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Locally bounded topologies on the rational field *
by

M. E. Shanks (Lafayette, Ind.) and Seth Warner (Durham, N. C.)

Abstract. We resolve a long-standing problem in the theory of topological rings by showing
that the only locally bounded ring topologies on the field @ of rationals are the known ones.

Let P be the set of prime numbers, and let P' = P U {0}, oo referring to the
“infinite prime”, that is, the ordinary archimedean absolute value on the rational
field Q. Each subset of P’ determines a locally bounded ring topology on Q in
a manner described below. Our purpose here is to show that conversely, every locally
bounded ring topology on Q is determined in this way, thus answering a long-standing
question in the theory of topological rings. As early as 1948, Kaplansky [6, p. 813]
posed a special case of the problem: What are the topologies of type ¥ (which are
necessarily locally bounded) on Q? This problem was solved by Kowalsky and
Diirbaum [7] and Fleischer [5], who showed that a topology of type ¥ on any field
was given either by an absolute value or a valuation. Results of Correl [3] in 1958
yielded a solution of the problem for the case where the given locally bounded topo-
logy was a field topology (that is, multiplicative inversion is continuous) for which
the open additive subgroups form a neighborhood basis at zero; in that case the topo-
logy is determined by a finite subset of P. The general problem is implicit in Muty-
lin’s work [8] in 1966. He showed that any nondiscrete locally bounded topology
on O not described by a subset of P had to be stronger than the ordinary archimedean
topology (that corresponding to o) but weaker than the topology determined by
a proper subset of P’. The general problem is also explicitly mentioned in [4].

A nucleus of a topological ring is a neighborhood of zero. A subset B of a topolo-
gical ring is bounded if for every nucleus ¥ there is a nucleus W such that BWcV
and WBcV. A topological ring is locally bounded if there is a bounded ‘nucleus.
Locally compact rings are locally bounded, since a compact subset of a topological
ring is bounded; normable topological rings.are also clearly locally bounded.

A subset U of a field K is an almost order if 0,1eU, -U = U, U #K,
UU = U, a(U+U)S U for some nonzero ae K, and K = {ab™': a,be U, b # 0}.
If 7 is a nondiscrete locally bounded ring topology on K, then there is"an almost

* ‘Written while the first author was in residence at Duke University.
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order U on K that is a bounded nucleus for 7, and {Ux: x % 0} is a fundamental
system of nuclei for &, Conversely, if U is an almost order on K, there is a unique
nondiscrete locally bounded ring topology on X for which U is a bounded nucleus
[1, Exercise 20, p. 120; 7, Theorems 5 and 6].

For each p e P, let @, be the field of p-adic numbers, Z, the ring of p-adic
integers, |...|, the associated p-adic absolute value. Let @, and Z,, both denote the
topological field R of real numbers, let |...[,, be the ordinary archimedean absolute
value and 7, the ordinary archimedean topology on Q. For each subset R of P’,
let O(R) = {xe Q: |x|,<1forall pe R}. If R is a proper subset of P’, O(R) is clearly
an almost order on Q; we define 7y to be the unique locally bounded ring topology
on Q for which O(R) is a bounded nucleus. Since O(P") ={0,1, ~1}, we also
define p to be the discrete topology on Q. Note that 77, is the trivial topology
whose only open sets are @ and Q.

‘We shall prove that the only locally bounded ring topologies on Q are the
topologies 7 where Ris a subset of P’. In particular, the only Hausdorff, additive
generated, locally bounded ring topology on @ is 7, (a ring topology is additively
generated if there are no proper open additive subgroups). Our proof will depend on
the following two results of Mutylin:

LemMa 1 -[8, Lemma 10]. If & is a Hausdorff, locally bounded ring topology
on Q that is not stronger than I ., then every nucleus for F contains all integral
multiples of some nonzero rational.

Lemma 2 [8, Corollary 5). If 7 is a nondiscrete, locally bounded ring topology
on Q that is stronger then T ,, then for some prime p, I is weaker than T pi ..

Actually, Lemma 1 marks the halfway point in Mutylin’s proof that under the
hypotheses of Lemma 1, 7 is 9 for some nonempty subset R of P. This result, of
course, is a consequence of our theorem. -

For each nonempty subset R of P/, we define 4y to be the local direct product
of the topological rings (Q,),.z With respect to the open subrings (Z,),qx. Thus

Ag = {(x,) e q{Q,,: x,€ Z, for all but finitely many p € R}, topologized as follows:
pe
Let By =h]le »» topologized with the cartesian product topology; we topologize 4 by
€

declaring By to be a nucleus. Thus topologized, 4y is a locally compact ring. We
define dg: Q—Ag by 4dr(r) = (7,)per, Where r, = r for all p e R. Note that if SER,
then the canonical injection from Ag into Ap (defined by (x,),es+(Vp)pan. Where
Yp=2x,if pe S, y,=01if pe R~9) is a topological isomorphism from Ag onto
a subring of Ag. Hence we shall consider 4g a subring of 4, by means of this identi-
fication. -

The following lemma is an immediate consequence of the Strong Approxima-
tion Theorem (see, for example, [4, Theorem 9]).

. Lemma 3. If R is a nonempty proper subset of P’, then A r I8 @ topological isomor-
phism from Q, equipped with T, onto a dense subring of Apg.
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TueoreM L. If 7" is a Hausdorff, locally bounded ring topology on Q that is weaker
than T g for some nonemply proper subset R of P', then I =T g for some nonempty
subset S of R.

Proof. Let E be the completion of Q for 7. Our hypothesi's implies that Q; 7 is
a topological algebra over Q; 7 x. Identifying the completion of Q; 7 g with Ay and
extending by continuity the scalar multiplication of the (Q; T g)-algebra Q; 7 to
Apg x E, we conclude that E is a topological algebra over Apg under a scalar multi-

plication . satisfying
:

® Ag(r) .5 =rs
for all r, s Q.
For each p € R, let in, denote the canonical injection of Q, into Ag, and let
e, = in,(1). Thus in,(Q,) = 4ge,. Clearly
@ iny(r) = 4r(e,

for all re @, p € R. By restricting scalar mulﬁplication to (dge,) x (e, . E) and re-
placing Age, with Q,, we obtain a continuous scalar multiplication ¢, from
Q,xe,.Einto ¢,. E defined by

Apx = in, (A . x

forallAe Q,, x €e,. E. With scalar multiplication so defined, e, . E is a topological
algebra over Q,, since if xee,. E, then x = e,.x, whence

Igyx =in,(1) . x = 4dg(1)e, . x = ¢;. X = X.

Let S={peR: e, . E£(0)}. If ¢,.1=0, clearly e, . @ = (0), whence
e,. E=(0), since -Q is dense in E and $0, by the continuity of x+e,.x,¢e,.Q is
dense in e, . E. Thus p & S if and only if g .1 #0. Restricting scalar multiplication
to Agx E where Ag is canonically identified with a subring of 4g, we conclude that £
is a topologicél algebra over Ag, since for each x € E,

x=dp). x = (As(D+ T ). x =4 x+ ¥ ey x=4(1).x.
peR-S peR—-S

In particular, we conclude that S # . More generally, if re @ and if xe E,
® Ag(r) . x = 45(r) . x

since dg(r) . x = 4z . (4s(1) . %) = Ap(P45(1) . x = 45(r) . x. For each pe S and
each re Q,

[©) ralep- 1) =e,.r1

since re(e, . 1) = 4z(Ne, . (e, . N=4dr(rle, . 1=¢,. (4r(® . 1) =e,.rby (1) and (2).'
Consequently, the one-dimensional subspace of the @,-vector space ¢, . E generated
by e,.1 contains e,. Q. But Q,(e, . 1) is closed in e, . E and e,. Q is dense in
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e, . E; thus {e,. 1} is a basis of the @,-vector space e, . E. Consequently, Pyl
+Ape,. 1) is a topological isomorphism from @, onto e, . E. i

Let U be an almost order defining the topology of E. Then by continuity,
03 e, . U) is a bounded, multiplicatively closed subset of @, and hence is contained
in Z,. Let G: E—d4g be defined by

G(x) = ((P;l(ep . x))pss .

For each x € E, G(x) does indeed belong to Ay, for as (e,),es 15 summable in A,

by continuity (e, . x),es is summable in E, whence for all but finitely many

"peS,e,.xeU; but if e,.xeU, then ¢,.x=¢;.x=¢,.(¢,.x)€e,. U, 5o

@; (e, . x) € Z,. For cach pe S, x¢, (e, . x) is continvous from U into Z,;

hence the restriction of G to U is continuous from U into [[.Z,. By definition of the
pes

topology of 4 and since U is a nucleus, therefore, G is a continuous homomorphism
from E into Ag.

Let F: As—E be defined by F(1) = A . 1. Then G o F: Adg—Ag is continuous and
agrees with the identity mapping on 44(Q), for if r € Q, then Py l(el, L) = r for all
peS by (4), whence

® G(r) = 45(r)

and therefore (G o F)(4s(r)) = G(4s(9) . 1) = G(dr() . 1) = G@) = 45(r) by (3).
Consequently, as A5(Q) is dense in 4y, G o F is the identity mapping of Ag.

Similarly, F'o G: E—F is continuous and agrees with the identity mapping
on @, for if re Q, then by (5), (3), and (1),

Fo@)r) = F(ds(r)) =4s(r) . 1 = Ax(’) . 1 = 7.

Thus F o G is the identity map on E. Therefore G™* = F, so G is a topological iso-
morphism from E onto 4s satisfying &(r) = Ag(¥) for all re Q. Thus 7" = J.
THEOREM 2. The only locally bounded ring topologies on Q are the topologies Ty
where R is a subset of P'. In particular, the only Hausdorff, locally bounded, additively
generated ring topology on Q is .. Thus R~ R IS an isomorphism from the lattice
of all subsets of P’ onto the lattice of all locally bounded ring topologies on Q.
Proof. Let 4 be a Hausdorff, locally bounded ring topology on Q. First,
assume that " is not stronger than 4. By Lemma 1, if Uis a nucleus for 7,
then U=Za for some nonzero rational «; but Z« is open for 7 since Z = O(P)
is open for 5. Thus 7 is weaker than 7~ p- By Theorem 1, therefore, the assertion

follows. If & is stronger than 7, the assertion also follows from Lemma 2 and
Theorem 1.

COROLLARY 1. The only locally compact rings containing. Q densely are the

rings Ag, where R is a nonempty proper subset of P’, and the ring Q equipped
with the discrete topology. B

Proof. If 4 is a locally compact ring properly containing @ as a dense subset,
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then A is the completion of Q for its induced topology, which is necessarily locally
bounded. The result therefore follows from Theorem 2. .
The following corollary generalizes a theorem of Mutylin-[5, Theorem 3].
COROLLARY 2. If 4 is a Hausdorff, complete, locally bounded ring containing Q,
then either Q is discrete, or the closure of Q is Ay for some nonempty proper subset R
of P'. In particular, if A is a Hausdorff, complete, locally bounded field of characteristic
zero, either Q is discrete, or the closure of Q in 4 is either R or Q,, for some prime p.

The second statement follows from-the first, since 4 contains proper zero di-
visors il R is a subset of P’ containing more than one element.
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