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On the Whitehead Theorem in shape theory
by

James Keesling * (Guainesville, Florida)

Abstract. Let Fi (X, x)-(Y, ») be a shape morphism with (X, x) and (¥, ) pointed mov-
able metric continua of finite dimension, A theorem of M. Moszyfiska asserts that if Fy: mg(X, x)
(Y, ¥) is an isomorphism for all &, then F is a shape equivalence. In this note a gap is—puinted
out in Moszyiska’s proof and a correction given. Some related results are also presented.

Let T be the category of pointed topological spaces and HT be the homotopy
category of pointed topological spaces with H: T—HT the homotopy funetor.
Let S: T'-ST be the shape functor to the shape category in the sense of
S. Mardegié [6]. It (X, x) is a pointed topological space, then there is for each » an
inverse system of groups associated with (X, x) called the n<th homotopy pro-group
of (X, %) (see [7]) which we will denote-by =,{(X, x)}. A shape morphism F: (X, x)
—(Y,y) induces a unique morphism F,: m,{(X, %)} -, {(¥, )} in the category
of pro-groups. There is also associated with (X, x) a group m,(X, x) for each posi-
tive integer n which is the projective limit of =,{(X, x)}. This we will call the n-th
shape group of (X; x). The morphisms F, and hence F induce unigue homomorphisms
Fy: m(X,%)-m,(Y,») in the category of groups. These structures ,{(X, %)}
and 7,(X, %) in shape theory are analogous to the homotopy groups (X, X) in
homotopy theory. Similarly we have the n-dimensional homology pro-groups
H,({X}; G) with coefficient group G. The projective limit of these pro-groups are
the n-dimensional Cech homology groups with coefficient group G, H(X; G).

The classical theorem of J. H. C. Whitehead has played an important role in
homotopy theory, '

Tusorem 1. Let fi (X, x)=(Y,y) be a continuous map with fi: n/(X, x)
~a (¥, y) an isomorphism for i<n, = max{l+dim X, dim ¥} and an epimorphism
Jor i = ng where (X, ) and (¥, y) are connected CW - complexes. Then [fis a homotopy
equivalence.

In shape theory there arve several results analogous to this theorem which
have been proved, The following theorem is due to Mardesié {7].
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THEOREM 2. Let F: (X, x}A(Y, y) be a shape morphism where X and Y are
Jinite-dimensional spaces and suppose that one of the two following conditions is satisfied.

() F is induced by a continuous map f (i.e. F = S(f)), or

(i) X and Y are continua with Y metrizable.

Then if F: m{(X, %)} > m{(Y, )} is an isomorphism of pro-groups for 1<k
<ny+1 = max{l+dimX, dim Y}+1 and an epimorphism for k = no-+1, then F is
a shape equivalence. .

In case (ii) is satisfied the theorem is a slight generalization of a theorem of
M. Moszyfiska [11]. A version of the Whitehead Theorem involving the groups
7,(X, x) was also presented in [11].

- THEOREM 3. Let (X, x) and (Y, y) be finite-dimensional movable pointed continua
and let F: (X, x)—~(Y,y) be a shape morphism such that Fyio (X, x) =Y, p)
is an isomorphism for 1 <k<ng+1 = max{l+dimX, dim Y}41 and an epimorphism
Jor k = no+1. Then F is a shape equivalence.

However, there seems to be a gap in the proof of this theorem in [11]. Tt is the
purpose of this paper to point out the gap in the proof and provide a correct proof
of theorem. There is an advantage to the proof of Theorem 3 presented in this
paper even apart from the gap in [11]. The proof presented here does not make
use of the auxiliary notion of uniform movability introduced in [10]. What is crucial
in the proof presented here is the use of a natural topology on the groups 7,(X, x)
which is described in [4] and which was first introduced by M. Atiyah and G. B. Se-
gal [1]. We are also able to prove a homological version of Theorem 3 usin & these
notjons based on results in [8]. :

1. The gap. Theorem 3 appears as Theorem 4.3 in [L1]. There appears to be
a gap in the proof of this theorem which appears in statement (6) on page 261 of [11].
The statement depends on Corollary 6.6 of [10] which we state here for examination.

CoroLLARY (6.6 of [10]). If (X, x) and (Y, ¥) are uniformly movable pointed
compact Hausdorff spaces and F: (X, x)—(Y, ¥) is a shape morphism, then

() F:m(X, X)= Y, ¥) a group monomorphism implies thar Fom (X, %)}
- n,{(Y, )} is a monomorphism in 1he category of pro-groups,

@ F n(X,0)>n,(Y,%) a grow epimorphism implies that Fy: m,{(X, x)}
- (¥, 2} is an epimorphism. in pro-groups,

() F:om (X, x)- 7Y, ) a group bimorphism (a monomorphism and an epi-
morphism) implies that F,: T {(X, %)} > m,{(Y, W} is a bimorphism in pro-
groups.

No proof is given for Corollary 6.6 in [10] only the statement that it follows
from 6.1 and 4.3-4.5 in [10]. Tt appears on carefully examining 6.1 and 4.3-4.5 and
their proofs that one is justified in making assertion (2). However, in place of (1)
one appears to be able state only (1') Fo: n(X, x)>n,(¥,») a group mono-
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morphism implies that F,: ,{(X, x)} — T{(Y, p)} is a monomorphism in the category
of uniformly movable pro-groups.

The difficulty is that a monomorphism in the category of uniformly movable
pro-groups need not be a monomorphism in the category of pro-groups. The next
example demonstrates this. In the proof of Theorem 3 Moszyfiska needed F, to
be a monomorphism in the category of pro-groups.

Tt should be remarked that we do not have a counterexamiple to Corollary 6.6 (1).
That appears to be difficult. Corollary 6.6 is true if X and Y are metrizable which
is basically what we prove in §2 of this paper. ‘

1.1. EXAMPLE. Let A = B = [|Z where Z is the group of integers. Let 4, -

=]
7y M . n
=|[Z=Aftorall a1 and let f, = id, for all 21, £,: 4,,,—A,. Let B,=1]Z
i=1 i=1

for nz1 and let g,: B,,.,— B, be projection onto the first n coordinates. Then B is
the inverse limit of the inverse system {B,; g,} and 4 is the inverse limit of {4,;£,}.
Now:let hit {4,}-+{B,} be defined by h,: 4,-> B, be the projection homomorphism
onto the first # coordinates. Then the following ladder of groups and homomorphisms

comimutes.

J1 J S
Ay Ay et dy e

h,l hzl z.,l

By < By = By - ...
a1 g2 g3

Clearly h: A— B which is the inverse limit of % is just the identity homo-
morphism. However, we wiil now show that } is not a monomorphism in the cate=
gory of pro-groups.

o )

Let C, = [] Z for n>1 and i, C,.,—C, be the inclusion homomorphism.

i=pt L - .
Let j,: C,— A, be the inclusion homomorphism also. Then the following ladder

commutes,
" i i
o e C, - Cy e,
Ji | le Jal
! A A
o A g s Ry
A'l I 2 Ja 3 Ja

Clearly the pro-group homomorphism j is not equivalent to the zero-homo»
morphism k: {C,}={4,} with k,: C,—~4, the zero-homomorphism for all n.
However, /;-aj = ok is the zero pro-group homomorphism for both j and k.
Thus 4 is not a ]1'1.011'(V>‘n1orphism. .

Note that the pro-group {C,; i,} is not uniformly movable. Corollary 4.4
of [10] shows that A is & monomorphism in the category of uniformly movable pro-
groups. Note also that /2 is an epimorphism in the category of pro-groups. This
follows from Corollary 4.3 of [10]. '
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2. A proof of Theorem 3. In this section we give a proof of Theorem 3. In the
next section we give another version of a Whitehead theorein using the Cech homo-
logy groups based on the results in [8].

2.1, DErINITION. Let {G,; poy; a<Ped} be an object in the category of
pro-groups. Then this object satisfies the Mittag-Leffler condition (ML) provided
that for each o e 4 there is a f>o such that for all y=>8

sz(Gy) = pzﬂ(Gﬁ) < Ga .

The condition ML simply states that for a fixed «, the images p,,(G,) are finally
constant,

Now for any pro-group {G,; p.,; a<fe.d} we can topologize the inverse
limit group G by giving it the inverse limit topology considering each G to have
the discrete topology. Then G is a topological group. This topology is useful if
the set 4 is countable and the pro-group satisfies ML. In this case let G be the in-
verse limit of {&,} and consider the inverse system of groups {G/N; pyy ; N'<N ey}
where 7 is the set of all open and closed normal subgroups of G. The following
proposition was observed in [1] (see also [4], Proposition 2).

2.2. PROPOSITION. Let {G,; p,; ne P} be a pro-group satisfying ML, with P the
positive integers. Let {GIN; pyw; N'<Nen} be as above. Then {G,} and {G/N}
are isomorphic as pro-groups. The isomorphism berween {G,} and {G/N} can be
taken to induce the identity map on G.

Proof. The sets N, = kerp,cG are open and closed normal subgroups of

the inverse limit group G. We will show that {G/N,} is equivalent to the pro-group -

{G,; p,}. Once this is established, then since {N,} forms a basis for ¢ € G, {N,} is
cofinal in . Thus {G/N,} is equivalent to {G/N'} by [4], Proposition 1. Thus {G,; p,}
and {G/N} will be equivalent also.

To show that {G/N,} is equivalent to {G,; p,} note that there is a homo-
motphism g,: G/N,— G, for all n>1. Note also that by the condition ML, for
_ each », there is an f(n)>n such that for all k>f(n), pu(G) = Pryn(Greny). Note

that this implies that p(G) = Ppyiuy(Gremy) = g.(G/N,) as well. Let f(n) be defined
in this way such that f(m)>f(n) for m>n. For each n now let Jot Gy GIN, be
defined by f;l = g;]‘ © Pnsiny» . .

1

G, -GN,
A

)

It is routine to verify that fo g and g o f are the identities in the category of
pro-groups where f is defined by the function f: P—P and the homomorphisms
{fu; ne P} given above. Thus {G/N,} and {G,} are isomorphic as pro-groups and
thus {G,} and {G/N} are isomorphic as pro-groups. All the pro-group isomorphisms
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in the proof will induce the identity homomorphism on G. The last statement in the
proposition follows from this,

2.3. Remark. If the topologies described above would have been introduced
in Example 1.1, then A would have been a continuous isomo6rphism, but 7ot a homeo-
morphism. The topology on A is discrete in the example and that on B is not. If /
were a homeomorphism, then by Proposition 2.2, h would had to be an isomorphism
of pro-groups and hence a monomorphism of pPro-groups.

2.4. CorOLLARY. If {G,; ne P} and {H,; n € P} are pro-groups satisfying ML
with G and H the inverse Nmir groups, then if h: G— H is an isomorphism which is
-a homeomorphism, then {G,} and {H,} are isomorphic by an isomorphism whick
induces h.

2.5. ProrOSITION. If {G,; ne P} and {H,; ne P} are pro-groups satisfying ML
with G and H the inverse limit groups, then if h: G—H is a continuous surfective
homomorphism, then there is a unique pro-group homomorphism h: (G} = {H}
with b the inverse limit of h and h is an epimorphism in the pro-group category.

Proof. The pro-group {G,} is equivalent to {G/N} and {H,} is equivalent
to {H/N} by Proposition 2.3. Thus we need only to piove the proposition for
{G/N} and {H/N}. We define a pro-group homomorphism h: {GIN} > {H/N} as
follows. Let N<H be an open and closed normal subgroup. Then A~ 1(¥) is an
open and closed normal subgroup of G. Then let

hy: GIh™Y(N)~HIN

be the naturally induced homomorphism. Then the correspondence k71: n(H)
—-1(G) and the homomorphisms {hy: Nen(H)} define h. We will show that / is
an epimorphism, then show that i is unique. Using the fact that % is an epi-
morphism and that all bonding maps are, epimorphisms in {G/N} and {H/N} one
has cleatly that condition (e) of Theorem 6 in [8] is satisfied and thus / is an epi-
morphism. If g: {G/N}— {H/N} also induced £ as its inverse limit, then if g: 7 (H)
=7(G) and {gy: Nen(H)} represents g, then for each Nen(H) the following
diagram commutes because g induces &,

Glyg(N)—2— > HIN
by
Glg(N) A B Y(N) —- GIh™(N)

But this implies that g and ) are equivalent (141, §2).

In order to apply this to prove Theorem 3 we need the following well:known
result of Banach [2],

2.6, PROPOSITION, If G and H are separable and completely inetrizable topo-
logical groups and if hi G — H is a surjective continuous homomorphism, then b is open.

Proof of Theorem 3. Let F: (X, x)— (Y, ») be a shape morphism satisfying
the hypotheses of Theorem 3. Then the pro-group homomorphisms Fi m{(X, %)}
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-m{(Y,»)} induce continuous group homomorphisms F,: m(X, x)—m(Y, )
for all k where m(X, x) and m(Y, ) are given the limit topologies induced by
m{(X, %)} and m{(¥,)} described carlier in this section. By the movability. of
(X, x) and (Y, 3), the pro-groups m{(X, x)} and 7 {(Y, )} are movable and hence
satisfy condition ML of 2.1. Since F,: m (X, x)—-m(Y, y) is onto for 1<k <ny+1,
F, is the unique pro-group homomorphism inducing F, by Proposition 2.5. Now
(X, %)} and m{(¥,»)} are each clearly equivalent to a pro-group which is
a countable inverse sequence of countable groups. Thus the groups (X, x) and
m(Y,y) are complete separable metric groups. Applying Proposition 2.6 to the

continuousisomorphisms F:omfX, x)— m( Y, y) for 1<k<ny we have that F, is,

also a homeomorphism and thus by Corollary 24 Fy: m{(X, 2}~ m{(¥, ¥)} is
a pro-group isomorphism for 1<k<n,. By Proposition 2.5 Fyy4y: oo 1 (X, %)}
70 41{(¥, 1)} is an epimorphism of pro-groups. Thus F satisfies the hypotheses
of Theorem 2 and must be a shape equivalence. One could also apply Theorem 4.3
of [11] to complete the proof.

3. The Whitehead Theorem in homology. The technique of topologizing the
shape groups 7,(X, X) described in § 2 can also be applied to topologizing the Cech
homology groups. If X is a movable compactum, then the pro-group H({X}; &)
satisfies the Mittag-Leffler condition for all n. If X is also metric and G is count-
able, then H,({X}; G) is equivalent to a countable inverse system of countable
groups. We could apply the techniques of § 2 to thus obtain the following lemma.

3.1. Lemma. If F: X—Y is a shape morphism with X" and Y movable metric
compacta and if G is a countable group, then if, F,: H(X; G)—~ H(Y; G) is an iso-
morphism for some n, then F induces an isomorphism of pro-groups from H{X); ®
to H({Y}; G). If F,: H(X; G)~H(Y; G) is an epimorphism for some n, then F
induces an epimorphism of pro-groups from H,({X}; G) 1o H({Y}; G).

‘We will use Lemma 3.1 to obtain a homological version of Theorem 3. In [8]
Mardesi¢ proved the following theorem and its corollary.

3.2. THEOREM. Let F: (X, x)— (Y, ¥) be a shape map of 1-shape connected finite-
dimensional topological spaces. We assume in addition that either

() X is compact Hausdorff and Y compact metric, or

(ii) F is induced by a continuous map f.

IfF.: B({X}; )~ H({Y}; G is an isomorphism of pro-groups for 2Kk <ny
= max{l+dim X, dim ¥} and an epimorphism for k = ny, then F is a shape equi-
valence. ' : !

3.3. COROLLARY. Let (X,x) be a 1-shape connected finite-dimensional space.
If H({X}; Z2) =0 for 2<k<dimX, then X has trivial shape.

Using the techniques of proof for Theorem 3 given in § 2 together with
Lemma 3.1 we have the following results.

3.4, TueorReM. Let F: (X,x)—~(Y,y) be a shape map of f_im'te—dimensional )

movable pointed metric continua. If n,(X,x) =0 =ny(Y,y) and F: H{(X; Z)
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~H(Y; Z) is an isomorphism for 2<k<n, = max{l+dimX, dim Y} and an
epimorphism for k = ny, then F is a shape equivalence. .

Proof. Since (X, x) and (¥, y) are movable pointed metric continua, 7,(X, x)
= 1,(Y, y) = 0 implies that (X, x) and (¥, y) are 1-shape connecied. By Lemma 3.1,
F induces an isomorphism of pro-groups from H({X}; Z) to H({T}; Z) for 2<k
<n, and an epimorphism of pro-groups for k& = n,. Thus F is a shape equivalence
by Theorem 3.2.

3.5. CoROLLARY. Let (X, x) be a finite-dimensional movable pointed continuum-_
Then if m(X,x) =0 and H(X; Z2) =0 for 2<k<dim X, then (X, x) has trivial
shape.

3.6. Exampie. In [3], J. Draper and the author give an example of two mov-
able pointed metric continua (X, x) and (¥, y) and a continuous function f: (X, x)
- (Y, ) such that S(f) induces isomorphisms of the homotopy pro-groups and
the shape groups for all k>1 but with S(f) not a shape equivalence. An exami-
nation of that example also shows that both (X, x) and (¥, ») are 1-shape connected
and that S(f) induces isomorphisms of H({X}; Z) to H({Y}; Z) and H(X; Z)
to H(Y; Z) for all k=1. Thus the finite-dimensionality of X and ¥ is necessary
in Theorem 3.4.
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