On weaker forms of choice in second order arithmetic
by

Wojciech Guzicki (Warszawa,' Nijmegen) *

Abstract. In the paper it is proved that the scheme of choice in second order arithmetic for
formulas involving parameters is strictly stronger than the analogical scheme for parameter-free
formulas. The case of the scheme of dependent choices is different; both forms turn out to be
equivalent.

In the present paper we shall discuss some implications between weaker forms
of the schema of choice and the schema of dependent choices in second order
arithmetic. The system of second order arithmetic (abbreviated by A3) is usually
formulated in a language with two sorts of variables — for natural numbers and
for sets of them. The axioms are as follows:

1. Peano’s axioms for numbers with induction as one statement.

2. Extensionality for sets.

3. Comprehension schema:

EXNGbeX = 9]

for every formula ¢ in which the variable X does not occur. In ¢ we allow par-
ameters. '
We shall also discuss the following schemas:

4. Choice:
MEY) e, Y)=EN)He(x, (Y)),
where (Y), = {y: J(x,y)e Y} and J is an arithmetical pairing function.
5. Dependent choices:

(XEY) (X, V)= EX)D ¢ (X)y, (X);41) -

We assume that ¢ in both 4 and 5 satisfies the necessary restrictions about
variables occurring in it. The schema 4 will be abbreviated to AC if we do not
allow parameters in ¢ and to AC if we allow them. The schema 5 will be abbreviated
to DC and DC, respectively.

The following implications are obvious:

A; FAC—AC, A +DC-DC.

* The author was a fellow at the University of Nijmegen when finishing the paper.
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We shall study the implications

Ay FDC-DC, Aj;FAC-AC.
The most important results of this paper are that the first of the above implications
holds, while the second does not. The proof that A |+ AC—AC will use the
method of forcing and will be carried out under the assumption of the existence

of a standard model of ZF-set theory. It will be easily seen from the proof that
the assumption ‘

(»)  there exists a standard model of ZF~+V = L+ “there exist at least w,
cardinal numbers” :
is sufficient. The statement (x) can be proved in ZF.

Fact 1. (In. A7) DC—AC and DC—AC.
An easy proof is left to the reader.

Sometimes the following schema is called the schema of dependent’ choides:

DC: (NE) X, V)= (X)EY)(Y) = X & @) e (Y, (V4]
One can easily verify that .
Fact 2. (In A;) DC = DC".
TueoreM 3. (In A;) DC-DC. S
Proof.  Assume that DC holds while DC does not.. Then there exist a for-
mula ¢ and a set C such that (-
(DED X, Y, C) &(X)(Ern) 10 (XD, (X)yey, C).)

Let us denote the above formula by Z(C). Thus we have (EC)Z(C). Let us consider
the -following formula v:

Y, Y) = [Z((X)o) & (Yo = (X)o & ¢ ((X)1, (X)1, (X)) v
VITZ((X)o) & Z((¥)o) & (¥), = 0].

Y is a formula without parameters. We shall show that X)EYYW(X,T),

Let us take an arbitrary X. There are two possible cases: ‘

L. Z((X),). Then (Z)(ET)e(Z,T, (X Jo) and we can find T such that
¢ ((X)1, T, (X)o). We take ¥ 5o that (¥)o = (X), and (¥); = T. ‘

2: T12((X)o): Then we take ¥ so that Z((¥)) and ( Y)l = 0.

Therefore we can find X such that Y ((X),, (X, 1), because we have as-
sumed DC. W.1o.g. we can assume X(((X Yo)o)» By induction we can easily prove
that ((X),)o = ((X)o)o. By the definition of U, for every n we have

‘ ()1 (Xns 1)1 C) where C=((X),) = ((X)e)o -
‘We put ¥so that(Y), = ((x),), and we obtain at the same time (n) ¢ (( )0, (Pye1,C)

and Z(C), a contradiction. m
CorROLLARY 4. (In A7) DC = DC = DC’ = DC'..

On weaker forms of choice in second order arithmetic 133

The proof is immediate.

Now we are going to prove that an analogous theorem for AC does not hold.
This will be done in two steps: the first is Theorem 5 and the second is Theorem 19.

THEOREM 5. Let M be a countable transitive model of ZF+V = L. Then there
exists a model N of ZF + “w, = cugf” such that the continuum of N forms a model
of AC.

Proof. The proof is technical and rather long, so we first give a brief idea of it.

We add o} generic functions collapsing ¥, a<wl, onto  to M in order
to obtain V. It Nk (n)(Ey) ¢ (n, ¥) and ¢ is parameter-free, then 0 I* (1) (Ey) 0 (n, y).
Then for every n € w we can find a term #, such that p, I+ ¢ (n, 2,) for some p,. We
can find an ordinal y<w¥ such that all generic collapsing functions involved in
any of the 1,’s collapse cardinals smaller than w‘;“. Using a symmetry argument
we shall show that the set

D, = {p: for some term ¢ depending only on the yth collapsing function,
' pirom, ) &tcw}
is dense. Therefore for every n we can find an example constructible from only the yth
collapsing function and therefore we can find a sequence (y,: ne @) such that
me(n, y,) holds in N. Now let us turn to the details.

We introduce a forcing language with new predicates F, ,(,-,") for a<olf
and n e . We put w‘:,’l as the ordinal rank of these predicates. We define formulas
and terms of the forcing language and their ordinal ranks as usval. It should be
noticed that only a finite number of new predicates can occur in a formula or a term
of the forcing language.

We define the order of a formula or a term as the maximum of ordinals « such
that for some n € w the predicate F, , occurs in that formula or term.

A condition will be a function with a finite domain contained in 0¥ x 0 x 0} x w
and the range contained in the class of ordinals such that

(e, B, m) € dom(p) > p<a & p(s, 1, B, m) <.
A condition p is stronger than a condition ¢ (we write p<q) iff p2g.
The order of a condition p is the maximum of ordinals a such that<a, n, §, m>
edom(p) for some n, f,m.
The forcing relation is defined as usval with the following initial clause:

P Fy ey, ¢y, 05) iff there exist f<a, mewand £ w}f such that p(e, n, §, m)
™ ! ‘ =¢and plreg>B, plre,~m, plrea=§.
The definition of =, as well as the other clauses of the definition of forcing, can
be found in [Fe].

We choose a complete sequence of conditions so that it intersects all those
dense subsets of the set of conditions which belong to M. The resulting model will

be denoted by N. By the general theory, N F ZF.


GUEST


134 : W. Guzicki

Now we shall prove that NF o, = wf);_. Since MEV =L, o) = o in the
model N. Let . = {m,: a<o’f) be a sequence of permutations of & which belongs
to M. Then = acts on conditions, formulas and terms as follows:

n(p) (@, n, B, m) = p(at, g '(m), B, m)
TC(FL,,) = Fzz,n,(n)
and in other clauses as in [Fe]. As in [Fe] we prove the following lemmas:
LemMa 6. If p v o, then n(p) I n(p).
Lemma 7. If ISl xw is a set consisting of pairs {u, n) such that F, , occurs
in @, then '
plro—p | dom(p) nIxol xo +*o.

Lemma 8. If c is a term, I is a set of pairs &, n) such that F, , occurs in ¢, f, , is
the valuation of F,, in N and valy(c)=M, then valy(c) is constructible from
{Jant Koty my € D). '

From Lemma 8 it follows that coflM is an uncountable cardinal in N. Namely,
if f* wew’f“,{,, and fe N, then f is constructible from finitely many functions f, ,.
Let o, be the maximum of a’s occurring as indices in the above functions. Then
o, s uncountable in M[{f,,,: <&, n)> €I)], and hence rg(f)gw%.b

On the other hand, £, , establishes a 1-1 correspondence between  and o,
and hence a)“:iw is the least uncountable cardinal in N.

Now we have only to prove that AC holds in the continuum of N. We prove
even a little more, Namely, if ¢ is a set-theoretical formula with only constructible
parameters and :
. NE@mE)[xco & ¢(n, x)],
then there exists f, o such that

NEMEx)[xco &xeL[f, ] & ¢, x)].

Since L[f, o] can be well ordered in N, we can define 4 sequence {x,: n e ®) such
that for all n € o, x, e L[f,,0], x,So and N F ¢(, x,). This sequence can be coded
by a single subset of w and hence the proof of AC will be completed.

Now let ¢ be such a formula. Then

O () (Ex)[xcw & o(n, x)]

because ¢ does not allow nonconstructible parameters. Therefore for every new
we can find a condition p, and a term ¢, such that Pulko(n, ¢ and p, |- ¢, s 0.

Let o, be the-order of p,, let B, be that of ¢, and let us put y =.sup {«,, /)’,3.
Obviously y<a¥. . ree

Fix ny e 0. :

It is enough to prove that the set D,, is dense, where D,, = {p: there exists
a term ¢ depending only on F, ¢ such that p i+-* ®(no, ¢) and p |+* csw}.

On weaker forms of choice in.second order arithmetic 135

At first we shall show that for every k e o there exist a condition p,, , and
a term ¢, depending only on F, such that Dro W @ (ng, ¢ro) and p,, ,:1;.* Cooik
cw. By Lemma 7 we can also require that Dok depend only on (y, k§, ie., it
wsy or m#k, then {a,m, B,j> ¢ dom (p,, ).

To simplify the notation we assume that k& = 0 and the term ¢, depends only
on Fyo, «<y. The general case can be obtained by iterating the process described
below. For the proof we shall construct an automorphism H of the set of con-
ditions and we shall extend it to the set of formulas and terms so that & (c,,) depends
only on F,,q and for every condition p and every sentence ¢, p I* p— H () I-* H(g).
Then. we can put p,,, = H(p,,) and ¢, , = H (Cng)-

DerNiTioN 9. We define a mapping H: Cond - Cond as follows:

H(py (&, n,n,m) = p(&,n, 1, m) if Ea&E#yor
E=9&n#0,

H(p)(,n,n,m) =pla,n+1,n,m),

H(l’)()’aoﬂh m) =]J(’)1,0, ﬂsm) : if a<nN<y,

H(p)(,0,n,m) =p(y,0,n,4(m—-1)) i y<aand 2ym,

H(p)(y,0,n,m) = p(x, 0,7, im) if <« and 2m.

LommA 10. The mapping H is an automorphism of the set of conditions.

!
The easy proof is left to the reader.
We extend H to act on formulas and terms of the forcing language in the
following way:

H(F,;,..(x,y,Z))=F¢,..(H(X),H(y),H(Z)) i EFa&é#y or
t=y&n#0, .

H(F, (%, 9, 9) = Fun-s(H(), HO), H@) i n#0,

H(F,, o(x,y,2)= TaeH(x) & Bu) [F,o(H(), u, H(?)) &
&usw & HO)ew & u =,2-HB)],

H(F, o(x, p, z)) = [neH(x) & F,O(H(x), H®), H(z))] \
‘ v [ee HE) & (B)°lF, (H(), u, HEZ) &
&uew & H(Y)ew &u =,2-HO)+11],

where x =,y denotes (2)°[zex = zgy]. Observe that both + and - are always
applied to natural numbers in H(F,,,) and also in G(Fy,,) below.

The other clauses are as follows: ‘

H(x) = x if x is a variable or a constant term, i.e., x = a for some ae M,

H(Ex) (x)) = ESxH (Y (x)),

H is a homomorphism w.r.t. logical connectives, quantifiers and &.

It should be observed that H(c) has the same ordinal rank as ¢ and that if ¢
depends only on F, ,, then H(c) depends only on F,q.
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Now it is enough to prove the symmetry lemma. However, we must first prove
the followlng
‘ Leva 11. H is an automorphzsm on terms, lLe., there exists a mappmg G on
terms such that for every term ¢, 01F H(G(&)) =c.
Proof. We define G by induction as follows:
G(Fy (x, 3, 2)) = Fy (G(x), G, G(2)) if E#a&E#Y or
E=9&n#0,
G(Fun(%,9,2) = Funsd(G), G0), G(2)),
G(Fy o, ¥, 2) = [2eG(x) & F, o(G(x), GO, G@)]v
v[TaeG(x) & EBWIF, o (G(x), w, G(2) &
&wew & G(ew & GY) =,2-w+l1llv
vITaeG(x) & (EW)*[F, o(G(x), w, G(2)) &
& wew & GOew & GU) =42 W] .
The other clauses are similar to those of H.
We assume that for every term ¢ of the ordinal rank less than &, 01 HG(¢)=~c.
By induction on the length of the formula ¥ of rank not bigger than & we prove
that if ¢y, .., ¢, are terms of rank less than ¢ then. for every condition p
(%) PR ey, v, ) = pIE* HG(W ey, oons )
L Xf  is an atomic formula xey or Fy,, for <&, n) # <y, 0), the proof is
trivial.
IL pIH* F, o(cy, €5, €3) = p IF* HG(F, o(cy, €2, C3))
Let us take a condition p and assume the left-hand side. Let g<p and let r
be a condition such that r<g and r IF* F, o(c;, ¢;, ¢3). ‘
Then there exist f<y, mew and ’g’eco,, such that r(y,0, B, m) = ¢ and
rieif, and

rlrey >~m rikes=§.

Case 1. a<§f.
We shall show ‘that °

rkH(xeGlc;) & F, o(Glcy), Gley), G(ca)) -

By the assumption 01 HG(c)=c), i =1,2,3. Since a<f, O asf. From the
above r |k ¢, = f.- Hence r.I- 22 HG(c). To show that

i+ H(F, o(Gley), Gey), Glea)))
it is enough to show that
rikaeHG(c)) & F, o(HG(c,), HG(c,), HG(c3)) -

‘As above r|+* a2 HG(c,). By the assumption, r ||- Fy oy, €2, ¢5) and O HG(c))
e, 1=1,2, 3. Hence

r* F, o(HG(c,), HG(c,), HG(cy)),

sor weakly (and hence strongly) forces the conjunction.
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Case 2. azf, 2ym.
We shall show that

r ik H(T2eG(er) & (BW)°LF,o(G(cy), w, Gles)) & wew &

& Gle)ew & Glcy) = w2 w+1]) .

As before, we show that r |-* "aeHG(c,). Since 2tm, there exists k € © such that
m = 2k-+1. We show that

rlr H(F,,o(Gey), k,G(c) & kew & HG(c,)ew & HG(c,) = w2k+1.

By the assumption 0| HG(¢,)=c,. Hence r -* HG(cy)~m, and so r* HG(c,)
w2°k+1. It is trivial to show that r | kew and r I HG(ez)aw ‘We have only
to show that
1k H(F,o(G(e)), k, G(es)) -
To do it we shall show that

rik e HG(ey) & (B)°[F, o(HG(es), u, HG(cy)) & uee &
&keo &u=42k+1].

We put u = m and as before we can easily show that r forces all conjuncts in square
brackets above.

Case 3. azfl, 2m.

In this casc we proceed as before to show that r forces the third disjunct in the
disjunction HG(F, o).

Thus the 1')1001 of the implication to the right is completed.

Now let us take a condition p and assume the right-hand side. Let ¢<p and
let us take r<q so that r | HG(F, «(c1, €z, C3))- )

The proof will be finished when we find s<r such that s ¥

Case 1. r I H(xeG{c)) & F(G(c,), G(ez), Gley)))

In this case rI-* e HG(cy) and rI* H(F, o(G(cy), Gles), G(ca))).

Thus we can find a condition ¢<r such that

t "‘ IJ(Fy,O(G(Cl): G(CZ)’ G(CS))) .

Subcase lan 1k acHG(e)) & Fyo (HG(ey), HG(c;), HG(cy)). Since O
I HG(c)=ey, i=1,2,3, we have- £ I* Fyo(cy, €2, c3) and we can put s = £

Subease 1b. ¢ I e HG(¢;) & (Ew)"[...]. This subcase is impossible because
then ¢ I1* "lae HG (¢y) and we have already shown that r |+ * asHG(c;) and 1<r.

Case 2. r I H(aeG(c,) & EW)[F, 0 (G(er), w, Gles)) & wew & Gle)ew &
& G(c) =, 2 w+1]).

Now 1L Tollows that there exist a condition t<r and a term ¢, of ordinal rank
less than « such that

£tk Tee HG(cy)
t - HG(c,)80

Fy,o(Cx» €35 C3).

L Hv(Fy.O(G(Cl): Cas G(CS))) 2

tkegew, and ¢ HG(c2) =wg.c“+_1_' -
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It follows that there exist k, m e w such that
tirea=k and  tIFHG(c)~m.
Since #IF HG(cz) =42 C4+1, m = 2k+1.
There are two subcases:
Subcase 2a. tIagHG(c;) & F, o (HG(cy), ¢y, HG(cs)). This subcase is
impossible, because we have already proved that f | ae HG(cy).
Subcase 2b.
11 T2e HG (c;) & (Bu)°[F, o (HG(cy), u, HG(c3)) & uee & Hicy) e &
&u =, H(ey))2+1].
But H(cq) = c,, because no new predicates can occur in ¢, (the rank of ¢y is less

than @). Thus there exist a condition ¢, < and a term c5 of ordinal rank less than o
such that

ty I+ F, o (HG(cy), c5, HG(c3)), 1l ChEW,
hilkesew  and #)fkes =,27cq+]1.

Therefore there exist k,,m, ew such that tilkcaky and 4 I cseemy.
Hence #; W*m; =, 2k, +1, so my =2k, +1. Since 2 caxk and t Ik caky,
k = k; and consequently m = my. Hence #; I-* cs2HG(c,), 50 #; IF cs=2e,. By
the assumption 0 I+ HG(c)ee;, i=1, 2,3. Therefore 2, |-* F, o(cy, €2, c3) and
so there is s<7, which strongly forces F,o(eq, 5, ¢3).

Case 3. r I H(TaeG(er) & (BW)°[F, 0 (Gley), w, Gles)) & weew & Ge)ew &
& G(e) = 2°w)).

In this case we can proceed as before, so we omit the proof.

In this way the proof of II is completed.

L ¥ = ",.

IV. ¥ =y v,

These two cases are trivial and we omit the proofs.

v. ‘//(xlz ey Xp) = (Exo)"‘/ﬁ(xo, Xiseees n)'

‘We have to prove that if €y .o, €y are terms of ranks less than ¢ then for any p
P Yleys ooy ) = p I HG (Y (cy, ..., c,)).

Let us take a condition P and assume the left-hand side. Lot q<p and r be
such that r<gq and riki(cy, ..., c).

Then there exists ¢, of ordinal rank less than 7 such that r |k y(co, €1, vov, €.

Since Fhe rank of ¢, is less than &, our assumption about ¢, is fulfilled. By the as-
sumption about Yy, r ik HG(y(cy, cy, .., o), ie.,

Pk HG( ) (HG(eo), HG(c,), ..., HG(c,).
Therefore there exists a condition ry<r such that
71 Ik (Bx) HG (Y4 (%0, Xy, .., %,)) (HG(cy), .., HG(c)
(because HG(c,) has the same rank as ¢o) and consequently r, |- HG(Y(cy, ...s ).
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The proof of the converse implication is similar, and so we omit it.

Therefore the proof of () is completed.

‘Now let ¢ be a term of rank ¢ We have to prove that 0 It HG(c)~=c.

The only interesting case is when ¢ = E%y (%), where ¥ is a formula of rank
not bigger than & Then HG(C) = ExHG(W(x)). If ¢, is any term of rank less
than £, then 0 |- y(e,) = HG (Y (c,)). Hence

01k ¥(e)) = HG(Y () (HG(cy),
and so 0IFy(e;) = HG () (%)(c,), because 0 |- HG(c,)=2c,. Therefore 0 c
~ HG(c). m :

COROLLARY 12. For every term ¢ of rank & there exists a term ¢, of the same
rank such that 0 | H(c,)=~c.

The proof is immediate. .

Lemma 13. If p is a condition and \y is a sentence of the forcing language then
p ¥ = H(p) b* H@).

Proof. By induction on the ordinal rank of .

‘When 1/ is a negation or a disjunction the proof is trivial. In the cases of
quantifiers we use Corollary 12 (for the implication to the left).

Thus we shall only prove the case of atomic sentences. Sentences of the form
cea, ceE*py(x) and Fy (cs, ¢y, c3) for <&, nd # <a, 0> or (E,m) #{y,0> are
eagy to check.

Ly = F,oeq, ¢y, ¢3).

Let p be a condition and assume that p |+* F, o(cy, ¢,, ¢5). Let ¢<H(p) and
take r<H ™ '(g) such that r | F,ofcy, ¢z, ¢3). Then there exist f<a, mew and
£ew) such that r(x,0, 8, m) = & and

rik cl:ﬁ s rle=m  and  rikcy~g.

Since a=f, 0 F Tlagf. By the inductional hypothesis () 1-* H(cy)~p, Hand
hence H(r) I “taeH(ey).

Now it will be sufficient to prove that

H() Ir Fypo (H(ey), 2m, H(c)), - HG) Ik Hicy)ew,
H@) IF2mew  and  H{) IF2m =, 2-H(c,) .

(a) Since r(x, 0, B, m) = & H((y,0, B,2m) = £ By the induction hypoth-
esis H(r) +* H(cy)p and H(r) I1* H(cs)~¢, and hence H(r) also strongly forces
these statements. Thus

H(r) - Fy o (H(CO, 2m, Hicy)) .

(b) By the induction hypothesis H(r) I H(c;)~m, and so H() k H(co)ew.

() Trivial. :

(d) Since H(r) I 2m =,2'm and H() Ir H(c;)=m, also

H@) I 2m =,2-H(ey).
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For the proof of the implication to the left, let us assume that H(p)*
I *H(Fa,o(f~'1 > €25 Cs))-

Let g<p and take r, <H(g) so that ry Ik H(F, (¢, €5, ¢3)). Then ry = H(r)
for some r<g. Moreover, we can demand that H(r) IF TlasH(c;) and that there
exist a term ¢, of rank less than @ such that:

H(}‘) ”"Fy,O(H(Cl):cMH(CS))i H(I‘) ”’H(CZ)E_CE5
Hp) heew and  H@) ey =42 H(ey) .
Thus there exist f<y, me w, §<cu,bf and ke w such that:

H®@,0,8,m)=¢, HOFHCE)=F, HEIeyzm,
H() - H(ca)~¢  and -~ H() - H(ep)~k .

Since H(r) - TlaeH(c,) and H() I H(c,)~p, we obtain «=p. Since
H(n) I cq =, 2" H(c,), we have H() k- m =, 2k, so m = 2k.

Therefore_r(oc, 0, B, k) = & By the induction hypothesis

rlrey~f, rike~k  and  rikeze§.

Hence r I F, o(cy, ¢35, ¢3), which completes the proof of this case.

IL o = F, (¢, €5, €3).

The proof is similar, and so it will be omitted.

The proof of Lemma 13 is now completed. @ )

COROLLARY 14. For every n, k € o there exist a condition py, \, such that (&, m, 1, 1>
edom(p, ) »¢ =y &m =k and a term c,, depending only on F,, such that
pn,k ”"* (P(f‘s cn,k) & cn,kc—:g'

The proof is trivial by Lemma 13.

Now we are going to show that the set D, (defined on the page 134) is dense.
Let g be any condition. Let k€ w be a natural number such that if <y, i, #,/>
edom(g), then i#,j<k. Let us consider p,, , and c,, ;. We shall find an auto-
morphism J of the set of conditions and extend it to the set of terms so that J (Cno, 1)
will depend only on F, 5, J(p,,,4) and ¢ will have disjoint domains and J(p,,,,) IF*
* @ (1, J(Cop,0) & T (€45,) € ©. This will be enough, because every common cx-
tension of J(p,,) and g belongs to D,..

‘We could, of course, find one automorphism instead of two: H and J, but
then the definition of it would be very complicated. So, in order to facilitate the
reading of this paper and to make the idea clearer, we have decided to consider
each of them separately.

DermNiTION 15. We define a mapping J in the following way:

J(P)(Es i,1,7) =P(é’i: n,J) if & Y or

¢=9 and O<i<k,
J(P)(Y, i,1,5) =P(’)’,l+1,11,]) it izk, ‘
J(p)('Ys 0,1,7) =p(y,0, 1,.J) if Jj<k,
J(P), 0,1, 0) = p(y, 0,1, £(j+k)) if jzk and 2]j+k,

J@),0,1.0) = p(v, k. n, 3(—k~1)) if j=k and 2fj—k.
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Lemuma. 16. J is an automorphism of the set of conditions such that dom (1
ndom(q) = 0. . m (o, 0) N

The proof is left to the reader.
We extend J to act on formulas and terms of the forcing language in the
following way:

T(Fy %, 9, 2)) = Fe (), 76), 7 (2)) it &#y or
: {=y&0<i<k,
T(Fy (2,3, 2) = Fp j (000, J0), J(2)  if - j>k,
J(Fy 4%, y, 2)) = BW)°[F, o(T(x), u, J(2)) & uew & Jy)eo &
&u=,270)+k+1],

I (Fyo%, 9, 2)) = W)k & Fyo(J(x), J(), (@) v

vII(Mew—k & (Bi)°[F, o), u, J(2) &

&usw &u =, 2-J(y)—kll.
Other clauses are the same as those of H, giver on the page 135.

It should be observed that J(c,, ,) depends only on F, 0. To finish the proof
of Theorem 5 it is enough to prove that p i-*y = J(p) I* J@) for any con-
dition p and any sentence 1 of the forcing language.

The proof is similar to that for H. We must first prove the following

LemMA 17, For every term ¢ there exists a term ¢y of the same rank such that
0k J(c,) e,

Proof. We define a converse mapping:
K(Fydx,,2) = Fyu(K®), K(), K(2)) it Es#y or
‘ &=y &0<i<k,
K(Fy (%, 9, 2) = Fpua(K(), KOV K@) i i3k,
K(Fy o, v, 2)) = [K()ek & F, o(K(x), K(), K@)V
VKO 20—k & BW)PIF, (K (x), w, K@) &
&wew & K() =4 2 wHk+111v
v [K(y)ew —k & (Bw)°[F, o(K(x), w, K(2) &
&wew & K() =,2-w—kl].
Other clauses are as on page 135. .
By induction on the rank of ¢ we prove that 0 - JK(c)~c. Since the proof
is similar to that of Lemma 11, we shall omit it. .
LEmMMA 18, If p is a condition and \ is a sentence of the forcing language, then
P = J(p) T,
Proof, Since the proot is similar to that of Lemma 13, we shall prove, as an
example, one of the initial cases:

PIFE, ey, ca, €5) = J(p) IF ¥ (F, iy, &2, €5)) -
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Let us take a condition p.

1. Assume the left-hand side and take any ¢, <J(p). Then g, = J(q) for some
g<p. We can take r<g so that r - F, (c;, ¢;, C3).

Then there exist f<y,-mew and §<w,’}4 such that r(y,k, B, m) = ¢ and

rire;f, rlrco~m  and  ribeze€.
Take I = 2Zm+k+1. 1t is enough to show that
JO W F,o(J(c), L (), JIKlew,
JO W T(edew and  J@)IFL=,2-0(c)+k+1.
By the induction hypothesis J(r) I J(¢c;)~m, and hence
JO I (e)ew and  J@) 1 =,2-T(c)+k+1.

It is obvious that J(r) It lzw.
By the induction hypothesis

J@WIe)=p and  J(r) IFT(es)E .

Moreover, J(r)(y,0, 8,1) = r(y, k, B, m) = &, since Zm+k+12k and 2)2m+
+k+1—k. Hence

J(@) it F, ,o(J(C1), _l, J(ca)) .

On the other hand, let J(p) IF*J(Fy,aleq, 3, €5)). Let us take g<p and r
<J(g) so that ry I+ J(F, \(c;, c,, ¢3)). Then for some r<g, r; = J(). It is enough
to show that s I F, y(cy; ¢,, ¢5) for some s<r. By the above there exists a term (A
of rank less than o such that

J@) I Fyo(J(er), e, J(cs)) & ciew & () ew &ey =, 2T (cr)+k+] .
Let s be such that s<r and:
T FyoJ (), 4, J(es)) s T) I cqeer,
J@&FJ(e)ew  and  J(s) Cq =a,_2-J(cz)+[c_+1 .
Then there exist f<y, me o, few},“ and /e w such that:
OO0, B.m) =&, T kIc)=p, Js) N cym,
Tk T(e)=g  and  J(s) I J(cp) I

Hence J(s) Ik m =o021+k+1, and so m = 2/+k+1. Therefore s(y, k, 8,1
= ¢ and by the induction hypothesis

, Skeg=f, ske;~l  and s eyeg,
and so sk F, (cy, ¢,, ¢;), which completes the proof.
The proof of Lemma 18 and therefore of Theorem 5 is thus completed. B
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Now we have to prove. that

not a model of AC.
TueoREM 19. Assume ZF + “, = ms{.”. Then AC does not hold for some
IT%-formula.

Proof. We follow the proof from [Le]l. Let acw? be a well-ordering of  of
type wf. Such an a exists because wy<w’; = w,.
o1

the continuum of the model N of Theorem 5 is

By a | n we shall denote the initial segment of o consisting ‘of the @-prede-
cessors of n. )

By (a | n)+1 we denote the initial segment of a consisting of the a-predecessors
of n together with #. '
Let us consider the following formula &:

Y(n,x,6 =xco*&xis a well-ordering of w of type at least ok, where o is
the type of a [ n.

It is easy to see that the countable axiom of choice fails for ¢ with the par-
ameter a.

Using the argument of Lévy ([Le], p. 133, 134) we can show that the statement

Yin,x,a) = (ME)[xis a well-ordering of natural numbers & y codes a well-
founded binary relation € on o & (o & V) holds in the
model {w, > & (k) [k is an ordinal in <o, e>&zis an
isomorphism of the field of x on the ordinals of {w, )
which stand in the relation €' to k — there exists an em-
bedding ¢ of the field of (¢ [ n)+1 into cardinal numbers
of {w, €") suchthatforevery / from the field of ( [ m)+1,
tiye' k or t(i) = k]]

is equivalent to ¢ and is a I7:-formula.

As in [Le], o denotes the axiom of extensionality and  denotes a formula

such that if <4, &) |-, then 4 = L, for a limit ordinal o and conversely. @

From Theorem 3 it follows that DC also fails in model N, but the proof of that

theorem. does not give a good estimation of the class of a formula @, for which
it fails.

TurorEM 20. Assume ZF + “w, = coif”. Then DC fuils for some IT-formula.

Proof. Consider the following formula:

$(x,») = [x = 0 & (¥); is a well-ordering of & of type ot & (), = 1 & (),
is a well-ordering of w of type > w?, where « is the type of (3); [ 1]v
v[(x); is a well-ordering of w of type >t &(x), is a singleton
say {n} & (x); is a well-ordering of w of type >wl, where a is the
type of (x); [ m & () = (x); & (), = {n+1} & (), is a well-order-
ing of @ of type >wj, where B is the type of (), [ n+1]v[x is
not as in the above cases &y = 0].
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It is easy to check that DC does not hold for @ and that @ is a Z3-formula,
Hence Z}-DC fails and therefore so does II-DC. = .
Final remarks. In the paper we have shown that in second order arithmetic

DC = DC, AC + AC, and AC+ DC.

The only remaining question is whether AC-DC. This ploblem has bcen
answered negatively by S. G. Simpson ([Si]). Simpson’s proof, however is not
known to the author of this paper.
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Movability and shape-connectivity
by
G. Kozlowski and J. Segal * (Seattle, Wash.)

Abstract. THEOREM 1. If (X, x) is a uniformly movable pointed continuum with m,(X, x) =
Jor all n, then (X, x) has trivial shape. From this and the fact that a metric continuum X is. ap,
proximately 1-connected if and only if it is the inverse limit of a sequence of simply connected
ANR’s, one obtains the corollary: An approximately 1-connected movable metric continuum X with
(X)) = 0, for all n, has the shape of a point. Another corollary is that the concept of uniform
movability introduced in [12] is stronger than movability,

Introduction. In this paper we obtain a special case of a shape version of the
‘Whitehead Theorem without a dimension restriction.

THEOREM 1. If (X, x) is a uniformly movable pointed continuum with m,(X, x)
=0, for all n, then (X, x) has trivial shape. -

Uniform movability here is taken in the sense of Kozlowski-Segal [12] which
is a generalization of the concept of uniform movability defined by M. Moszyriska
in [17] and which coincides for metric compacta with K. Borsuk’s concept of
movability [3]. As a corollary of Theorem 1 we show in Section 3 that a certain
compact connected topological group is movable but not uniformly movable.
This example is inspired by and heavily depends on the work of J. Keesling. As
another application we have

COROLLARY. An approximately 1-connected movable metric contimum X with
(X)) = 0, for all n, has the shape of a point.

In this paper a compactum means a compact HausdorfF space, continuum means
a connected compactum. All ANR’s are understood to be compact. As a reference
for the ANR-system approach to shape see [15]. We assume that when we deal
with a continuum the ANR-system associated with it is composed of conmected
ANR’s. As a reference for the shape groups m, see [16] where their isomorphism
with the limit homotopy groups is established. Here we deal with only the latter
groups which we accordingly take as the definition of the m,’s: if the ANR-system
{(Xys %), Do » #} is associated with (X,x), then =,(X,x) is defined to be
lim {m,(X,,, %), Puww» &} In dealing with maps between ANR’s and their induced
homomorphisms between homotopy groups we shall omit reference to base-points.

* The second named author was partially supported by NSF grant GP-34058.
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