

Locally bounded topologies on the rational field *

hv

M. E. Shanks (Lafayette, Ind.) and Seth Warner (Durham, N. C.)

Abstract. We resolve a long-standing problem in the theory of topological rings by showing that the only locally bounded ring topologies on the field ${\it Q}$ of rationals are the known ones.

Let P be the set of prime numbers, and let $P' = P \cup \{\infty\}$, ∞ referring to the "infinite prime", that is, the ordinary archimedean absolute value on the rational field Q. Each subset of P' determines a locally bounded ring topology on Q in a manner described below. Our purpose here is to show that conversely, every locally bounded ring topology on Q is determined in this way, thus answering a long-standing question in the theory of topological rings. As early as 1948, Kaplansky [6, p. 813] posed a special case of the problem: What are the topologies of type V (which are necessarily locally bounded) on Q? This problem was solved by Kowalsky and Dürbaum [7] and Fleischer [5], who showed that a topology of type V on any field was given either by an absolute value or a valuation. Results of Correl [3] in 1958 vielded a solution of the problem for the case where the given locally bounded topology was a field topology (that is, multiplicative inversion is continuous) for which the open additive subgroups form a neighborhood basis at zero; in that case the topology is determined by a finite subset of P. The general problem is implicit in Mutylin's work [8] in 1966. He showed that any nondiscrete locally bounded topology on Q not described by a subset of P' had to be stronger than the ordinary archimedean topology (that corresponding to ∞) but weaker than the topology determined by a proper subset of P'. The general problem is also explicitly mentioned in [4].

A nucleus of a topological ring is a neighborhood of zero. A subset B of a topological ring is bounded if for every nucleus V there is a nucleus W such that $BW \subseteq V$ and $WB \subseteq V$. A topological ring is locally bounded if there is a bounded nucleus. Locally compact rings are locally bounded, since a compact subset of a topological ring is bounded; normable topological rings are also clearly locally bounded.

A subset U of a field K is an almost order if $0, 1 \in U, -U = U, U \neq K$, $UU = U, a(U+U) \subseteq U$ for some nonzero $a \in K$, and $K = \{ab^{-1} : a, b \in U, b \neq 0\}$. If $\mathscr T$ is a nondiscrete locally bounded ring topology on K, then there is an almost

^{*} Written while the first author was in residence at Duke University.

order U on K that is a bounded nucleus for \mathcal{F} , and $\{Ux: x \neq 0\}$ is a fundamental system of nuclei for \mathcal{F} . Conversely, if U is an almost order on K, there is a unique nondiscrete locally bounded ring topology on K for which U is a bounded nucleus [1, Exercise 20, p. 120; 7, Theorems 5 and 6].

For each $p \in P$, let Q_p be the field of p-adic numbers, Z_p the ring of p-adic integers, $|...|_p$ the associated p-adic absolute value. Let Q_{∞} and Z_{∞} both denote the topological field R of real numbers, let $|...|_{\infty}$ be the ordinary archimedean absolute value and \mathscr{F}_{∞} the ordinary archimedean topology on Q. For each subset R of P', let $O(R) = \{x \in Q: |x|_p \le 1 \text{ for all } p \in R\}$. If R is a proper subset of P', O(R) is clearly an almost order on Q; we define \mathscr{F}_R to be the unique locally bounded ring topology on Q for which O(R) is a bounded nucleus. Since $O(P') = \{0, 1, -1\}$, we also define $\mathscr{F}_{P'}$ to be the discrete topology on Q. Note that \mathscr{F}_g is the trivial topology whose only open sets are \mathscr{O} and Q.

We shall prove that the only locally bounded ring topologies on Q are the topologies \mathcal{F}_R where R is a subset of P'. In particular, the only Hausdorff, additive generated, locally bounded ring topology on Q is \mathcal{F}_{∞} (a ring topology is additively generated if there are no proper open additive subgroups). Our proof will depend on the following two results of Mutylin:

LEMMA 1 [8, Lemma 10]. If \mathcal{F} is a Hausdorff, locally bounded ring topology on Q that is not stronger than \mathcal{F}_{∞} , then every nucleus for \mathcal{F} contains all integral multiples of some nonzero rational.

LEMMA 2 [8, Corollary 5]. If \mathcal{F} is a nondiscrete, locally bounded ring topology on Q that is stronger then \mathcal{F}_{∞} , then for some prime p, \mathcal{F} is weaker than $\mathcal{F}_{P'-\{p\}}$.

Actually, Lemma 1 marks the halfway point in Mutylin's proof that under the hypotheses of Lemma 1, \mathcal{T} is \mathcal{T}_R for some nonempty subset R of P. This result, of course, is a consequence of our theorem.

For each nonempty subset R of P', we define A_R to be the local direct product of the topological rings $(Q_p)_{p \in R}$ with respect to the open subrings $(Z_p)_{p \in R}$. Thus $A_R = \{(x_p) \in \prod_{p \in R} Q_p : x_p \in Z_p \text{ for all but finitely many } p \in R\}$, topologized as follows:

Let $B_R = \prod_{h \in R} Z_p$, topologized with the cartesian product topology; we topologize A_R by

declaring B_R to be a nucleus. Thus topologized, A_R is a locally compact ring. We define $A_R \colon Q \to A_R$ by $A_R(r) = (r_p)_{p \in R}$, where $r_p = r$ for all $p \in R$. Note that if $S \subseteq R$, then the canonical injection from A_S into A_R (defined by $(x_p)_{p \in S} \mapsto (y_p)_{p \in R}$, where $y_p = x_p$ if $p \in S$, $y_p = 0$ if $p \in R - S$) is a topological isomorphism from A_S onto a subring of A_R . Hence we shall consider A_S a subring of A_R by means of this identification.

The following lemma is an immediate consequence of the Strong Approximation Theorem (see, for example, [4, Theorem 9]).

LEMMA 3. If R is a nonempty proper subset of P', then Λ_R is a topological isomorphism from Q, equipped with \mathcal{F}_R , onto a dense subring of A_R .

Theorem 1. If \mathcal{F} is a Hausdorff, locally bounded ring topology on Q that is weaker than \mathcal{F}_R for some nonempty proper subset R of P', then $\mathcal{F} = \mathcal{F}_S$ for some nonempty subset S of R.

Proof. Let E be the completion of Q for \mathcal{T} . Our hypothesis implies that Q; \mathcal{T} is a topological algebra over Q; \mathcal{T}_R . Identifying the completion of Q; \mathcal{T}_R with A_R and extending by continuity the scalar multiplication of the $(Q; \mathcal{T}_R)$ -algebra Q; \mathcal{T} to $A_R \times E$, we conclude that E is a topological algebra over A_R under a scalar multiplication satisfying

$$\Delta_{R}(r) \cdot s = rs$$

for all $r, s \in Q$.

For each $p \in R$, let in_p denote the canonical injection of Q_p into A_R , and let $e_p = \operatorname{in}_p(1)$. Thus $\operatorname{in}_p(Q_p) = A_R e_p$. Clearly

$$in_p(r) = \Delta_R(r)e_p$$

for all $r \in Q$, $p \in R$. By restricting scalar multiplication to $(A_R e_p) \times (e_p, E)$ and replacing $A_R e_p$ with Q_p , we obtain a continuous scalar multiplication (p) from $Q_p \times e_p$. E into e_p . E defined by

$$\lambda_{(p)}x=\mathrm{in}_p(\lambda).x$$

for all $\lambda \in Q_p$, $x \in e_p$. E. With scalar multiplication so defined, e_p . E is a topological algebra over Q_p , since if $x \in e_p$. E, then $x = e_p$. x, whence

$$1_{(p)}x = \text{in}_p(1) \cdot x = \Delta_R(1)e_p \cdot x = e_p \cdot x = x$$

Let $S = \{p \in R: e_p \cdot E \neq (0)\}$. If $e_p \cdot 1 = 0$, clearly $e_p \cdot Q = (0)$, whence $e_p \cdot E = (0)$, since Q is dense in E and so, by the continuity of $x \mapsto e_p \cdot x$, $e_p \cdot Q$ is dense in $e_p \cdot E$. Thus $p \in S$ if and only if $e_p \cdot 1 \neq 0$. Restricting scalar multiplication to $A_S \times E$ where A_S is canonically identified with a subring of A_R , we conclude that E is a topological algebra over A_S , since for each $x \in E$,

$$x=\varDelta_R(1)$$
 , $x=\left(\varDelta_S(1)+\sum\limits_{p\in R-S}e_p\right)$, $x=\varDelta_S(1)$, $x+\sum\limits_{p\in R-S}e_p$, $x=\varDelta_S(1)$, x ,

In particular, we conclude that $S \neq \emptyset$. More generally, if $r \in Q$ and if $x \in E$,

(3)
$$\Delta_R(r) \cdot x = \Delta_S(r) \cdot x$$

since $\Delta_R(r)$, $x = \Delta_R(r)$, $(\Delta_S(1), x) = \Delta_R(r)\Delta_S(1)$, $x = \Delta_S(r)$, x. For each $p \in S$ and each $r \in Q$,

(4)
$$r_{(p)}(e_p \cdot 1) = e_p \cdot r$$

since $r_{(p)}(e_p \cdot 1) = \Delta_R(r)e_p \cdot (e_p \cdot 1) = \Delta_R(r)e_p \cdot 1 = e_p \cdot (\Delta_R(r) \cdot 1) = e_p \cdot r$ by (1) and (2). Consequently, the one-dimensional subspace of the Q_p -vector space $e_p \cdot E$ generated by $e_p \cdot 1$ contains $e_p \cdot Q$. But $Q_{p(p)}(e_p \cdot 1)$ is closed in $e_p \cdot E$ and $e_p \cdot Q$ is dense in

 e_n . E; thus $\{e_n$. 1 $\}$ is a basis of the Q_n -vector space e_n . E. Consequently, φ_n : λ $\mapsto \lambda_{(n)}(e_n, 1)$ is a topological isomorphism from Q_n onto e_n . E.

Let U be an almost order defining the topology of E. Then by continuity $\varphi_n^{-1}(e_n, U)$ is a bounded, multiplicatively closed subset of Q_n and hence is contained in Z_n . Let $G: E \rightarrow A_S$ be defined by

$$G(x) = (\varphi_p^{-1}(e_p \cdot x))_{p \in S}.$$

For each $x \in E$, G(x) does indeed belong to A_S , for as $(e_n)_{n \in S}$ is summable in A_S . by continuity $(e_n \cdot x)_{n \in S}$ is summable in E, whence for all but finitely many $p \in S$, $e_n \cdot x \in U$; but if $e_n \cdot x \in U$, then $e_n \cdot x = e_n^2 \cdot x = e_n \cdot (e_n \cdot x) \in e_n \cdot U$, so $\varphi_p^{-1}(e_p, x) \in \mathbb{Z}_p$. For each $p \in S$, $x \mapsto \varphi_p^{-1}(e_p, x)$ is continuous from U into \mathbb{Z}_n : hence the restriction of G to U is continuous from U into $\prod Z_p$. By definition of the topology of As and since U is a nucleus, therefore, G is a continuous homomorphism

Let $F: A_S \to E$ be defined by $F(\lambda) = \lambda$. 1. Then $G \circ F: A_S \to A_S$ is continuous and agrees with the identity mapping on $\Delta_S(Q)$, for if $r \in Q$, then $\varphi_p^{-1}(e_p \cdot r) = r$ for all $p \in S$ by (4), whence

$$G(r) = \Delta_S(r)$$

60

from E into A_{S} .

and therefore $(G \circ F)(\Delta_S(r)) = G(\Delta_S(r) \cdot 1) = G(\Delta_R(r) \cdot 1) = G(r) = \Delta_S(r)$ by (3). Consequently, as $\Delta_s(Q)$ is dense in A_s , $G \circ F$ is the identity mapping of A_s .

Similarly, $F \circ G$: $E \rightarrow F$ is continuous and agrees with the identity mapping on Q, for if $r \in Q$, then by (5), (3), and (1).

$$(F \circ G)(r) = F(\Delta_S(r)) = \Delta_S(r) \cdot 1 = \Delta_R(r) \cdot 1 = r.$$

Thus $F \circ G$ is the identity map on E. Therefore $G^{-1} = F$, so G is a topological isomorphism from E onto A_S satisfying $\mathfrak{F}(r) = A_S(r)$ for all $r \in \mathbb{Q}$. Thus $\mathscr{T} = \mathscr{T}_S$.

THEOREM 2. The only locally bounded ring topologies on Q are the topologies \mathcal{F}_R where R is a subset of P'. In particular, the only Hausdorff, locally bounded, additively generated ring topology on Q is \mathcal{F}_{∞} . Thus $R \mapsto \mathcal{F}_R$ is an isomorphism from the lattice of all subsets of P' onto the lattice of all locally bounded ring topologies on Q

Proof. Let \mathcal{F} be a Hausdorff, locally bounded ring topology on Q. First, assume that $\mathscr T$ is not stronger than $\mathscr T_\infty$. By Lemma 1, if U is a nucleus for $\mathscr T$, then $U \supseteq Za$ for some nonzero rational a; but Za is open for \mathcal{F}_P since Z = O(P)is open for \mathscr{F}_P . Thus \mathscr{F} is weaker than \mathscr{F}_P . By Theorem 1, therefore, the assertion follows. If ${\mathscr T}$ is stronger than ${\mathscr T}_\infty$, the assertion also follows from Lemma 2 and Theorem 1.

Corollary 1. The only locally compact rings containing Q densely are the rings A_R , where R is a nonempty proper subset of P', and the ring Q equipped with the discrete topology

Proof. If A is a locally compact ring properly containing Q as a dense subset,

then A is the completion of O for its induced topology, which is necessarily locally bounded. The result therefore follows from Theorem 2.

The following corollary generalizes a theorem of Mutylin [5, Theorem 3].

COROLLARY 2. If A is a Hausdorff, complete, locally bounded ring containing O. then either O is discrete, or the closure of O is A, for some nonempty proper subset R of P'. In particular, if A is a Hausdorff, complete, locally bounded field of characteristic zero, either Q is discrete, or the closure of Q in A is either R or Q_n for some prime p.

The second statement follows from the first, since A_R contains proper zero divisors if R is a subset of P' containing more than one element.

References

- [1] N. Bourbaki, Topologie Générale, Ch. 3-4, Paris 1960.
- [2] Algèbre commutative, Ch. 7, Paris 1965.
- [3] E. Correl, On topologies for fields, Ph. D. dissertation, Purdue University, Lafavette, Indiana,
- [4] M. Endo, On the topologies of the rational number field, Comment. Math. Univ. St. Paul 16 (1967-68), pp. 11-20.
- [5] I. Fleischer, Sur les corps topologiques et les valuations, C. R. Acad. Sci. Paris 236 (1953). pp. 1320-1322.
- I. Kaplansky, Topological rings, Bull. Amer. Math. Soc. 54 (1948), pp. 809-826.
- [7] H. J. Kowalsky und H. Dürbaum, Arithmetische Kennzeichnung von Körpertopologien, J. Reine Angew. Math. 191 (1953), pp. 135-152.
- [8] А. Ф. Мутылин, Пример нетривиальной топологизации поля рациональных чисел. Полные локально ограниченные поля, Известия АН СССР, сер. матем. 30 (1966), pp. 873-890; 32 (1968), pp. 245-246.

Accepté par la Rédaction le 29, 7, 1974