(a) = b (by
Lemma 2.7).

If b2 U and |blzk, we let F7[b] = {a: F(a) = b}. Suppose bS U is finite
and |bjzk. We define b Suppose DS i

L(b) = {A: ACU& A has minimal su})port a for some ae F~1[b]}.

Ihen‘by Lemmas 2.2 and 2.8 lL(b)]s(k+1)'2 . So by
the choice of k,,

Factorials of infinite cardinals 189

LemMa 2.9. If @ € S(b) then ¢ has minimal support b. Hence for all Y € G,
V(@) =@ < Y@ = b

Proof. This lemma follows from Lemma 2.3.

LemMma 2.10. If Ae L) and § e fix(e), then Yy(4) = A < Y(b) = b.

Proof. Suppose 4 has minimal support a; then since 4eL(b), F(a) = b.
Hence a v ¢’ = b for some e'ce.

Now suppose ¥(4) = 4. Then y(a) = a by Lemma 2.1, hence y/(b) = .
(Since ¥ & fix(e).)

Conversely suppose ¥ (b) = b. Then y(a) = a, hence Y (4) = 4.

COROLLARY 2.11, If ¢ € S°(b) and A € L(b) then for all € fix{e)

V() =yl =4.

LeMvA 2.12. If b 5 b’ where b and b’ are finite subsets of U such that |b], |[b'| 2k,
then L(b) n L(b") = @ and S°(b) n S°(%") = @. (Here and in what follows we sup-
pose that S°(b) has been embedded in S(U) in the natural way for each finite subset b
of U) : )

Proof. The first part of the conclusion follows from the uniqueness of minimal
supports and the definition of L(b). The second part follows from the definition of S°.

Levma 2.13. If b, b’ = U are finite and |b], |b'| =k and if A e L(b) and ¢ € S°(B),
then for W e fix(e) the following are equivalent:

(@) W) ="b\

(i) () e L),

(iii) ¥ () € S°()-

Proof. (i) <> (iii) is clear using the fact that for any 9 € G, n(a) is a minimal
support of 7(x) whenever @ is a minimal support of x.

We prove (i) = (ii) and (ii) = (i). Suppose ¥ () = b’ and that 4 is a minimal
support for A; then F(a) = a v ¢’ = bwhere ¢’ ce. We also have that b’ = ¥ (F(a))
= (a) U ¢’ = F((a)) using the definition of F and the fact that v e fix(e). Hence
b = F((a)), therefore W(4) e L(D).

Suppose now that ¥ (4) € L(3"). Then ¥(a@) is 4 minimal support of Y (4) and

hence F((@) = b', ie., Y{d) ue = b where ¢'<e. Since AeL(®), ave =b

so that .
Y@ =y@ue)=y@ue =10
This completes the proof of the lemma.
We now define an equivalence relation ~ on {p<U: b is finite and |b] >k} by
bab @Y efix(e) (Y (0) = ).
Let ® be the set of equivalence classes. For each ¢ e ® choose b, & ¢ and let Wp,

be a 1-1 function from L(b,) into S°(b.). This is possible since |L(b.)| <|S°(b)|. Let
W= U{(,): ce® and y efix(e)} .

3
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Claim. W is a 1-1 function from #M(U) into SM(U) and W has support e.
That W has support e and that Range(W)<SM(U) follow from the definition
of W. It remains to show: :

1. W is a function. Suppose (i (4), v (W, (4))) and (¥'(4), W(W, (4))) are
in W, where 4eL(b) and A4'eL(b,) and ¥,y efix(e), and suppose V/(4)
= 1’(4"); then ¥'~'y(4) = 4’. Hence by Lemma 2.13 i
’ VTG = b,
) bchbc,, which implies b, = b,.. Hence by Lemma 2.10
‘ ‘ WAy =4 (= 4).
So by Corollary 2.11
VTN (W (4) = Wy (4) = W, (4).
Hence W is a function. ' '

2. Wis 1-1. As in 1, suppose (¥ (4), ¥ (W, (4))) and (¥'(4), ' (W, (4))
are in W, where 4 e L(b,) and 4’ €L, and ¥, § e fix(e). Now suppose

¥ (Wa () = V' (W, (4));

then

® - VT (W) = W (4,
whence by Lemma 2.13

(2) ‘//’_lw (bc) = bc’ .

Le., b,~b,, which implies b, = b... Rewriting (2) we get '~ YW (b,) = b,. Then
applying Lemma 2.10

@ | V) = 4
and : . . :
@ VN (W (D) = W (4) .

Combining (1), (4) and b, = b, gives
Wb.,(A) = Wb.,(AI) .

Hence A = 4’ since W,_is 1-1. By this and (3) we obtain ' "YW (4) = 4’
. . a = so (4
= 1'(4") and hence W is 1-1. sV
_ .3' The domain of W is #M(U). Choose A e #M(U) and suppose that 4 has
r_mmmal_ fupport a. Let F(a) = b and suppose that W (b,) = b where V fix(e).
Then y~*(b) = b,, so by Lemma 2.13 yy~1(4) e L(b,). Hence

(™ A), W (1)) € W,

and so

V(W) W, (b 2(A)) e W
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that is
(4, (W, (b2 d))) e W.

Therefore A is in the domain of W. .

This completes the proof of the claim and hence the proof of the theorem.

TueOREM 2.14. In M, 2¥ # UL

Proof. Suppose Fe M is a 1-1 correspondence between PM(U) and SM(U)
and suppose F has minimal support e. Choose a set a = {ty, 13, ..., 8} of ur-
elements so that a ne = @ (where k is chosen so that nzk-22"*<|S°m)]).

If 4ePM(U) and 4 has minimal support ¢ U e where e’ce, then F(A) must
have minimal support a U e’ for some e¢’ce. (Otherwise there will be some
¥ € fix(e) such that either (4) = 4 and y(F (A)) # F(A), or else § (F(A)) = F(4)
and ¥ (4) # A, contradicting the fact that F is 1-1 and has support e.) Similarly
it ¢ e SM(U) and ¢ has minimal support a U ¢’ for some ¢’ Se, then F ~1(p) must
have minimal support @ U ¢” for some e''e. Therefore if we let

X = {4cU: 4 has minimal support & U ¢’ for some e'cel
and )
Y = {p € SM(U): ¢ has minimal support & v ¢’ for some ¢ e}

then F| X is a 1-1 correspondence between X and Y. .

To show this is impossible, it suffices to show that for each e ce, | X, |<|Y,]
where

X, = {A=U: A has minimal support a U e’}
and
Y, = {¢p € SM(U): ¢ has minimal support a v Y.

So choose &’ e and suppose |au €| = n. Then n>k, so 227+1.2|S%p)]. But by
Lemma 2.3, |S°()] = | Y.|, and by Lemma 2.2, | X,|<22"*1, Therefore 1 X, <| Yol
and the proof is complete. .

We now construct a model of ZFU with set of urelements U in which U! and
2Y are incomparable.

Let M’ be a model of ZFU-+AC with a countable set U of urelements. Let
G be the group of all permutations of U. For each e<U, let

fix(e) = {y € G: (Yte(¥ (1) = 1)}
and let § be the filter of subgroups generated by the set {fix(e): esU and e is
finite}. ‘
Finally let M be the permutation model determined by U and §.
Lemma 2.15. If ASU and A€ M, then A is either finite or cofinite.

Proof. Suppose fix(e) fixes 4 (i.e., for all in fix(e), Y(4) = 4). Thenif te 4
for some ¢ & e, we have t' € 4 for every 1’ & e. This follows because the permutation
(t; ') is in fix(e) and hence ', being the image of ¢ under this permutation, must
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be in A. Thus if 4 A complement (e) % @, 4 must contain the complement of e
and hence is cofinite. On the other hand, if 4<e, then A4 is finite.

Using a similar argument one can show the following.

Levma 2.16. If ¢ € SY(U), then {te U: (1) # t} is finite.

TuEoREM 2.17. In M, Ul £ 2Y and 2° £ UL

Proof. Suppose first F is a 1-1 function in M from SM(U) into PM(U) and
suppose fix(e) fixes F where e<U is finite. Choose ¥, t, and t3€ U so that

C{tntatlne=0
and let ¢ = (2;; 4,3 t3). Suppose F(p) = 4.

If A4 is finite, then {z,1,, t;} =A4. (Otherwise choose ¢é&{t;, 1, s} Veu d
and suppose 3 & 4. Then § = (¢; t;) is an element of fix(e). Further, ¥(4) = 4
but Y/ (@) # @, which contradicts the fact that fix(e) fixes F.) But now if y/" = (1y; ¢,),
then v fixes 4 and moves ¢. Since Y e fix(¢) we have contradicted our assumption
that fix(e) fixes F. )

If A is cofinite, then {t{, #,, 13} N A = @ (by an argument similar to the one
above). But this again means that ¥/ = (z,; ;) fixes 4 and moves ¢, a contra~
diction. Hence no such F exists. '

Now suppose H is a 1-1 function from #M(U) into S™(U) and that fix(e)
fixes H. Let a = {t;, 1, 13} where ane=@: If H(a) = ¢, then (1) # t;,
1<i<3. (If not we can assume without loss of generality that ¢(f;) = 3. Then
choose ¢ ¢ a U e such that ¢ (f) = ¢, so that = (#3; ?) fixes ¢ and moves «, a contra-
diction since ¥ € fix(e).) )

We now c_onsider two cases: If ¢(f;) e a for 1<i<3, then when ¢ is written
as the product of disjoint cycles either (¢,; #,; ¢5) or (fy; ¢33 #,) must be one of
the cycles. In either case /' = (2,3 #,) fixes a and moves ¢. Since ' € fix(e), “H is
fixed by fix(e)” is contradicted.

“+ On the other hand, if ¢(¢) ¢ « for some i, 1<i<3, we assume without loss of
generality that ¢(t;) éa and proceed as follows: Let Y = (¢,; t;). Then V",
moves ¢ and fixes a while Y’ e fix(e), a contradiction. Therefore no such H exists,
completing the proof of Theorem 2.17.

In our last permutation model we will show that Ul<2¥ where U is the set
of urelements. In some sense this model is obtained from the ordered Mostowski
model by adding lots of new subsets of U but no new permutations.

Suppose M’ is a model of ZFU+AC and the set U of urclements of M’ is
countable and indexed as follows:

U= {t(i,n): r rational and i<w}.
Define a partial ordering on U by
1@, N<t(G,Hei=j and r<s.

Then for each i<, let T* = {t(i, 7): r rational}. Let G be the, following group of
permutations of U:
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G ={y: Vieo)y(Th = T' and (VYD (G, )< (tG, 9)
o 1, <, 9))}.

For each finite ec U, let

fix(e) = (Y e G: (Viee)(y(D =1)}.

Let § be the filter of subgroups of G generated by the set {fix(e): e=U and e is
finite}. Let M be the permutation model determined by U and §. We leave to the
reader the verification that § is closed under conjugation by elements of G and
the verification of the following two lemmas: -

Levma 2.18. If y e fix(e n ¢'), then there is an ne o and permutations Yy, ...
s Wy € G such that =, ..V, and e fix(e) or ¥, e fix(e’) for 1<ign. ‘

Levva 2.19. If x € M, fix(e) fixes x and fix(e') fixes x, then fix(e N e') fixes x.

(Lemma 2.18 follows from the fact that the same lemma holds in the ordered
Mostowski model, and 2.19 is an easy consequence of 2.18.) As a consequence of *
Lemma 2.19 we get: :

LemMA 2.20. Every x € M has a unique minimal support.

Lemma 2.21. If e is a minimal support of x, then ¢(x) = x implies ¢(e) = e.

Proof. Suppose ¢(e) # e and that ¢(x) = x. Then since ¢ (e) is a support
of ¢(x), @(e) neis a support of x and el NneFe, contradicting the mini-
mality of e.

LemMmA 2.22. If ec U and |e] = n<w, then there are at most n! permutations
with minimal support e.

This follows from:

LeMMA 2.23. If o € M is a permutation of U, then {te U: @(1) # 1} is finite
and is a minimal support of ¢.

LEMMA 2.24. If ec U is finite, then there are at least 280 subsets of U with minimal
support e.

Proof. Suppose e< U and e is finite, and let R = {ie @: T'ne= @} ReM
and |R| = &, (in M). Each set of the form e L ( UJT") where J&<R has minimal

is

support e, and there are 2% such sets.

TueorEM 2.25. In M, Ul<2”.

Proof. We first prove U!<2. The proof is similar to the proof of Theorem 2.4
Define an equivalence relation ~ on {b: bcU and b is finite} by

beb < @)Y e G &Y () = b).

Let G be the set of equivalence classes and choose b, & ¢ for each c & ®. Then for
each ce ® let F, be a 1-1 function from the set

{p: ¢ is a permutation of U in M with minimal support b.}
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into the set ‘ )
{d: AcU & 4 has minimal support 5} .
This is possible by Lemmas 2.22 and 2.24.
Now let .
F=\{Y(F): ce® and Y eG}.
As in Theorem 2.4 we claim F is a 1-1 function from SM(U) into 2M(U) with sup-

port @. The proof is similar to the proof of the similar claim in Theorem 2.4. We
show only that F is a function. Suppose (¥ (), ¥ (F@))) and (¥'(0"), ¥'(Fu(0")

are in F, where ¢ has minimal support b, and ¢’ has minimal support b, and

¥,y € G. Suppose further that Y/ (p) = ¥'(¢"). Then V'~ *y(p) = ¢’, whence by
Lemma 2.21, ¥~ Y (b,) = b... Thus b,~b, and it follows that ¢ = ¢’. Therefore

O] W) = b,

$0 V"W (p) = ¢ and hence ¢ = ¢'. By (x), V' W (F(0)) = F.(p), that is
W'Y (Fp)) = Fo(¢"). Hence y(Fp)) = y'(F. (¢') and F. is a function.

Now we prove that U! = 2V in M. Suppose U! =2V in M and that H is
a 1-1 correspondence between S¥(U) and #M(U) with minimal support e.

If e SY(U) has minimal support e, then H(p) must have minimal sup-
port <e. (Otherwise some y e fix(e) moves H(p) and fixes ¢, contradicting the
fact that H is a 1-1 function with support e.) Similarly if A< U has minimal sup-
port e, then H~*(4) must have minimal support Se.

Therefore F [ {¢p & S¥(U): ¢ has minimal support Se}isa 1-1 correspondence
between that.set and

{4 e Z"(U): 4 has minimal support e},

which is impossible by Lemmas 2.22 and 2.24. This completes the proof of the
theorem. Pincus has observed that the ZF-analogue of 2.25 can also be obtained
by using the Halpern-Lévy model of [3].

As mentioned in the introduction, all of the foregoing consistency results
carry over directly to ZF. This is a consequence’ of the Jech-Sochor Embedding
Theorem ([4], p. 85), since our results involve only the set U of urclements and
hence (unlike the independence result of Pincus [6] mentioned earlier) depend
only on a proper initial segment of the given permutation models,
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