A note on "Atomic compactness in κ-categorical Horn theories" by John T. Baldwin

by

B. Weglorz (Wrocław)

Abstract. Every model of an ω_1-categorical Horn theory is atomic compact.

In paper [2] (mentioned in the title above) Baldwin has proved the following theorem:

THEOREM 0. If T is a theory satisfying the following three conditions:
(a) T is almost strongly minimal,
(b) T is an \forall_3-theory,
(c) T is a Horn theory,
then every model of T is atomic compact.

In this note we shall show that (a) can be replaced by a weaker assumption of ω_1-categoricity of T, (see [1]); (b) can be omitted; and (c) can be replaced by the assumption that the class of all models of T is closed under direct products. Hence we get the following theorem:

THEOREM 1. If T is an ω_1-categorical theory such that the class of all models of T is closed under direct products, then every model of T is atomic compact.

In the proof of Theorem 1, we shall use the following proposition (see e.g. [5], Th. 4) which results from a theorem in [4].

PROPOSITION 2. Let I be an infinite set and \mathcal{F} a filter on $I \times I$ generated by all the equivalence relations E on I such that $|E|$ is finite and all but one E-equivalence classes are finite. Then for every structure \mathcal{A} we have $\mathcal{A}[\mathcal{F}] <^* \mathcal{A}$. Moreover $\text{Card}(\mathcal{A}[\mathcal{F}]) = \text{Card}(\mathcal{A}) \cdot \text{Card}(I)$.

Proof of Theorem 1. Let \mathcal{A} be a model of T and let $\Sigma = \Sigma(\mathcal{A}, \mathcal{X})$ be a set of atomic formulas with a sequence \mathcal{X} of parameters from \mathcal{A} and a sequence \mathcal{X} of variables. Suppose that $\Sigma(\mathcal{A}, \mathcal{X})$ is finitely satisfiable in \mathcal{A}. Take I such that $\text{Card}(I) \geq \max \{ \text{Card}(\mathcal{A}), \text{Card}(\mathcal{X}), \omega_1 \}$ and consider $\mathcal{A}[\mathcal{F}]$. Let d be the diagonal embedding of \mathcal{A} into $\mathcal{A}[\mathcal{F}]$. Of course $\Sigma(d(\mathcal{A}, \mathcal{X}))$ is finitely satisfiable in $\mathcal{A}[\mathcal{F}]$. ($\mathcal{A}[\mathcal{F}]$ denotes the limit power of \mathcal{A}, for more details see e.g. [4].

(\text{\footnotesize{\textcopyright 1979 by the American Mathematical Society.}})
By Proposition 2, \(W_1 | F_1 < W' \) holds. Let \(r \) be a mapping of \(W' \) onto \(W \) such that
\(r(x) = x \) for all \(x \in A \).
Now take \(B > W_1 | F_1 \), which has the following properties:
1. \(\Sigma(d(\bar{v}, \bar{x})) \) is satisfiable in \(B \);
2. \(\text{Card}(\bar{v}) = \text{Card}(W'_1) \);
3. \(\text{Card}(\bar{v}) > \omega_1 \).
Since \(\text{Card}(\bar{v}) = \text{Card}(W'_1) > \omega_1 \), and \(T \) is \(\omega_1 \)-categorical, there is an isomorphism \(f \) of \(W' \) onto \(W_1 \). Since \(W_1 | F_1 < W_1 \), \(f \) maps \(W_1 | F_1 \) onto an elementary submodel of \(B \), say \(C \). Let \(g \) be an isomorphism of \(W_1 | F_1 \) onto \(C \) such that \(g = f \restriction (A_1 | F_1) \). Now \(B \) is an uncountable model of \(T \). Consequently \(B \) is saturated, whence homogeneous. Therefore there is an automorphism \(g^* \) of \(B \) such that
\(g \preceq g^* \). In this way we get the following diagram:

\[
\begin{array}{ccc}
W & \xrightarrow{f} & W_1 | F_1 \\
\downarrow{r} & & \downarrow{r} \\
B & \xrightarrow{g} & C \\
\end{array}
\]

Now, \(\Sigma(d(\bar{v}, \bar{x})) \) is satisfiable in \(B \) by a sequence \(\bar{a} \) of elements of \(B \). So \(\Sigma(d(\bar{v}, a)) \) holds in \(B \).
Since \(g^* \) is an automorphism of \(B \), the set \(\Sigma(g^*d(\bar{v}, g^*(\bar{a})) \) holds in \(B \) too.
If we pass from \(B \) to \(W'_1 \) by \(f^{-1} \), we see that \(\Sigma(f^{-1}g^*d(\bar{v}, f^{-1}g^*(\bar{a})) \) holds in \(W' \). But \(f^{-1}g^*d(\bar{v}, f^{-1}g^*(\bar{a})) = d(\bar{v}) \) for each \(x \in A \). So \(\Sigma(d(\bar{v}, f^{-1}g^*(\bar{a})) \) holds in \(A \). Finally, applying \(r \), we come back to \(W \) and we see that \(\Sigma(\bar{r}(\bar{v}), r^{-1}g^*(\bar{a})) \) holds in \(W \).
Thus \(W \) is atomic compact. Q.E.D.

Remark 1. Baldwin's theorem and the Theorem just proved deal with theories in countable languages. This is not an essential restriction. Indeed, if the language \(\mathcal{L} \) of \(T \) is of the cardinality \(|\mathcal{L}| \geq \omega_1 \), then we can use Shelah's categoricity theorem (see e.g. [3]) for \(T \) to get (by the same proof with \(\omega_1 \) replaced by \(\lambda^+ \)) the following theorem:

Theorem 4. If \(T \) is an \(\omega_1 \)-categorical theory and the class of all models of \(T \) is closed under direct products, then for each countable model \(B \) of \(T \), every uncountable model \(W \) of \(T \) is isomorphic with \(W_1 | F_1 \), where \(\text{Card}(F_1) = \text{Card}(W_1) \).

Unfortunately the statement above is not true if \(A \) is countable. Indeed, let \(T \) be the theory of countably many distinct individual constants. If \(B \) is a model of \(T \), then \(B \) is saturated. Consequently other countable models of \(T \) are not products of a fixed model of \(T \).

References

INSTITUTE OF MATHEMATICS
UNIVERSITY OF WROCŁAW

Woodrow, Poland

Accepté par la Redaction le 4.11.1974