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Homotopy properties of pathwise connected continua
: by
* W. Kuperberg and A. Lelek (Houston, Tex.)

Abstract. Some continuity invariant properties and some related homotopy properties of
pathwise connected continua are investigated. For each pathwise connected continuum, a certain
subgroup of the Bruschlinsky group is distinguished which is known to carry an invariant of con-
tinuous onto mappings, and a Vietoris-type mapping theorem for this subgroup is proved. Also,
six classes of continua are considered, each of the classes being invariant under continuous mappings,
and some relations between the classes are established.

In [7], the first author introduced, for each pathwise connected space X, a group
A (X) that seems to be useful in certain problems involving transformations and con-
tinuous images of some spaces. In the present paper, we study pathwise connected
continua X with 4(X) = 0, and we prove, among other things, that each such
a continuum is a continuous image of a one-dimensional continuum of the same type
(see Theorem 4.2 below). Our proof depends essentially on a strong result (see

- Theorem 4.1) ofsR. D." Anderson who has kindly provided us with an outline of the

proof of his result; it is published here for the first time. We also show that an ana-
logue of the Vietoris mapping theorem holds for the group A(X) (see Theorem 3.3).

Throughout this paper, by a continuum we understand a connected compact
metric space, and a mapping always means a continuous function. Let S denote the
unit circle, i.e. the set of all the complex numbers z with |z] = 1. Given a space X,
we denote by #'(X) the Abelian group of all the homotopy classes [¢] of mappings
¢@: XS with the group operation defined by [p]+ [{] = [p -¢], where (¢ ‘¥)(x)
= @(x)y(x) for x e X. Thus n*(X) is the so-called Bruschlinsky group of X, If
f: X—Y is a mapping, we have an induced homomorphism f*: n'(¥)—-n!(X)
defined by F*([p]) = [p o.f], whére (¢ o f)(x) = @ (f(x)) for x & X. Given a pathwise
connected space X, we denote by n;(X) the fundamental group of X; and if f: X— ¥
is a mapping, we have an induced homomorphism f,: 7,(X)—n,(¥) defined by
S lleD) = [f oo for mappings a: §—X. If f: X—> Y and g: X— Y are mappings, we
use the notation f =~ g to mean that f and g are homotopic, and we write £~ 0
to state the fact that f is homotopic to a constant mapping.

1. The group A(X). Suppose X is a pathwise connected space. Let A(X) be

the subset of 7'(X) consisting of those homotopy classes [go ] of mappings ¢: X— S
for which it is true that

(/’*(nl(X)_) =0,
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or, in other words, ¢ oot = 0 for each mapping «: S—X. If [p]e A(X) and

W] e A(X), then [p]—[y] = [x], where x(x) = ¢ (%) (y(x))~* for x € X. We notice
that here the homotopies @ oo = 0 and Y o =~ 0 imply the homotopy % s & =~ 0
since .
0(2() _ @)
V(@@) @ en)2
and so 4(X) is a subgroup of the Bruschlinsky group #'(X). Moreover, if f: X=¥
is a mapping and [p]e A(Y), then f*(nl(X))cr‘cl(Y) and (@ of), = @, oS
whence ¢

(% « 0)(2) = (ze8),

(@ o Nu(m(X) =9, (7s(1)) = 0,
which means that f*([p]) = [@ +f1€ A(X). As a result, we get an indiiced homo-
morphism 4 A(Y)>A(X) defined by FAlel = *([o]) for [p] € A(Y). The fol-
lowing proposition is an immediate consequence of the definition of the group 4 (X).
.. If XY are pathwise connected spaces and [¢] € A(Y), then [p|X]e A(B{).
1.2. If X is ‘a locally conmected continuum and ¢: XS is a mapping such that
@|C = 0 for each simple closed curve C< X, then @ ~ 0. (See [9], pp. 427 and '430.)

1.3. If X is a pathwise connected space and ¢: XS is a mapping, then [p] € A(X)
if and only if @|C =0 foi each simple closed curve C<X. ’

Proof. Assume [p] e A(X) and let A: S—C be a homeomorphism. Then
¢ oh ~0, whence also @|C=0oho h~1 ~ 0. On the other hand, if ¢|C ~0

for each simple closed curve C X, then, given a mapping «: S— X the set a(S)yeX -

is a locally connected continuum, and 1.2 yields ¢@[a(S) = 0. Consequently,
oo =~ 0 and therefore [p] e A(X). '

14. If X is a locally connected continuum, then A(X) = 0.

Proof. Apply 1.2 and 1.3.

1.5. THEOREM. If X, Y are pathwise connected continua and f: XY is a mapping
such that f(X) = Y, then f* is a monomorphism. (See [7], Theorem 1.)

2. Monotone mappings. We say that a mapping f: X—7Y is monotone pro-
vided f~1(y) is a connected set for each point y € Y. )

2.1. TuEOREM (L. Vietoris). If X, Y are compact metric spaces and f: X-» Y is
a monotone mapping such that f(X) = Y and n*(f~'(»)) =0 for ye Y, then
¥ m (Y)=n'(X) is an isomorphism. .

Proof. There is a commutative diagram

mh L g

A

() — 7(X)

©
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where H'(X), H'(Y) are the Cech cohomology groups with integer coefficients
and iy, Iy are isomorphisms (compare [6], 226). Also, because of the existence of
such isomorphisms and according to the condition imposed upon £ ~*(3), we have
HY(f~%(») = 0 for ye Y. Since the sets f~*(y) are continua, their reduced zero-
dimensional cohomology groups are trivial too. It now follows from the Vietoris
mapping theorem (see [10], pp. 334 and 344) that the induced homomorphism f** is
an isomorphism, and so is f* = (ix)™! o f** o iy. v

2.2. THEOREM. If X, Y are compact metric spaces, . X—S is a mapping and
fi X—Y is a monotone mapping such that f(X) = Y and ¢|f~'(y) =0 for ye ¥,
then there exists a mapping Y: Y-S such that o f ‘o~ ®.

Proof. For each point y € ¥, there exists (see [9], p. 364) an open set G,c X
such that f "1(y)c:G'y and ¢|G, =~ 0. Thus there also exists a closed neighborhood ¥,
of y in ¥ such that ¥,= YN\f(X\G,), whence

(1) f—‘ l(y)CUy zf_l(Vy)C'Gy (y € Y)

and. ¢|U, = 0. It follows (see [9], pp. 407 and 427) that there is a real-valued con-
tinuous function A,: U,—R such that

) @(x) = THE (e U,).

Let D be the decomposition of the space X into the sets £~1(3) N Ay A,(x),
where y = f(x) and x e X. We show that D is an upper semi-continuous decomposi-
tion. Indeed, let

D =f70) 0 & 40

be an arbitrarily chosen element of D. By (1), the closed set U, contains D in its
interior, and U, is the union of those elements of D which intersect U,. If v = f(u),
where u e U,, the set £~ *(v) is a continuum contained in U,, by (1). Denote

D' =" w) o A7 4,00
and observe that, according to (2), the mappings A,[f~*(v) and A,/f ™' (v) satisty
the condition .
FHE = o) = &P (pefTI0),

since f~'(W)eU, n U,. We conclude that there exists an integer k such that
A(p) = k+2,(p) for pef(v) (see [9], p. 406). Comsequently, we have

D' =f710) 0 Ay A w) = £ 0 A AW,

which means that the elements of D contained in U, coincide with the inverse images
of points under the function g,: U,~ ¥ x R defined by g, (1) = (f(u), A, ) foru e U,.
But g, is a continuous function, and therefore these inverse images form an upper
semi-continuous decomposition of U,. Hence D is upper semi-continuous at D,
and D being an arbitrary element of D, we have proved that D is an upper semi-
continuous decomposition of X.
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Let O = X/D be the decomposition space with the quotient topology, and let
g: X— 0 be the canonical projection which is a mapping of X onto Q. Then, for
each point g € O, the set g~'(¢) is an element of D; in particular, the set fa~ g
is degenerate. Moreover, the set A,g7'(g), where y = f(x) and xeg™"(g), also
is degenerate swhence, by (1) and (2), so is the set ©g~*(g). Putting

B@) =097, {J@}=rfa""@ @ed,

we obtain mappings 3: @S, f: Q— Y, whose continuity follows from the defini-
tion of the mapping g and the quotient topology. We now hgve the commutative
diagram : )

/

N
Y
to which we shall add a mapping ¥: Y-S such that the new completed diagram be
commutative up to a homotopy.

In fact, for each point y € ¥, the set f ~(y) consists of exactly those points g & W
which satisfy the inclusion "¢~ *(9)=f (). Since Q = X/D and the elements of D
are subsets of the inverse images of points under f, it follows that f~*(») is homeo-
morphic to the quotient space W, = f~*(3)/D,, where D, is the upper semi-continuous
decomposition of f () consisting of the elements of D which are contained in
F71(3). Each element of D, is of the type f~1(¥) n Ay *A,(x), where x &f~*(3),
i.e. it js the inverse image of a point under the mapping A,/ ~*(¥). Thus W, is homeo-
s morphic to the image 4,(f ~*(y))= R which is either a closed interval or a degenerate
set, the set £ ~*(y) being a continuum. We conclude that f~!(y) is either an arc or
a point, whence ='(f~'(»)) = 0 for y e ¥. By 2.1, the mapping f induces an iso-
morphism f* between the groups 7(¥) and 7(W). In particular, there exists a map-
ping ¥: ¥—S such that

(@] =7"WD = v <71,

or, in other words, @~ W o f, which yields

Vof=yofegmog=0.

23. If X, Y are pathwise connected continua, o: X—S is a mupping such that
lole A(X) and f: XY is a monotone mapping such that f(X) =Y, f~1(y) is
pathwise connected and A(f~*(y)) =0 for ye Y, then there exists a mapping
Y: Y-S such that W o f ~ ¢.

Proof. By 1.1, we have [o|f '(»)] e A(f~*()), whence [o[f~*(1)] = 0, that
is @l f"'(y) ~ 0 for ye Y. Applying 2.2, we get 2.3.

2 ©
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2.4, COROLLARY. Under the conditions of 2.3, it is true that
AX)=f*(x'(Y)).

*3. Path-raising mappings. Let I denote the unit closed interval of the real line,
i.e. re I'means 0<r<1. We say that a mapping p: I-» X is a path joining x, and Xy
provided p(0) = x, and p(l) = x;. A mapping /: X— Y is said to be path-raising
provided f(X) = Y and, for each path g: /- ¥ joining f(x,) and f(x,), where
Xg, X; € X, there exists a path p: I-X joining x, and x, such that fp(I)cg(l).
Clearly, if f is path-raising, then f is monotone. )

3.0, If X, Y are metric spaces and f: X—Y is a mapping such that f(X) = Y,
then the following conditions are equivalent to each other:

(i) f is path-raising,

(i) £~ 1(C) is pathwise connected for each pathwise connected set C<Y,

(i) £~ 1(y) is pathwise connected for each point y € Y, and each arc contained
in Y is the image under f of a pathwise connected subset of X. :

Proof. It is rather obvious that (i) implies (i) and (i) implies (iii). To see that (iif)
implies (ii), let us consider a pathwise connected subset C of ¥, and let x4, x, &f ~*(C).
It f(ox) = f(x;) = p, there exists a path joining x, and x; in £73(3). If f(x,) = ¥,
# y; = f(xy), we can take an arc A = C which joins y, and y,. Then there is, by (ii),
a pathwise connected set B X such that 4 = f(B). Let b,, b, € B be points such
that f(by) = yy and f(b,) = y,. Since £ ~(y,) and f~*(y,) are pathwise connected,
by (iii), there exists a path joining x, and by in £~ *(30); a?lso, another path joins x,
and by inf~Y(y,). A third path joins by and by in Bef ~*(4) =f ~*(C), and combining
these three paths together, we obtain a path that joins x, and x, in f~*(C). Conse-
quently, (i) holds.

3.2. If X, Y are metric spaces, B: S—Y and y: Y— S are mappings and f: X—Y
is a path-raising mapping, then there exists a mapping o: S—X such that
1// of’od':(//o/)’. . :

Proof. The continuity of ¥ o implies the existence of a decomposition
S = A; V..U 4, of the circle § into non-over-lapping arcs A; such that

3 diamyp(4)<2 = diam§ (=1, ..., n),

and the end-points of 4; are a;, a;.q (j =1, ..., n), where a; = a,4,. Let us select
points x; & X such that f(a) = f(x;) forj =1, ..., nand put x,,¢ = x,- Then f|4;
is a path joining f(x)) and f(x;, ). Since fis a path-raising mapping, there exists
a path p;: 4;- X joining x; and x;,, such that

@ IfA)epia) (=1, um).

The paths p; agree on junction-points and thus we actually have a mapping
a: S— X defined by ald; = p; for j =1, ..., n. Moreaver, by (4), we get

W o f o 0)(A)) = Yo (4)=VB(4)) »

3 — Fundamenta Mathematicae t. XCII
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which, by (3), implies that

W (f(@@)-¥ (BE)<diamyf4)<2 (ze4d),
and W ofoa = o f follows. )
3.3. TueoreM. If X, Y are pathwise connected continua and f: X—Y is a puth-
raising mapping such that f(X) = ¥ and A(f™'(y)) = 0 for ye Y, then

I AN A(X)
is an isomorphism.
Proof. By 1.5, f* is a monomorphism. To see that /4 is an epimorphism, let
@: X—S be a mapping such that [p] € A(X). By 3.1, £ ~!(y) is pathwise connecled
for ye ¥, and thus there exists, by 2.3, a mapping f: Y-S such that ¥ o f = ¢,
Hence f*([y]) = [¢] and it suffices to show that [y/]e A(Y). To this end, it f: S~ Y
is a mapping, we can apply 3.2. We obtain a mapping a: S—X such that

VefYofoa~poa=0,

since [p] € 4(X). Consequently, we have [] e 4(Y).

Remark. The condition that f is path-raising cannot be omitted in 3.3 (see 5.3
and 5.4). '

4. Six classes of continua. Let I denote the Hilbert cube and let M* denote
the Menger universal curve (compare [3]). Thus, in particular, M! is a locally
connected, hence also pathwise connected, one-dimensional continuum that contains
a topological copy of any other such continuum. We say that a mapping f; X— ¥
is open provided f(G) is an open subset of Y for each open set G X.

4.1. TueoreM (R. D. Anderson). There exists an open mapping w: M'—J™
such that o(M*) = I™ and 0= Y(C) is homeomorphic to M* for each locally connected
continuum C< I (%),

Outline of proof (R. D. Anderson). The result follows by some modifications
of proofs published in [1] and [2] together with the characterization of the Menger
‘universal curve established in [3]. Specifically, a sequence {F;} of one-dimensional
finite covers in R® may be set up with F,,, a refinement of Fy, and {F} incidence
and containment isomorphic to a sequence {H} of finite covers of I™° with mesh (M)

-]

converging to zero. Also, one can identify the set F of intersections N f*, where f*
=

is the star in F; of element f, € F,, and f,,., < f, for i = 1,2, ... By suitable conditions
on the construction, F can be required to be a continuous collection (compare [9],
P. 68) of one-dimensional continua whose decomposition space is I under a map. w
induced by the sequence of isomorphisms of {F} to {Hi}

] (*) Theorem 4.1 h.a.& been proved and announced by R. D. Anderson in the late 1950°s but
its proof was never published. An outline of the proof has been given recently in a letter to the second
author of this paper and is included here with the permission of its author.

2 ©
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Now, using the characterization of M* as a locally connected one-dimensional
continuum with no local cut-points and with no open non-empty subset embeddable
in the plane,.one can modify the constructions of the earlier papers to guarantee

“that, for each locally connected continuum CcI™, the set w ~!(C) is a topological

copy of M. Specifically, one must require that the elements of F,,, (and the vertex
elements of such elements) must be built with a local doubling up or duplication
process (to insure no local cut-points), one must require that the elements of F,,
locally contain one-skeletons of 4-simplexes to get the non-planar embedding, and
one must require connectivity of elements of F;, { in each “cell” (which they intersect)
of each element of F; containing them to get local connectivity, such requirement
giving a kind of uniform local connectivity of inverses to give the desired result,
i.e. paths in I™ induce local paths in the inverses of such paths.

4.2. THEOREM. If Y is a pathwise connected continuum, then the following condi-
tions are equivalent to each other: .

(@) 4(Y) =0,

(i) Y is a continuous image of a pathwise connected continuum X with A(X) = 0,

(iii) Y is a continuous image of a pathwise connected one-dimensional continuum X
with 4(X) = 0. '

Proof. Obviously, (iii) implies (if) and it follows from 1.5 that (i) implies (i).
To see that (i) implies (iii), let us consider ¥ as embedded in I"°and put X = o~ (¥),
where o is the mapping given by 4.1. Thus X< M* and w is a path-raising mapping,
by 3.1. Hence o is monotone and X is a one-dimensional continuum. Again by 3.1,
the continuum X is pathwise connected and, moreover, f = w|X is a path-raising
mapping such that f(X) = Yandf () = w™ () is homeomorphicto M for ye Y.
Since M*! is a locally connected continuum, we conclude from 1.4 that

A(f0) = A7) =AM =0 (ye7),

and, by 3.3, the groups 4(X), 4(Y) are isomorphic. Consequently, one has
A(X) = 0, according to (i). '

4.3. If Y is a pathwise connected continuum, then Y is a continuous image of
a pathwise connected one-dimensional continuum.

Proof. Take the continuum «w~*(Y), as in the proof of 4.2.

The properties of pathwise connected continua described in 4.2 and 4.3 suggest
a classification of these continua closely related to the theory of dendroids. By
a dendroid we understand a pathwise connected one-dimensional continuum X such
that n(X) = 0. The following notion is a generalization of an earlier concept
(see [4], p. 193) that had been particularly useful in an investigation of dendroids
(see [4] and [5]). A metric space X is said to be uniformly pathwise connected provided
there exists a family of paths p,,: I- X, where x, y € X, such that the path p,, joins x
and y (x, y € X) and, for each number >0, there exists a positive integer k with this
property: for each pair of points x, y € X, there is a decomposition

[=Tgy WL Ly

3
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of I into k subintervals I,,,; satisfying the inequalities

diamp, (I, 0<e  (@F=1,...k).

4.4, THEOREM. A continuum X is uniformly pathwise connected if and only if X is
a continuous image of the cone over the Cantor set. (See [8], Theorem 3.5.)

We distinguish the six classes of continua as follows.

(@) Locally connected continua.

(I) Continuous images of the cone over the Cantor set.

(1II) Continuous images of dendroids.

(TV) Continuous images of pathwise connected continua X with ='(X) = 0.

(V) Continuous images of pathwise connected continua X with 4(X) = 0.

(VI) Pathwise connected continua.

Then ()=() D c@V)=(V)=(VI) and each of these classes is invariant
under continuous transformatidns. Also, observe that Classes (I) and (VI) are
defined by means of intrinsic properties while Classes (II) and (V) can be charac-
terized by such properties in a certain manner, according to 4.4 and 4.2. respectively.

ProBLEM. Give intrinsic characterizations of Classes (ITI) and (1V).

None of the above six classes of continua is equal to another one of them.
In fact, the cone over the Cantor set belongs to (ID\(I), and there are well-known
examples of dendroids which fail to be uniformly pathwise connected (see [4],
p. 201, for instance); they all belong to (IIH\(IL). In 5.2 and 5.1 below, we construct
continua that belong to (IV)N(IIL) and (V)N(LV), respectively. The so-called “Warsaw
circle” is an element of (VI)N(V) (see [7], Corollary 2).

5. Examples. The first and the last of our examples are one- dlmcnsmm] continua.
The other two are two-dimensional.

5.1. EXAMPLE. There exists a pathwisé connected one-dimensional continuum K
with A(K) = O such that K is not a continuous image of any continuum X with
7(X) = 0.

Proof. Let us define arcs A,=Sx 7 by the forniula
) A= (@™, ) <2t 1) (n=1,2,..),

and put Sg = Sx{0}. The union K’ =8 U (4} U A} uU..) is a closed subset
of §xI and so is the set E = {(1,0} v {(1,27": n =1, 2, w}. Let E be the de-
composition of X’ into E and the one-point sets {»}, where ye K'\E, We define K by
setting K = K'JE.

Since the set E contains an end-point of each arc Ay (n=1,2,..) and E meets
the limit circle Sy, it is apparent that the decomposmon space K is a pathwise con-

nected continuum. Also, X is one-dimensional. Let g: K'=K denote the canonical
projection and let

4y=g(), (D} =g(B) S, =g(S) (=1,2,.),

icm
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whence K = S, U (4; U 4, u..). To see that A(K) = 0, suppose [p] € n'(K)
is the homotopy class of a mapping ¢: K~ such that [¢] # 0. Then ¢ 4 0, and
there exists a continuum B K such that ¢|B & 0 but ¢|Z = 0 for each closed proper
subset Z of B (see [9], p. 425). We claim that B< S;. If not, there would exist a posi-
tive integer m such that

m = (Am\{e}) NB=4,n (‘B\SO) #4,

and B\B,, would be a proper subset of B. The set 4,,\{e} is open in X, its boundary
is {e}, and ¢|d,, = 0. Thus the set B\B,, is closed in B, whence ¢|(B\B,) =~ 0, and
also B cannot be contained in 4,,, whence e € B, B being a continuum. Moreover,
the set B,, U {¢} is a subarc of 4,, and the identity mapping of B is homotopic to
the retraction r: B—B\B,, that sends B, to e. Consequently, we would have

@B = (¢|B) oidp = (¢|(B\B,)) o7 = 0,

which is a contradiction. Hence B<S;. But, on the other hand, S, is a simple ¢losed
curve and, therefore, ¢|Z =~ 0 for each closed proper subset Z of S, too. We con-
clude that B = Sy, and any homeomorphism «: S—S, satisfies the conditions

= ISy = p|B &0,

whence ¢ oo ¢ 0. As a result, we have [p] ¢ 4(K), which means that A(X) = 0.

It remains to be shown that K is not a continuous image of any continuum X
with #!(X) = 0. Suppose, on the contrary, that there exists such a continuum X and
a mapping f: X—~K of X onto K. The point e is an end-point of the arc A4,, and let a,
denote the other end—point of 4, (n=1,2,.2. We need to know that, for each
integer # = 1,2, ..., the set f~ 1(A,,) is connected between f~(a,) and f~!(e). If
not, there would eXlst a decomposition of £~1(4,) into two disjoint closed sets Fy
and F, containing f~*(a,) and f~*(e), respectively. Then the disjoint closed sets F,
and F, U f~!(K\A4,) would form a decomposition of X, which is impossible since X
is connected. Thus f~*(4,) is connected between f~(a,) and £ ~!(e), whence there _
exists a continuum C,=f~*(4,) joining f ~*(a,) and £ ~*(e) (see [9], p. 170). It follows
that 7(C,) is a subcontinuum of the arc 4,, joining its end-points, so that

(©) 4,=fC) (m=1,2,.).

Let  denote the projection f: SxI—S of §x1 onto S, i.e. Y(z, t) = z for
(z, )& SxI. Notice that the set E is the only non-degenerate element-of E, and

Pollol

Y(E) = {1}. Consequently, for each point g € X, the set g~ !(q) is degenerate, and
the formula
0 @} =vg™'@) (@ekK)

defines a mapping ¥: K—S. But since n'(X) = 0, we ‘have ¥ o f=~ 0, and there
exists (see [9], p. 427) a mapping A: X— R such that

®) P(fx) = & (xeX).
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Let I, denote the closed interval I, = {t e R: 22"t — 1) and let A, I~ 4,
be the homeomorphism. given by the formula

B(D = (7Y (el),
according to (5). Hence
&) |

We also have the homeomorphism g4, of the arc A, onto the arc 4,, and let
us put g, = (gl4)~* for n = 1,2, ... This yields

Wla )} = v e) = T@} (e,
by (7), whence .
@ = J(f(0) = Y(0./0)) = €7 (g, (f(¥))  (xeC)

by (6) (8) and (9). The set C, is a continuum, and we infer (see [9], p. 406) that there
exists -an integer k, such that

AR) = ke + BN ga(/(%)  (xeC),

Y(y) = &0 (yed,).

which implies that
diam(C,) = diamh; *g,f(C,) = diaml, =2"—-1 (n=1,2,..),

by (6). Since C,cX, the last formula contradicts the boundedness of A(X) that
follows from the compactness of X% and the proof of 5.1 is now complete.

Remark. The connectedness of X has been used only to guarantee the existence
of continua C, < X such that (6) holds. What we have actually proved is the following
property of the continuum-X: it is not a continuous image of any compact metric
space X such that 7'(X) = O and there exist continua C,<X ‘satisfying (6). We
shall refer to this property of K in our next construction.

5.2. Example. There exists a pathwise connected two-dimensional continuum L
with n*(L) = O such that L is not a continuous image of any one-dimensional con-
timwm X with n*(X) = 0.

Proof. Let D denote the unit disk whose boundary is S, i.e. the set of all the
complex numbers z with |z|<1. Furthermore, let Dy = Dx {0} and L' = Dju
U (4f U 43 U ...), where the arcs 4, are defined by (5). Then L’ is a compact metric
space and the set E, defined as in the proof of 5.1, is a closed subset of L. Let F be
the decomposition of L' into E and the one-point sets {y}, where y e L'\E. We
define L by setting L = L'/F.

As in 5.1, the decofposition space L is a pathwise connected continuum.
Let h: L'-L denote the canonical projection and let

4, = h(A::)s {e} = h(E), D, = h(D()) n=1,2,.2,
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whence L = Dy U (4; U 4, U ...). To see that !(L) = 0; suppose on the contrary
that there exists a non-zero element [p] € n!(L). Then there is a continuum BeZ
such that ¢[B 4 0 but ¢|Z = 0 for each closed proper subset Z of B (see [9], p. 425).
An argument identical to that from 5.1.now shows that B D,. But h| Dy is a homeo-
morphism, and D, is a topological disk in L. Thus ¢|Dy =~ 0, whence also ¢|B = 0,
which is a contradiction.

We have K'<L’ and g = h|K’, where K’ and g are taken from the proof of 5.1.
Hence L contains a topological copy K, = h(K") of K, composed of the same arcs 4,,
(n =1,2,...) and their limit circle 2(Sg). Moreover, the point e is also an end-point
of 4, and the only boundary point of the open subset 4,\{e} of L. Therefore, if X is
a continuur and S+ X—L is a mapping of X onto L, we conclude, exactly as in the

- proof of 5.1, that there exist continua C,< X satisfying (6). Let X;, be the closure

of the union C; U C; U ... in X. By (6), we obtain

XD =cf(CuCyu.)=cl{d,ud,u.)=K;,

and X} is a compact metric space contained in X. If X were one-dimensional with

n'(X) = 0, we would have n'(X;) = 0 too (see [9], p. 354). This would violate
the property of K, hence also of K, which was rnent]oncd before, in the remark
preceding 5.2.

5.3. BEXAMPLE, There exists a pathwise connected two-dimensional continuum M
and an open mapping 1: M—S such that u(M) = S, u~*(2) is an arc for each point
zeS, and p|C = O for each locally connected continuum CcM (%).

- Consequently, 4(p (@)= n'(u"'(@)) =0 for zeS and A(S)=0, by 14.
On the other hand, p. % 0 (compare [9], pp. 427 and 433), i.e. [1] # 0, and [u] € A(M),
by 1.3, so that A(M) # 0, and u* is not an isomorphism.

Proof. We define M to be the subset M = W, U W, of the plane, where the
sets W, and W, are given by the formulae

Wy = {(x,): $<x—H*+ -2 <IN (x, »): 0<x<1, —2<y<1},
LT K
W, = {(x,y): 0<xxl, —x+sm—<y<x+sm;}.
X

Clearly, M is a pathwise connected continuum with a non-empty interior.
Let pg denote the straight-line closed interval with the end-points p and g.
For each real number ¢, let p, = (£, 0) and g, = (#+2, 1). Let ¥ be the part of the
plane defined by the formula
(10) = Upa,
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and let ¥ =V, UV, be the decomposition of V into the sets ¥y = {(x,¥)
e V: x<3} and ¥V, = {(x,)) € V: x>3}. We also define points r,, 5,(n =0, 1,..)

(%) Example 5.3 is essentially due to W. S. Mahavier.
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of M by ro= 0, =1), 5 =©,1, ry =(, =1), 5 = (1, 1), and

2 s Qn— I)n)
== - sin———,
n (Zn—l’ an—1 2
(271—1)75)

(n=2,3,..)

2 2 +sin
S, = ) —_—
" 2n~1" 2n—1
Both ¥, and W, are comipact disks, so that there exists a homeomorphism
hy: V,— W, satistying the conditions h((poqo) = roSe and /(pyqy) = rys;. On the
other hand, the sets ¥, and W, are homeomorphic to a disk with one point removed

from its boundary, and the intervals pyg; and rys, lie on the boundaries of V, .

and W,, respectively. It can then be seen that there exists a homeomorphism
hy: Vo> W, such that y|psgqy = halpsgy and :

hz(sz(’;.) = r—n&-n (71 = 2; 3’ ) .

Combining the homeomorphism 4, and h,, we get a one-to-one mapping
g: V=M of V onto M, defined by

@) (pevy,
9(p) = {hz(l’) eV,

and let us consider the collection G of all the arcs g(pyqy), where ¢20. According
to (10), G is a decomposition of M, and the elements of G are mutually disjoint.
Moreover, it can be verified that G is a continuous decomposition of M, whence
the canonical projection u: M—M]|G is an open mapping of M onto the decompo-
sition space M/G (compare [9], p. 68). There is also a natural correspondence beiween
the arcs g(p,q,) and the numbers #3>0 under which # converging to + co correspond
to arcs converging to g(peqo) = rosy. We conclude that M/G is topologically the
circle S, and we can write M/G = S.

For each point ze S, u~*(2) is an element of G. I C=M is a locally connected
continuum, C cannot contain points of W, arbitrarily close to ros,. Hence there
must exist a point z, & § such that C does not meet y~(z,), and thus z, does not
belong to u(C). But each proper subset of § is contractible to a point in S, so that
ulC =~ 0.

5.4. EXAMPLE. There exists a pathwise connected one-dimensiontl continuum N
and an open mapping v: N—S such that v(N) = S, v~ (z) is homeomorphic'to the
Menger universal curve for each point z € S, and v|C = 0 for each locally connected
continuum C<N.

Consequently, 4(v™1(2)) = 0 for z& S, by 1.4, and v* is not un isomorphism,
as in 5.3. :

' Pro .of. Let.us qonsider the continuum M of 5.3, assuming that M is embedded
in the Hilbert cube ™, and let us take the open mapping o described in 4.1. We
define N = w™1(M). Since, by 3.1, w is a path-raising mapping, and M is pathwise

icm

©

Homotopy properties of pathwise connected continua 41

connected, the continuum N is pathwise connected. Also, w|N is an open mapping
of N onto M, and, by 5.3, the composite v = u o (w|N) is an open mapping of N
onto S. For ze S, the set u™'(z) is an arc, whence the set v™(z) = 0~ ' (u™(2))
is homeomorphic to the Menger universal curve, by 4.1. Finally, if C=Nis a locally
connected continuum, so is w(C)cM, and wlo(C) = 0, by 5.3. It follows that
vjC =~ 0. ‘

»
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