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On the actions of SO(3) on lens spaces
by

Soon-Kyu Kim and Jingyal Pak (Detroit, Mich.)

Abstract. In this paper, an effective SO(3)-action on a 5-dimensional lens space is studied via

the lifting action on the universal covering space of a lens space. The results are the following:

Suppose SO(3) acts effectively on a 5-dimensional lens space. If there is'a 3-dimensional orbit,
then there is a non-trivial finite cyclic isotropy subgroup, and if the highest dimension of any orbit
is two, then there is an isotropy subgroup Sp. Furthermore, if the fixed point set of the action is
non-empty, then it is a circle.

The effective use of the universal covering space X over X on the study of
transformation groups (G, X) has been demonstrated in [1], [2], [3], [4], and others.
The purpose of this short note is to add one more example to the above list.

The effective action of a 3-dimensional rotation group SO(3) on a 5-dimen-
sional lens space Ls(m; gy, go), m odd and (m,g) =1 for i= 1,2, is studied
via S°, the universal covering space of Ls(m; qy, §,). We will use Ls(m) to denote
Ls(m; g1, q2)-

_All known results indicate that there is no finite cyclic isotropy subgroups
of (SO(3), S"). Tt is shown here that if SO(3) acts effectively on Ls(m) then there
exists a point x € Ls(m) such that the isotropy group SO(3), = {geS0(3)| gx = x}
is a non-trivial finite cyclic subgroup of SO(3) or S, subgroup of SO(3). Furthermore,
if the fixed point set F(SO(3), Ly(m)) # &, then it must be a circle.

The group SO(3) has the following conjugacy classes of (closed) subgroups:
the group-S, of all rotations about an axis determined by a point p € $?; the group N,
of all rotations which take the plane perpendicular to the axis determined by p e s2
into itself; the cyclic groups Z, of order n; the dihedral group D, of order 2n; the
group Hy, Hg, and Hj of all rotational symmetries of the tetrahedron, the cube,
and the icosahedron, respectively.

Let S2"*1 be the (2n+ 1)-dimensional unit sphere in Euclidean (2r+2)-space
defined in terms of (24 1)-complex coordinates (Zg, ..., Z,) satisfying ZoZo+ .-
+2Z,Z,= 1. Let mz2 be a fixed integer, and gy, ..., g, be n integers relatively prime
to m. We define an action 6 on $**! onto itself by

O(f, (Zos ors Z")) = (elm'/mZO’ ezmlu/mzl, s eZT:illn/mZn) .

Then f generates a fixed point free cyclic group Z,() of rotations of S§2n+1 of order m.
The orbit space S2'*1/Z,(#) = Lyyss(M; q1, > 4) is an orientable (2n+1)-dimen-
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sional manifold called a lens space. If P: S2**— Ly, 1(m; gy, vy 4,) is the projec-
tion map and g e T,(f), then Pg(x) = P(x) for x eS8t Z.(H is the group of
covering transformations.

Let us examine the known results of actions (S0(3), §") from [3] and [6]
First assume SO(3) acts on S° with 3-dimensional orbits. Denote by X the set of
points on 3-dimensional orbits and ¥ = S5~ X. It is easy to see that the orbit space
$5/SO(3) ~ D?, a 2-dimensional disk, ¥/SO(3) = 9D*= S", and X/SO(3) = D*—
—dD? = interior of D2 If there is an S2-orbit then all orbits of ¥ are S%-orbits
and G, = e for xe X. If there is an orbit homeomorphic to the real projective
space P2 then G, must be a dihedral group .D,. There will be precisely two stationary
points on ¥ and all other orbits on ¥ correspond to P*-orbits. If all orbits of ¥ arc

, stationary points, then for x € X, G, must be an icosahedral group Hj.
If an action of SO(3) on S is such that the highest dimension of any Olblt is

two, then the orbit space is a closed 3-disk D?. The interior points correspond -

to 2-sphere orbits and the boundary points correspond to stationary pomts In
other words, G, = S, for all xe X.

~ On the other hand it has been shown [5] that if SO(3) acts on any sphere 5"
such that the principal isotropy group is a finite cyclic group, then it must be the
trivial group. In the same paper, if SO(3) acts differentiably on S" with three dimen-
sional principal orbits and if dim B<n—2 (B is the set of points on. orbits of dimen-
sion less than the highest dimension of any orbit), then the principal isotropy group
is the identity.

Let (G, X) be an action. Define a map 1+ (G, &)—(X, x,) by f(g) = gx,. This

map induces a homomorphism f,: m;(G, )=, (X, xo)-

LemMA 1. Any effective action (SO(3), Ls(m)), m odd, can be lifted to an eﬁecnve
action of (SO(3), S7).

Proof. The induced homomorphism f,: m,(SO(3))-n,(Ls(m)) is a trivial
homomorphism and the lemma follows from [2; 4.3].

THEOREM 2. If SO(3) acts effectively on Ls(m), m odd, with a 3-dimensional
orbit, then there exists a point x & Ls(m) such that SO(3), is a non-trivial finite cychc
isotropy subgroup of SO(3).

If SO(3) acts effectively on Ls(m), m odd, with a 2-dimensional prmczpal orbtr
then there exists a point x € Ls(m) such that SO(3), = S,.

Proof. We combine two proofs in one, By Lemma 1 we can lift SO(3) action
to §% such that g(by) = (gb)y for be S5 and y 73 (Ls(m)) = Z,,. Now we can see
easily that there is an induced action of Z,, = =;(Ls(m)) on S5/SO(3) = D/, where
J =2 or 3. The following diagram commutes:

58 2 p
P P

Ls(m)—-> Y
Py
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Now a Z,, action on D’ has a fixed point which lies in the'interior. To see this let us
examine the case j = 3 (the D? case follows more easily). Since m is odd we can
write Z,, = /quxZ where (gy, ¢») = 1. By the Smjth theorem we may assume

F(Z; 3 D% is a line segment I< D® such that only two end pomts dl lie on D3 = §2.
Now we claim F(Z,; D®) = I Otherwise a generator f8 of Z, W111 permute I in D?
with period g,. We can see that if xe B(I), then the xsotropy subgroup of Z,, at x

. s Zﬂi' That is, xeF(an;; D?) and this is a contradiction to the Smith theorem.

Therefore [ is invariant under the Z,, action. Since ¢, is odd Z,, acts trivially on I
and F(Z,; D% = I. Thus we have a point x & F(Z,,; D*) which lies in the interior
of D2,

At cach be S* we define a map #,: SO3)pey—7:(Ls(m)) by defining n,(g) to
be the unique element in 7y (Ls(m)) such that gb = by(g). It is not too hard to see
that 7, is 2 homomorphism for each be 5. We have the following exact sequence
from [2; 4.16]: '

1
=50 (3),=80 (3)ppy ——> 711 (L5(m))p, 50 -

Take Py(b) to be the point in F(Z,,; DY), j = 2, 3, which lies in the interior of D,
1t follows that SO(3)(b) in S3 is a principal orbit and we know that SO(3), is cither e,
a dihedral group D,, ico§ahedral group Hj, or S,. Now take all possible closed sub-
groups of SO(3) for SO(3)pyy. No combination allows SOB3)pr)/SO(3)y == Zy,
m odd, except G, = e, the 1dent1ty element, or SO(3), = S,. In the first case we
get SO3)pgy = Z, and in the second case we get SO(3)P(,,, = §,. This completes
the proof.

THEOREM 3. If F(SO(3); Ls(m)) # @, then it must be a circle St

Proof. It is known that F(SO (3); %) must be S°, S*, or §2. Since g(by) = (gb)y
for be§%, yem(Ls(m)), S°, S* and S* are invariant under the free Z, action.
Since m odd Z,, # Z, and Z,, cannot act freely on S° and S?; so these two cases are
eliminated. Now S* is invariant under Z,, and we have F(SO(3); Ls(m)) = §*/Z,, =~ §*.

This completes the proof.

Finally we give the following theorem which follows by a lifting action and an
application of [6].

TuroREM 4. If S%, the double covering group of SO(3), acts effectively on Ly(m),
then the action is unique. Furthermore, there exists a point at which the isotropy sub-
group contains Z,,, m- odd.

Note. The results on general lens spaces will appear shortly.
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On group nil rings
by

E. R. Puczylowski (Warszawa)

Abstract. The main result of this paper (Theorem A) is a generalization of a theorem of
D. 8. Passman [9] saying that under some assumptions the group ring R{G] for commutative R
contains no non-zero nil ideals. Our result is then applied in § 2 to find some new statements equiv-
alent to the still open Koethe problem: if a ring R contains a one-sided nil ideal 4, is 4 contained
in a two-sided nil ideal of R? Finally, § 3 is devoted to an investigation, by means of Theorem 4,
of the N’-radical of certain group rings, where N’ is the ‘absolutely nil property defined by
S. A. Amitsur [2], [6].
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§ 1. Semisimplicity of gronp rings. Let R be a ring with unity and M its multi-

plicatively closed subset contained in the centre of R. Assume that M contains no

zero-divisors of R and consider the complete ring of right quottens Q for R. Then
(I8], Lemma 5, p. 160)

RM™' = {ge Q] EI qmeR}

is a subrmg of the ring Q. If M is an empty set, put RM ' = R. Every clement of
RM ™" can be written in the form rm™1, where r € R, m & M. Since (rm™*)" = r'm™
for any integer »n, R contains no nil ideals if and only if RM ~* contains no nil ideals.
Moreover, for any group G, rings (RM~Y)[G] and (R[G])M~* are isomorphic to
each other. )

For a group G we denote by G, the set of elements of G of order n. We shall say
that the groups G and H are forsion disjoint if for any integer n2 at least one of_ -
the sets G,, H, is empty. It is not hard to check that groups G and H are torsion
disjoint if and only if for any prime p one of the sets G,, H, is empty.

A nil ring R will be shortly denoted as a # -ring. It is well known that A" is
a radical property [4]. The 4 -radical of a ring R will be denoted by A (R).

PRrOPOSITION 1.1. If the additive group RY of a ring R is torsion disjoint with
a group G, then the additive group R* of R is also torsion disjoint with G, where
R = R/ (R).
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