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"Concerning the Whitehead Theorem for movable compacta
by )

M. Moszyaska (Warszawa)

Abstract. There was a gap in the proof of the Whitehead Theorem for movable compacta
(Th. 4.3, [7]). In this paper the uniform movability of a shape map is defined and the Whitehead
Theorem for uniformly movable shape maps is established.
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The Whitehead Theorem for movable metric compacta was established in [7]
(Theorem 4.3). However, as was noticed by Sibe Mardesi¢, there was a mistake in
the proof because of an error in the statement 6.6 of [5] (in that proof 6.6 was used
on page 261 of [7]). In 6.6 of [5], p. 144*3, &* should be replaced by 4% — the,
full subcategory of uniformly movable inverse systems of groups.

The main purpose of the present note is to correct- Theorem 4.3 [7] (here Theo-
rem 6.2). Another form of that theorem was established in § 5 [7], Theorem 5.2, [7].
However, in 5.2 [7] the assumption of X and ¥ should also be replaced by the assump-
tion of Theorem 6.2.

Independently James Keesling filled the gap in the proof of 4.3 {7] without any
additional assumption (to appear in Fund. Math.). However, he makes essential
use of the metrizability of X and Y, while the method presented here seems to be
applicable 10 non-metric case.

1. Uniformly movable maps of inverse systems. Let us consider a category A
with an equivalence relation ~ in Mory (X, Y) for any paxr of objects X, Y. Assume
that ~ satisfies the condition

f~f ngm~g' = gf~gf’

“ whenever these compositions exist.

Let & be the category of inverse systems in o over closure finite directed sets,
and let A% be the quotient category with respect to the following relation
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of similarity ~ (see [5]). Take X = (X, p, 4) and Y= (¥, 45, B8) and let
I f eMorys(X, Y), = (0,fp), f' = (¢'.f5). Then

!
frf'e N N S ~firem-
DI a2 (8,00

For any age A let
A = {ye d: azay} and X = (X,, p¥, 4%,
According to [S], the system X is said to be wuniformly movable in 4™ whenever

there exist

1° a collection of constant functions (4*: A“Y—A), .4, such that y® i
increasing with respect to oy and 3™ () = 85> a, for o e 44,

2° a collection of morphisms in 2%, (K*: Xz —X®), . such that

) ) JACO I (X(ao), ha(zlm))
and
(i) PO ~p for By,
»
i.e., the diagram
Xz,
AN
Fag 4 commutes up to ~,
Xmoe_—Xzz
S0

%0

The collection (h“®),, will be referred to as 2 uniform movement of X. Thus, for a uni-
form movement (h®?), . the diagram

Xz o
0.
;.(ﬂv)l \"\w‘
o

X, ~—X,

Fa

commutes up to ~ for every o' >o.

Omitting this assumption (i.e. assuming K to be only a pseudomap in A%, sée [7]
P 239) one gets a definition of movability in 2% . In this case the-collection (h(““”)m 4
will be referred to as a movement of X. ’

Considelr now two (uniformly) movable inverse systems, X = (X, p¥, 4) and
Y= (Y;,45,B), and a morphism f = (p,f): X—=Y in #*%. Let ()0 and

(kP 5 be (uniform) movements of X and ¥, respectively. Define the formula ¢
as follows:

B((m), f, (&) = A A VoA [fP03)9%=>f}1h§:(°ﬁ))1)g‘o"‘k%ﬂ‘))ﬁ%l’;(?im]

" DF 80 w02 0(p0) aza,0(ho) 62 o
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ot ¥ |
Koy X3, XoGye— X,
Ip lfA '
il', M Bo
4 (B0 fo
8

A morphism f: X—Yis said to be (uniformly) movable whenever there exist (uniform)

movements (h*?),, . 4 and (k%), . 5 for X and ¥, respectively, such that & ((k), f, (k)).
Define the formula &,, as follows:

Pul8.1, (R) = Nloo = 9(B)= VA fyhGhps, ~Ki oyl

~

Bo aao,0(fo) £ Fo

A morphism f: X—Y is said to be weakly (uniformly) movable whenever there are
(uniform) movements (h“?) and (k) of X and Y such that 3, ((R), £, (K)).

The class of uniformly movable maps will be denoted by UM, the class of weakly
uniformly movable maps — by WUM. Obviously, UM cWUM.

“71.1. ProrosiTiON. Let (K., (k)05 and (1), . be uniform move-
ments of X, Y and Z, respectively, and let f: X—Y and g: Y—Z be morphisms in A%.
Then

(W), f, 10) A ,((K), g, (D)= (W), af, (D) .
Proof. Take X =(X,,p¥,4), Y=(Y¥,,4i.B), Z=(Z,r,C) and
f=A{o.fp), 9=0,g,) Let )
((m).f.(R) and  &,((K),9,D).
Then, given By € B and ay3 ¢ (B,), there is an a8, (B,) such that

e)] Tohe v~ fpubigey  for  B=Bo, 0 (f)2oto -
Given a y,e C and f, = W (yo), there is a B’ =P, ¥ (9) such that
@ GG~ e for  ¥=v0.

To prove ®((h), gf, (D), take a y, € C and let ag >y (70). Take By = 1 (y,). There
is a B'2 B0, W) satistying (2) and there is an a>d,, 9(Bo), p(8") satisfying (1).
Let yzy, and oy (y)=wo. Then, setting f = Y (y) in (1) we get

) (B0) £ % g JBO) £ 0B g o p(Ba) B o
(gyfw(v))hs,:/?(v)pguNgvkw(g)fﬂop:v(ﬂo) = Gk e 5ol pis Pown ™ IvRy 5 Sy Py

agfia G0 pga £ & Yp% o~
~ lﬂsyn)gru qﬁ(?u)-f}l'p;(ﬁ’l'vl?yo (g)'uf"/'()‘o))plllw(%) .
Thus the proof is complete. W

Let us prove

1.2. ProPOSITION. Let X and Y be two uniformly movable inverse systems over
the same (A, =) and let f = (@, f): X—>Yand g = (, g,): Y=X be mutually inverse
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isomorphisms in. A% with @(@) 2o and (@) =« for every o. Then for every uniform
movement (h“),, of X there is a uniform movement (k("")),,o of Y such lhar‘

(W), £, () and  B((K), g, (B).

Proof. Take X = (X., 05, 4), Y= (Y5, g}, 4), f = (@,fp) and g = (. 4,);
let ¢ (@)= a, ¥(@)>a for every ae 4, and let gf~1y and fg=1ly.

Let (R“9),, ., be 2 uniform movement of X.Since ¢ is aright inverse of f, follow-
ing the proof of Theorem 3.9 [5], we can define a uniform movement (k(ﬂD))/m gol Y
by the formulae ‘

1) kP =, kfD), By = x"O(B) —:flﬁ(&o), el :ff/;hfﬂ“(‘}}’)g;o for [z po,

where ¢ = 0 (8;) and & = ¥“(e).

First, let us prove &,,((h), f, (k). Take B, and let ag = @(B,). Since g is a left
inverse of f, there is an o8&, ¢ (%) such that
V)] - g;cftp(ao)pi;w(;o) sz} .
By (1) and (2), for every =,

kfiﬂﬂ)f}op;('ﬁn) = fhhg:z%))ggufw(zo)pzw(;o) Nﬁihg‘a‘(‘}’))p;‘) 4

and thus &,((h), f, (k). )

Now let us prove & ((k), g, (). Take ot and let B2 (o). Let f = B, and

: . Df

let o>0,. Since g is a left inverse of f, there is an & >a, @i (x) such that
® ‘ &S wiyPigwy ~ P -
Since p(a)=o', we get -
@ u e Pipbe) ~p2r .
By (1) and (4)

B oy £ o) ’ N
kD5, = 9ufyologtediads, ™ Gul s Pogia) Hapter9iathy
@)l . b
~ PZW ¢ hfpa;(a‘)gao%goNhs:“)guoqﬁ(un) ‘

Thus @((k), g, (k). @
Let us prove

1.3. PROPOSITION. Let faf': X—Y and let (h°9),,_; and (k%) 5 be uniform
movements of X and Y, respectively. Then

2.1, @)=\ B(),1, ®).
(),

e ©
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Proof. Take f_= (¢, fp) and f' = (¢', f3). Let B((h), f, K), i.e.,
. A A V o Alle@ze = il oe ~ K 5, ] -

"o 202 ¢(B0) 42 gy, o (o) B2 Fo

We are going to define a uniform movement (h'“”), satisfying & ((h'), f/, (K)).
Since (4, ) is a directed set, given a pair of functions (¢, ©") we can find a function
§: A—A satisfying the following condition:

)] sz (Bo) = 8(ap) =0, ¢ (Bo) -

Since (4, =) is closure finite, § can be made increasing (see Lemma 5 of [3]).
By (2)‘ X(l’(ﬂo))?x(ﬂm)_ Let

3) o = X'(ao)(w) = X(d(ao))(a)’ h;(ao) = hi"’)pi” for  aaq
Df Df *

and let

/(@) :f (X’(da)’ h'.‘f"’) .

Notice that k@0 is a morphism in #*; indeed, for o >
p:ph;fnzo) — PZ'hL?O)pZZNh;W)p;s — h;(an) .
The maps h'®, o, e 4, form a movement of X; indeed, for o=y
Do = pLhER Pl = plo.
It remains to show that & ((k"), f', (k)). Take B, & B and let oy ¢’(B,); then, by (2),
3 (ag) =@ (Bo). Thus, by (1), there is an a4y, »(B,) such that
@ TG0~ ooy tor every f2fo, 9 (B>,
Since f'af, there is an o’ =@ (By), @' (Bo) such that
ol ' -
©) SioPartior ~SFoPoifo) -
Of course, we can assume
(6) oz, o .
Take fizf, with @(B)Zao; there is an o' Z¢(B), ¢'(B) such that
. TiPony~ToPs -
Applying (3)-(7), we getl
p , ” . o)
f/;”;("f'/’:))l’%o = FahSh PE. ~ Fy P PP ~ F PP,
4 S (Bo) £l o
~ TSP ~ I 5, D ~ el oD iy -

Thus @ (1), £, (k). m
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1.4. COROLLARY. If frf' and fe UM then f e UM. W

As a consequence of 1.2, 1.4 and the statement 3.8 of 5], we get. "

1.5. COROLLARY. Let X and Y be two uniformly movable inverse systems over A,
If g: Y—X is an isomorphism in A%, then g e UM.

Proof. Let g = (¥, g.): Y—X be an isomorphism in Z"%. By 3.8 of [5], there
isamap g’ = (¥, g,): Y—X such that g'~ g and y/'(&) =« for every o. Obviously ¢’ is

an isomorphism again. By 1.2, ¢’ is uniformly movable; thus, by 1.4, g is uniformly °

movable as well. &

Let us establish the following law of composing with isomorphisms.

1.6. ProPOSITION, Let X and X' (Y and Y') be two inverse systems over A
(over B)and let i': X'~ X and j: Y~Y' be isomorphisms in A%, Then for every f: X—Y
the following implications hold:

(a) feEWUM = fi' e UM,

(b) feUM = jfe UM.

Proof.Letj: ¥'—+Yand i: X-—X' beinverse isomorphisms for j and i’. By 3.8
of [5] together with Corollary 1.4, i can be assumed to be of the form i = (t, 1)
with ©(®) =« for a € 4; the same holds for i, j and j'.

(a) If fe WUM, then there are uniform movements (h*),, and (k¥®),, for X
and Y such that @,((h), f, (k)). By Proposition 1.2 applied to the pair (i, i'), there
is a uniform movement (h'*), for X such that ®((h)',i', (). By L.,

(), ¥, (W) Ad, (1), f, (K))=D((W), fi', () .
Hence fi' ¢ UM.

(b) If fe UM, there are (h(""ﬁ)‘,,l7 and (kK%¥%), such that & ((h), f, (k). By 1.2
applied to the pair (j,j"), there is a uniform movement (k’(""’)ﬂrj of Y such that
2,((k).J, (k). By L1,

B((h). £, () A B, (), , (K))= B ((h), jf, (K')) .
Thus jfe UM. m
As a direct consequence of 1.6 and 1.4, we get
1.7. CorOLLARY. Consider the diagram

x-Isy

,l l’

X’ g
£ Y

iand j being isomorphisms in &% and X and X' (Y.and Y') being inverse systems over
the same A (the same B).
If the diagram is commutative up to =, then

feUM = ffeUM. m

@ ©
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Notice that
1.8. Any covariant functor n: (', ~)= (A, ~) preserves (unifornyy movability

of morphisms, i.e., for every fe Mory«(X, Y), if fis (uniformly) movable in " *
then n(f) is (uniformly) movable in "%, m "

2. Uniform movability of kernels. We are now interested in a category with
kernels, A", Fix a c}irected set (4, 2). Let ~ be the identity relation =, and
let :x/"" = % and &A™ = A% (see[5]). By Proposition 3.3 of [7l, #™* and ™ are
again categories with kernels and for any morphism f = (1,,£): X—Y in ¥
Ker fis of the form

Kerf=(N.j), where N =(N,n,4), j=(,j) and (N, j) = Kerf,.

We shall use the notation kerf for N. Let us prove

2.1. PROPOSITION. If f is weally uniformly movable in A'*, then ker £ is uniformly
movable in A", '

Proof. Take ,X = (X, p¥, 4), Y= (Y, g%, A) and let Kerf = (N, j),
kerf =N = (N,,n;, 4) and j = (1,,7): N>X. By 3.3 Section 1, [7], (N,,7,)
= Kerf,. Then ‘ ’

o
n

F o
Ny N,
(1)  the diagram Jo l lju’ is commutative for o’ >a .
X, P e X, o
L

Since fe WUM, there are uniform movements (R, 4 and (k)4 for X and ¥,
respectively, such that

% *
)] ANV N\ LS = K0, P
20 Ixz‘ 2o *Fd0
. h;do) I‘Zf
Xyt Xy 2 X
A4 s

Yy

R el £
PC] %o
o

Sinee (h®)),,. 4 is & uniform movement, it follows that

(o)
~ h
R 41 4 . N
(3)  the diagram ”ﬂol Ny is commutative for «>a«,
Xy < X,
X’l

o0
4 — Fundamenta Mathematicae t. XCIT
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and

'~
%0

(%0}
. #lo0) < f ive | 'S
(4 - the diagram ¢ is commutative for o’ Zaz 0.

;’X,i o Xu’
Py

Take an o € 4 and let 6(c) = af. By Lemma 5 of [3], § may be assumed Lo be
increasing. Take aza, and cons;:;er the map
hf,"“i ';ong: Nap-X,.
Since Nj, = kerf,, we get by (1) and 3]
i) = KR = KO Fap i = KOl

= Koz o = oxgy,

Thus, there is a map
18 NN,

. such that
) G = KOs

Consider the diagram

By (1), (4) and (5)

o .. ) L Lo,
P = PG ) = PR S = WS =

Since j, is a monomorphism, it follows that
©6) ) = o)
Let
"o = 8(ug) for azug

and let

Pl (Q(ao)’ ,.S‘uo)) .
Df

@ ©
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By (6), r® is a morphism of 2™ By (1), (3) and (5)

. S .o o aX . o
Jad Ml $) = Po(jare) = PP JeS = Pafen = oty -

Since j,, is a monomorphism, it follows that

*
M nare® =gl

whence (r*),,.4 is a uniform movement of N. ®
3. Relative monomorphisms. Let /', be a subcategory of a category # and
let fe Mory(X, Y);

[ is @ monomorphism in (A", Ho) = N [fo=f =v=1].

Df ZeObyr v,0"eMory-(Z,X)

We are going to replace some statements of [5] and [7] concerning monomor-
phisms by stronger statements concerning relative monomorphisms. First, state-
ment 1.5, Section 1 of [7] can be replaced by the following

3.1. PROPOSITION. If f is @ monomorphism in (A& , A y) and kerf€ Oby, then
kerf = 0. ) :

Proof. Let Kerf = (N,j). By the assumption, N e Oby, and f is a mono-
morphism in (A, o). Since j, wyx € Mory(N, X) and fj = wyy = foyy, it follows
that j = wyy. Take an arbitrary ¢: N—N. We have jo = oyx¢ = Oyx = jOyn,
where j is a monomorphism; so ¢ = wyy. Thus N = 0. M

Secondly Proposition 2.3, Section 1 of [7] can be replaced by the following

3.2. PROPOSITION. Given an exact diagram
T & 8T,
X>Y>Z>X =Y

in a weak additive category A with zero objects, let © be an epimorphism in A and ©*
a monomorphism in (A , A o). If kert' € Oby, then Z = 0.

Proof. Since 7’ is 2 monomorphism in (&, # o) and kert' € Oby,, it follows by
Proposition 3.1 that kert’ = 0 and thus Kert" = (0, wpx.). Since © is an epimor-
phism, it follows by 1.6, Section 1 of [7] that Cokerz = (0, wyg). Then, by 1.7,
Section 1, [7], Im7 = (N, j,), J, being an isomorphism. By the exactness of the
diagram, Ker¢ = Imz = (N,, jp), and thus by 1.8, Section 1, [7], Im¢& = (0, wogz)-
By the exactness, Kerd = Imé& = (0, gpz) and Imd = Kert' = (0, wexs. Hence,
by 2.2, Section 1 of [7]}, we get Z=0. M

Now consider the category o™ of inverse systems in % and the subcategory A
of uniformly movable inverse systems. Let A* and A% be the corresponding quotient
categories with respect to the relation & in Mory. (see [5]). Corollary 6.6 of [5]
(as well as 4.3 and 4.4) can be replaced by the following
40
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3.3. PROPOSITION, Let fe Mory(X, Y) and let f = lim f.
(1) If YeObgs and fis an epiniorphism in A then [f] is an epimorphism in A'*,
(2) Iffisa manomo‘rphism in A then [f] is a monomorphism in (A, A%).
Proof. See the proofs of 4.3 and 4.4 of [5]. &

4. Uniformly movable maps of ANR systems. Let us now consider the category %
of pointed pairs of ANR’s with continuous maps as morphisms and the homotopy
relation =~ as ~. Identifying (X, xo) with (X, {xs}, xo), We can consider any (X, x,)
as an object of #. Let us prove the following

4.1. PROPOSITION. Let (Z, X, xo) be an inverse system in % and let i: (X, x,)
~(Z, x,) be the inclusion map. If (Z, X, x,) is uniformly movable in %% then i is
weakly uniformly movable.

Proof. Let (Z,X, xo) = ((Z,, X, %), 7%, A) and let p§ = r¥}X,.. Since
(Z, X, x,) is uniformly movable, there is a uniform movement (l::(““)),u of (Z,X; x,),
k) = (@), &), Define

KO (X, x5)—(X, 50 and k¥ (Zg, x3)—(Z, x0)™
by the formulae
B = (@, pey  and K0 = (@), o)y |
where
BE(x) = BS() for xe Xz, and k&) = kKOO) for ze Z;, .

Bvidently (K*?),, and (k*»),, are uniform movements. Let us prove &.,((A), i, (K)).
Take an o € 4 and let a = &,. Then for every f>«, and for every xe X,

g p% () = Kz, p% (%);
thus all the more
iphf® pz‘?o o ks p:‘?o

ie, ®,(h),1, (k). B

The notion of a mapping cylinder introduced in [4] has recently been modified
by Mardegi¢, [2]. Contracting each segment (x,)x I in X, x I to a point, he obtains
a mapping cylinder of a map of pointed ANR sequences. This mapping cylinder
has the same properties in the pointed category as the cylinder defined in [4] in the
non-pointed category; i.e. the inclusion j: Y, Y0)—(Cy, x,) is a homotopy equiva-
lence and jf o i, where i: (X, xo)~(Cy, x8) is the inclusion.

4.2. PROPOSITION. Let Cy be a mapping cylinder of @ map of ANR sequences,
S (X, x0)=(Y, yo). If (Cy, ¥, x0) is uniformly movable then feUM.

Proof. Taketheinclusions i: (X, %0)—=(Cy, xg) and j: (¥, po)~(Cy, x0). By 4.1,
i€ WUM. The inclusion j is a homotopy equivalence. Let j be a homotopy inverse

e ©

icm
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of j. Since ff ~ i, we have f= ij’, where j' is an isomorphism in #% and i e WUM.
Thus, by 1.6, '€ UM, whence, by 1.4, fe UM. m
Remarks. 1. Propositions 4.1 and 4.2 apply automatically to non-pointed spaces.

2. These two propositions hold for inverse sequences of arbitrary topological
spaces, not necessarily ANR’s.

5. The Whitehead Theorem for uniformly movable maps of ANR sequences.
Let ¢ be the category of groups, 4 — the category of pointed sets, let ’5*(?*) and
E*(%") be corresponding categories of inverse systems (their quotient categories).
Let @3 and @3‘ be full subcategories of uniformly movable inverse systems.

5.1. Taeorem. Let f = (14, f): (X, x0)—(¥, y,) be a uniformly movable map of
inverse sequences of pointed arcwise connected spaces. Let f: (X, X0)-7,(Y, ¥o)
be the induced morphism of n-th homotopy systems. If L£] is a monomorphism in
@&, &% for n= 1,..,n5, an evimorphism in €* for n=1 and in * for
n=2,..,n0+1, then n,(Cy, X, xo) is a zero object in €* for n=1, ..., ny+1.

Proof. Let i: (X, x0)—(Cy,x;) be the inclusion. By the assumption on S it
follows that
(1) [i,] is a monomorphism in (&*, &%) for n =1, <y Mo and

8* for n=1,

[£,] is an epimorphism in {_
" g* for n=2,.,m+1. *

Let n = 1. By 1.2, Section 2 [7], the diagram

[#11
D, (X, xo) —s 7, (Cy, xp) E"l)nl(cfa X, xo)LalLo

is exact. Since, by (1), [i,] is an epimorphism in Z*, by 1.9, Section 1 [7] it follows that
(2)  mi(Cp. X, xo) is a zero object in ™,
Let 2<n<ny+1. By 1.2, Section 2 [7], the, diagram

. . [&n] [2n1 Lin-13 *

9": TE,,(X, xo)—”_;nn(cfa xo)—'>7cn(cfa X’ xo)——>7r,,._1(X, xo)ﬁnu—I(Cfa xo)
is exact. Since fe UM and i ~ jy, it follows by 1.4 and 1.6 that i UM. Thus, by 1.8
[i»-;] € UM, whence, by 2.1, ker[i,_;] € Obgs. By (1), [i,] is an epimorphism
in * and [{,_,] is a monomorphism in (%¥, %%); thus Proposition 3.2 implies
(3) m(Cy, X, x,) is a zero object in ¥*,

By (2) and (3), m,(Cy, X, x,) is a zero object for n =1, ...,n,+1. B

As a consequence of Theorem 5.1 let us prove

5.2. THEOREM. Let f = (1y, f): (X, xo)—(¥, ¥o) be a uniformly movable map of
inverse sequences in the PL-category 2, all the spaces being connected and all the bonding
maps being “onto”. Let ny = max (l+dimX, dimY)<cc. Let f, be the induced
morphism of n-th homotopy systems. If [f,] is a monomorphism in ((Tf*, @y for
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n=1,.., 0, an epimorphism in @* for n=1 and in &* for n=2,..,n then f
is a homotopy equivalence. :

Proof (*). By Theorem 5.1, m,(Cs, X, Xo) = 0 forn = 1, ..., no+1. Thus, by
Theorem 2 of [2], f is a (pointed) homotopy equivalence. W

5.3. Remark. By 4.2 the assumption fe UM in Theorems 5.1 and 5.2 can be
replaced by the assumption of uniform movability of (Cy, X, Xo).

Notice that Propositions 4.2, 5.1 and 5.2 remain valid if we replace the map
of inverse sequences and its mapping cylinder by a usual map of arbitrary inverse
systends and its usual mapping cy]inder (see [7], p. 253).

6. The Whitehead Theorem for uniformly movable shape maps. Consider two
pointed compact Hausdorff spaces (X,x,) and (Y,yo) and a shape map
[f1: (X, x0)— (Y, o) (see [1].

[f1 is uniformly movable < there exists a uniformly movable f' e [f] .
Df

Corollary 1.7 implies

6.1. PROPOSITION. A shape map [f] is uniformly movable if and only if every
representative of [f] is uniformly movable in 73 | .

Let us establish the main result:

6.2. THEOREM. Let (X, xo) and (Y, yo) be two pointed metric continua of finite
shape dimension and let ny = max(1+Fd(X, x,), Fd(¥, Yo)). Let [f1%: (X, xg)
—71¥(Y, yo) be the homomorphism of n-th shape groups induced by a uniformly movable
shape map [f]: (X, x0)—(¥, yo). If [f ¥ is an isomorphism for n<nqg and is an epi-
_morphism.for n = ng+1, then [f] is a shape equivalence.

Proof. By the argument used in [7], pp. 260,-261*, (X, x,) and (¥, y,) are
inverse limits of ANR sequences (X, xo) = ((X;X,), e, N) and (¥, y,)
= (Y, 7),9%,N), X, and ¥, being connected polyhedra, dim X, <ng—1,
dim ¥, <ng, and p% and g% being onto.

Take a representative f= (Ly, £): (X, ¥o)—+(¥, yo) of the shape map [f] and

let f,: (X, xo)~m,(¥,y) be the induced -morphism of nth homotopy systems.
We have

TE;‘:(X: x()) = liL-n-ﬂ:n(X’ xo) n:( Y: yO) = ]j.m.nn(ya yO) .
Take [f]* = lmf,: n¥(X, xp)=n¥(Y, y,). By the assumption
(1)  [f1%is a bimorphism in % for n<n, and is an epimorphism in & for n = ny+1.
Thus

and

@ [f]¥ is a monomorphism in € for n<ng, and
. . . | for n=1
f1¥ is an epimorphism in ’
[/ . ep P 4 for n=2,.,n05+L.

(O] Ii\pplying Theorem 3.6 of [7] instead of Theorem 2 of [2], we prove f; X-»Y to be a homo-
topy equivalence but not necessarily pointed (as in Theorem 3.7 of [7]).
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By 6.1, fe UM, and thus (¥, y,) is uniformly movable and therefore (Y, yo) € Obgp.
Thus, by Proposition 3.3, we get

(3 [f]is a monomorphism in (%*, &%) for n =1, ..., n, and

2* for n=1,

is an epimorphism in {
£ P p {{%* for n=2,..,n+1

Hence, by Theorem 5.2, fis a homotopy equivalence, and thus [ f]is a shape equiv-
alence. ® ,

Tn applications of Theorem 6.2 the following condition sufficient for a shape map
to be uniformly movable may be useful.

6.3. PROPOSITION. Let (X, xo) and (Y, yo) be metric pointed compacta. If the
shape map [f]: (X, x0)— (¥, o) has a representative f* (X, x0)->(Y, yo) with movable
(Cy., X, x0) then [f] is uniformly movable.

Proof. As proved by S. Spiez [8], every movable inverse sequence is uniformly
movable; thus (Cy, X, x;) is uniformly movable. By 4.2, fe UM, whence [f] is
uniformly movable. B

Remark. The shape category in the sense of Mardegi¢ restricted to metric
compacta is known to be isomorphic to the fundamental category in the sense of
Borsuk. Thus, using 6.5 of [6], we can express Theorem 6.2 equivalently in terms of
fundamental sequences.

The following problems remain open:

ProBLEM 1. Does the movability of a map f of ANR sequences imply the uni- -
form movability of f?

ProBLEM 2. Do the notions of UM and WUM differ essentially?

ProBLEM 3. Does the uniform movability of the inclusion i: (X, x0)—(Z, xo)
imply the uniform movability of (Z, X, xo)?
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