

On the Whitehead Theorem in shape theory

by

James Keesling * (Gainesville, Florida)

Abstract. Let $F: (X, x) \rightarrow (Y, y)$ be a shape morphism with (X, x) and (Y, y) pointed movable metric continua of finite dimension. A theorem of M. Moszyńska asserts that if $F_*: \underline{\pi}_k(X, x) \rightarrow \underline{\pi}_k(Y, y)$ is an isomorphism for all k, then F is a shape equivalence. In this note a gap is pointed out in Moszyńska's proof and a correction given. Some related results are also presented.

Let T be the category of pointed topological spaces and HT be the homotopy category of pointed topological spaces with $H: T \to HT$ the homotopy functor. Let $S: T \to ST$ be the shape functor to the shape category in the sense of S. Mardešić [6]. If (X, x) is a pointed topological space, then there is for each n an inverse system of groups associated with (X, x) called the n-th homotopy pro-group of (X, x) (see [7]) which we will denote by $\pi_n\{(X, x)\}$. A shape morphism $F: (X, x) \to (Y, y)$ induces a unique morphism $F_n: \pi_n\{(X, x)\} \to \pi_n\{(Y, y)\}$ in the category of pro-groups. There is also associated with (X, x) a group $\underline{\pi}_n(X, x)$ for each positive integer n which is the projective limit of $\pi_n\{(X, x)\}$. This we will call the n-th shape group of (X, x). The morphisms F_n and hence F induce unique homomorphisms $F_*: \underline{\pi}_n(X, x) \to \underline{\pi}_n(Y, y)$ in the category of groups. These structures $\pi_n\{(X, x)\}$ and $\underline{\pi}_n(X, x)$ in shape theory are analogous to the homotopy groups $\pi_n(X, x)$ in homotopy theory. Similarly we have the n-dimensional homology pro-groups $H_n(X)$; G with coefficient group G. The projective limit of these pro-groups the n-dimensional Čech homology groups with coefficient group G, $H_n(X)$; G.

The classical theorem of J. H. C. Whitehead has played an important role in homotopy theory.

THEOREM 1. Let $f: (X, x) \rightarrow (Y, y)$ be a continuous map with $f_i: \pi_i(X, x) \rightarrow \pi_i(Y, y)$ an isomorphism for $i < n_0 = \max\{1 + \dim X, \dim Y\}$ and an epimorphism for $i = n_0$ where (X, x) and (Y, y) are connected CW-complexes. Then f is a homotopy equivalence.

In shape theory there are several results analogous to this theorem which have been proved. The following theorem is due to Mardešić [7].

^{*} Partially supported by NSF grant GP-42664.

THEOREM 2. Let $F: (X, x) \rightarrow (Y, y)$ be a shape morphism where X and Y are finite-dimensional spaces and suppose that one of the two following conditions is satisfied.

- (i) F is induced by a continuous map f (i.e. F = S(f)), or
- (ii) X and Y are continua with Y metrizable.

Then if F_k : $\pi_k\{(X,x)\} \to \pi_k\{(Y,y)\}$ is an isomorphism of pro-groups for $1 \le k < n_0 + 1 = \max\{1 + \dim X, \dim Y\} + 1$ and an epimorphism for $k = n_0 + 1$, then F is a shape equivalence.

In case (ii) is satisfied the theorem is a slight generalization of a theorem of M. Moszyńska [11]. A version of the Whitehead Theorem involving the groups $\pi_n(X, x)$ was also presented in [11].

THEOREM 3. Let (X, x) and (Y, y) be finite-dimensional movable pointed continual and let $F: (X, x) \to (Y, y)$ be a shape morphism such that $F_*: \underline{\pi}_k(X, x) \to \underline{\pi}_k(Y, y)$ is an isomorphism for $1 \le k < n_0 + 1 = \max\{1 + \dim X, \dim Y\} + 1$ and an epimorphism for $k = n_0 + 1$. Then F is a shape equivalence.

However, there seems to be a gap in the proof of this theorem in [11]. It is the purpose of this paper to point out the gap in the proof and provide a correct proof of theorem. There is an advantage to the proof of Theorem 3 presented in this paper even apart from the gap in [11]. The proof presented here does not make use of the auxiliary notion of uniform movability introduced in [10]. What is crucial in the proof presented here is the use of a natural topology on the groups $\underline{\pi}_n(X, x)$ which is described in [4] and which was first introduced by M. Atiyah and G. B. Segal [1]. We are also able to prove a homological version of Theorem 3 using these notions based on results in [8].

1. The gap. Theorem 3 appears as Theorem 4.3 in [11]. There appears to be a gap in the proof of this theorem which appears in statement (6) on page 261 of [11]. The statement depends on Corollary 6.6 of [10] which we state here for examination.

COROLLARY (6.6 of [10]). If (X, x) and (Y, y) are uniformly movable pointed compact Hausdorff spaces and $F: (X, x) \rightarrow (Y, y)$ is a shape morphism, then

- (1) $F_*: \underline{\pi}_n(X, x) \to \underline{\pi}_n(Y, y)$ a group monomorphism implies that $F_n: \pi_n\{(X, x)\} \to \pi_n\{(Y, y)\}$ is a monomorphism in the category of pro-groups,
- (2) F_* : $\underline{\pi}_n(X, x) \to \underline{\pi}_n(Y, y)$ a group epimorphism implies that F_n : $\pi_n\{(X, x)\}$ $\to \pi_n\{(Y, y)\}$ is an epimorphism in pro-groups,
- (3) F_* : $\underline{\pi}_n(X, x) \to \underline{\pi}_n(Y, y)$ a group bimorphism (a monomorphism and an epimorphism) implies that F_n : $\pi_n\{(X, x)\} \to \pi_n\{(Y, y)\}$ is a bimorphism in progroups.

No proof is given for Corollary 6.6 in [10] only the statement that it follows from 6.1 and 4.3-4.5 in [10]. It appears on carefully examining 6.1 and 4.3-4.5 and their proofs that one is justified in making assertion (2). However, in place of (1) one appears to be able state only (1') F_* : $\underline{\pi}_n(X, x) \rightarrow \underline{\pi}_n(Y, y)$ a group mono-

morphism implies that $F_n: \pi_n\{(X, x)\} \to \pi_n\{(Y, y)\}$ is a monomorphism in the category of uniformly movable pro-groups.

The difficulty is that a monomorphism in the category of uniformly movable pro-groups need *not* be a monomorphism in the category of pro-groups. The next example demonstrates this. In the proof of Theorem 3 Moszyńska needed F_n to be a monomorphism in the category of pro-groups.

It should be remarked that we do not have a counterexample to Corollary 6.6 (1). That appears to be difficult. Corollary 6.6 is true if X and Y are *metrizable* which is basically what we prove in $\S 2$ of this paper.

1.1. EXAMPLE. Let $A=B=\prod_{i=1}^{\infty}Z$ where Z is the group of integers. Let $A_n=\prod_{i=1}^{\infty}Z=A$ for all $n\geqslant 1$ and let $f_n=\operatorname{id}_A$ for all $n\geqslant 1$, $f_n\colon A_{n+1}\to A_n$. Let $B_n=\prod_{i=1}^nZ$ for $n\geqslant 1$ and let $g_n\colon B_{n+1}\to B_n$ be projection onto the first n coordinates. Then B is the inverse limit of the inverse system $\{B_n;g_n\}$ and A is the inverse limit of $\{A_n;f_n\}$. Now let $h\colon \{A_n\}\to \{B_n\}$ be defined by $h_n\colon A_n\to B_n$ be the projection homomorphism onto the first n coordinates. Then the following ladder of groups and homomorphisms commutes.

$$A_{1} \xleftarrow{f_{1}} A_{2} \xleftarrow{f_{2}} A_{3} \xleftarrow{f_{3}} \dots$$

$$\downarrow h_{1} \downarrow h_{2} \downarrow h_{3} \downarrow$$

$$B_{1} \xleftarrow{g_{1}} B_{2} \xleftarrow{g_{2}} B_{3} \xleftarrow{g_{3}} \dots$$

Clearly $h\colon A\to B$ which is the inverse limit of \underline{h} is just the identity homomorphism. However, we will now show that \underline{h} is not a monomorphism in the category of pro-groups.

Let $C_n = \prod_{i=n+1}^{m} Z$ for $n \ge 1$ and $i_n : C_{n+1} \to C_n$ be the inclusion homomorphism. Let $j_n : C_n \to A_n$ be the inclusion homomorphism also. Then the following ladder commutes.

$$C_1 \xleftarrow{l_1} C_2 \xleftarrow{l_2} C_3 \xleftarrow{l_3} \dots$$

$$J_1 \downarrow \qquad J_2 \downarrow \qquad J_3 \downarrow \qquad J_4 \downarrow \qquad J_4 \leftarrow J_4 \leftarrow J_4 \leftarrow J_5 \rightarrow J$$

Clearly the pro-group homomorphism j is not equivalent to the zero-homomorphism $k: \{C_n\} \to \{A_n\}$ with $k_n: C_n \to A_n$ the zero-homomorphism for all n. However, $h \circ j = h \circ k$ is the zero pro-group homomorphism for both j and k. Thus h is not a monomorphism.

Note that the pro-group $\{C_n; i_n\}$ is not uniformly movable. Corollary 4.4 of [10] shows that \underline{h} is a monomorphism in the category of uniformly movable progroups. Note also that \underline{h} is an epimorphism in the category of pro-groups. This follows from Corollary 4.3 of [10].

On the Whitehead Theorem in shape theory

- 2. A proof of Theorem 3. In this section we give a proof of Theorem 3. In the next section we give another version of a Whitehead theorem using the Čech homology groups based on the results in [8].
- 2.1. DEFINITION. Let $\{G_{\alpha}; p_{\alpha\beta}; \alpha \leqslant \beta \in A\}$ be an object in the category of pro-groups. Then this object satisfies the *Mittag-Leffler condition* (ML) provided that for each $\alpha \in A$ there is a $\beta \geqslant \alpha$ such that for all $\gamma \geqslant \beta$

$$p_{\alpha\gamma}(G_{\gamma}) = p_{\alpha\beta}(G_{\beta}) \subset G_{\alpha}$$
.

The condition ML simply states that for a fixed α , the images $p_{\alpha\gamma}(G_{\gamma})$ are finally constant.

Now for any pro-group $\{G_\alpha; p_{\alpha\beta}; \alpha \leqslant \beta \in A\}$ we can topologize the inverse limit group G by giving it the inverse limit topology considering each G to have the discrete topology. Then G is a topological group. This topology is useful if the set A is countable and the pro-group satisfies ML. In this case let G be the inverse limit of $\{G_\alpha\}$ and consider the inverse system of groups $\{G/N; p_{NN'}; N' \subset N \in \eta\}$ where η is the set of all open and closed normal subgroups of G. The following proposition was observed in [1] (see also [4], Proposition 2).

2.2. Proposition. Let $\{G_n; p_n; n \in P\}$ be a pro-group satisfying ML with P the positive integers. Let $\{G/N; p_{NN'}; N' \subset N \in \eta\}$ be as above. Then $\{G_n\}$ and $\{G/N\}$ are isomorphic as pro-groups. The isomorphism between $\{G_n\}$ and $\{G/N\}$ can be taken to induce the identity map on G.

Proof. The sets $N_n = \ker p_n \subset G$ are open and closed normal subgroups of the inverse limit group G. We will show that $\{G/N_n\}$ is equivalent to the pro-group $\{G_n; p_n\}$. Once this is established, then since $\{N_n\}$ forms a basis for $e \in G$, $\{N_n\}$ is cofinal in η . Thus $\{G/N_n\}$ is equivalent to $\{G/N\}$ by [4], Proposition 1. Thus $\{G_n; p_n\}$ and $\{G/N\}$ will be equivalent also.

To show that $\{G/N_n\}$ is equivalent to $\{G_n; p_n\}$ note that there is a homomorphism $g_n\colon G/N_n\to G_n$ for all $n\geqslant 1$. Note also that by the condition ML, for each n, there is an $f(n)\geqslant n$ such that for all $k\geqslant f(n)$, $p_{nk}(G_k)=p_{nf(n)}(G_{f(n)})$. Note that this implies that $p_n(G)=p_{nf(n)}(G_{f(n)})=g_n(G/N_n)$ as well. Let f(n) be defined in this way such that f(n)>f(n) for m>n. For each n now let $f_n\colon G_{f(n)}\to G/N_n$ be defined by $f_n=g_n^{-1}\circ p_{nf(n)}$.

It is routine to verify that $\underline{f} \circ \underline{g}$ and $\underline{g} \circ \underline{f}$ are the identities in the category of pro-groups where \underline{f} is defined by the function $f \colon P \to P$ and the homomorphisms $\{f_n; n \in P\}$ given above. Thus $\{G/N_n\}$ and $\{G_n\}$ are isomorphic as pro-groups and thus $\{G_n\}$ and $\{G/N\}$ are isomorphic as pro-groups. All the pro-group isomorphisms

in the proof will induce the identity homomorphism on G. The last statement in the proposition follows from this.

- 2.3. Remark. If the topologies described above would have been introduced in Example 1.1, then h would have been a continuous isomorphism, but not a homeomorphism. The topology on A is discrete in the example and that on B is not. If h were a homeomorphism, then by Proposition 2.2, h would had to be an isomorphism of pro-groups and hence a monomorphism of pro-groups.
- 2.4. COROLLARY. If $\{G_n; n \in P\}$ and $\{H_n; n \in P\}$ are pro-groups satisfying ML with G and H the inverse limit groups, then if $h: G \to H$ is an isomorphism which is a homeomorphism, then $\{G_n\}$ and $\{H_n\}$ are isomorphic by an isomorphism which induces h.
- 2.5. Proposition. If $\{G_n; n \in P\}$ and $\{H_n; n \in P\}$ are pro-groups satisfying ML with G and H the inverse limit groups, then if $h: G \to H$ is a continuous surjective homomorphism, then there is a unique pro-group homomorphism $h: \{G_n\} \to \{H_n\}$ with h the inverse limit of h and h is an epimorphism in the pro-group category.

Proof. The pro-group $\{G_n\}$ is equivalent to $\{G/N\}$ and $\{H_n\}$ is equivalent to $\{H/N\}$ by Proposition 2.3. Thus we need only to prove the proposition for $\{G/N\}$ and $\{H/N\}$. We define a pro-group homomorphism $\underline{h}\colon \{G/N\}\to \{H/N\}$ as follows. Let $N\subset H$ be an open and closed normal subgroup. Then $h^{-1}(N)$ is an open and closed normal subgroup of G. Then let

$$h_N: G/h^{-1}(N) \rightarrow H/N$$

be the naturally induced homomorphism. Then the correspondence $h^{-1}\colon \eta(H)\to \eta(G)$ and the homomorphisms $\{h_N\colon N\in \eta(H)\}$ define \underline{h} . We will show that \underline{h} is an epimorphism, then show that \underline{h} is unique. Using the fact that h is an epimorphism and that all bonding maps are, epimorphisms in $\{G/N\}$ and $\{H/N\}$ one has clearly that condition (e) of Theorem 6 in [8] is satisfied and thus \underline{h} is an epimorphism. If $\underline{g}:\{G/N\}\to\{H/N\}$ also induced h as its inverse limit, then if $g:\eta(H)\to \eta(G)$ and $\{g_N\colon N\in \eta(H)\}$ represents \underline{g} , then for each $N\in \eta(H)$ the following diagram commutes because \underline{g} induces h.

$$G/g(N) \xrightarrow{g_N} H/N$$

$$\uparrow \qquad \qquad \uparrow^{h_N}$$

$$G/g(N) \cap h^{-1}(N) \longrightarrow G/h^{-1}(N)$$

But this implies that \underline{g} and \underline{h} are equivalent ([4], § 2).

In order to apply this to prove Theorem 3 we need the following well-known result of Banach [2].

2.6. Proposition. If G and H are separable and completely metrizable topological groups and if $h: G \to H$ is a surjective continuous homomorphism, then h is open.

Proof of Theorem 3. Let $F: (X, x) \to (Y, y)$ be a shape morphism satisfying the hypotheses of Theorem 3. Then the pro-group homomorphisms $F_k: \pi_k\{(X, x)\}$

 $\to \pi_k\{(Y,y)\} \ \text{induce continuous group homomorphisms} \ F_*\colon \ \pi_k(X,x) \to \pi_k(Y,y)$ for all k where $\pi_k(X, x)$ and $\pi_k(Y, y)$ are given the limit topologies induced by $\pi_k\{(X,x)\}$ and $\pi_k\{(Y,y)\}$ described earlier in this section. By the movability of (X, x) and (Y, y), the pro-groups $\pi_k\{(X, x)\}$ and $\pi_k\{(Y, y)\}$ are movable and hence satisfy condition ML of 2.1. Since F_* : $\pi_k(X, x) \to \pi_k(Y, y)$ is onto for $1 \le k \le n_0 + 1$, F_k is the unique pro-group homomorphism inducing F_k by Proposition 2.5. Now $\pi_k\{(X,x)\}$ and $\pi_k\{(Y,y)\}$ are each clearly equivalent to a pro-group which is a countable inverse sequence of countable groups. Thus the groups $\pi_k(X,x)$ and $\pi_k(Y, y)$ are complete separable metric groups. Applying Proposition 2.6 to the continuous isomorphisms F_{ω} : $\pi_k(X, x) \to \pi_k(Y, y)$ for $1 \le k \le n_0$ we have that F_{ω} is also a homeomorphism and thus by Corollary 2.4 F_k : $\pi_k\{(X, x)\} \to \pi_k\{(Y, y)\}$ is a pro-group isomorphism for $1 \le k \le n_0$. By Proposition 2.5 F_{n_0+1} : $\pi_{n_0+1}\{(X,x)\}$ $\to \pi_{n_0+1}\{(Y,y)\}$ is an epimorphism of pro-groups. Thus F satisfies the hypotheses of Theorem 2 and must be a shape equivalence. One could also apply Theorem 4.3 of [11] to complete the proof.

- 3. The Whitehead Theorem in homology. The technique of topologizing the shape groups $\pi_n(X, x)$ described in § 2 can also be applied to topologizing the Čech homology groups. If X is a movable compactum, then the pro-group $H_n(X)$; G) satisfies the Mittag-Leffler condition for all n. If X is also metric and G is countable, then $H_n(\{X\}; G)$ is equivalent to a countable inverse system of countable groups. We could apply the techniques of § 2 to thus obtain the following lemma.
- 3.1. Lemma. If $F: X \rightarrow Y$ is a shape morphism with X and Y movable metric compacta and if G is a countable group, then if, $F_{\downarrow}: H_n(X; G) \to H_n(Y; G)$ is an isomorphism for some n, then F induces an isomorphism of pro-groups from $H_n(X)$; G) to $H_n(\{Y\}; G)$. If $F_*: H_n(X; G) \to H_n(Y; G)$ is an epimorphism for some n, then F induces an epimorphism of pro-groups from $H_n(\{X\}; G)$ to $H_n(\{Y\}; G)$.

We will use Lemma 3.1 to obtain a homological version of Theorem 3. In [8] Mardešić proved the following theorem and its corollary.

- 3.2. THEOREM. Let $F: (X, x) \to (Y, y)$ be a shape map of 1-shape connected finitedimensional topological spaces. We assume in addition that either
 - (i) X is compact Hausdorff and Y compact metric, or
 - (ii) F is induced by a continuous map f.

If $F_*: H_k(\{X\}; G) \to H_k(\{Y\}; G)$ is an isomorphism of pro-groups for $2 \le k < n_0$ $= \max\{1 + \dim X, \dim Y\}$ and an epimorphism for $k = n_0$, then F is a shape equivalence.

3.3. COROLLARY. Let (X, x) be a 1-shape connected finite-dimensional space. If $H_k(\{X\}; Z) = 0$ for $2 \le k \le \dim X$, then X has trivial shape.

Using the techniques of proof for Theorem 3 given in § 2 together with Lemma 3.1 we have the following results.

3.4. THEOREM. Let $F: (X, x) \rightarrow (Y, y)$ be a shape map of finite-dimensional movable pointed metric continua. If $\pi_1(X, x) = 0 = \pi_1(Y, y)$ and $F_*: H_k(X; Z)$

 $\rightarrow H_k(Y; Z)$ is an isomorphism for $2 \le k < n_0 = \max\{1 + \dim X, \dim Y\}$ and an epimorphism for $k = n_0$, then F is a shape equivalence.

Proof. Since (X, x) and (Y, y) are movable pointed metric continua, $\pi_1(X, x)$ $=\pi_1(Y, y)=0$ implies that (X, x) and (Y, y) are 1-shape connected. By Lemma 3.1, F induces an isomorphism of pro-groups from $H_k(\{X\}; Z)$ to $H_k(\{Y\}; Z)$ for $2 \le k$ $\langle n_0 \rangle$ and an epimorphism of pro-groups for $k = n_0$. Thus F is a shape equivalence by Theorem 3.2.

- 3.5. COROLLARY. Let (X, x) be a finite-dimensional movable pointed continuum. Then if $\pi_{\lambda}(X,x)=0$ and $H_{\lambda}(X;Z)=0$ for $2 \le k \le \dim X$, then (X,x) has trivial
- 3.6. Example. In [3], J. Draper and the author give an example of two movable pointed metric continua (X, x) and (Y, y) and a continuous function f: (X, x) $\rightarrow (Y, y)$ such that S(f) induces isomorphisms of the homotopy pro-groups and the shape groups for all $k \ge 1$ but with S(f) not a shape equivalence. An examination of that example also shows that both (X, x) and (Y, y) are 1-shape connected and that S(f) induces isomorphisms of $H_{i}(\{X\}; Z)$ to $H_{i}(\{Y\}; Z)$ and $H_{i}(X; Z)$ to $H_k(Y; Z)$ for all $k \ge 1$. Thus the finite-dimensionality of X and Y is necessary in Theorem 3.4.

References

- [1] M. Atiyah and G. B. Segal, Equivariant K-theory and its completion, J. Diff. Geom, 3 (1969), pp. 1-18.
- S. Banach, Über metrische Gruppen, Studia Math. 3 (1931), pp. 101-113.
- [3] J. Draper and J. Keesling, An example concerning the Whitehead Theorem in shape theory, Fund, Math. 92 (1976), pp. 259-263.
- D. A. Edwards and R. Geoghegan, Compacta weak shape equivalent to ANR's, Fund. Math. 90 (1975), pp. 115-124.
- [5] J. Keesling, The Čech homology of compact connected abelian topological groups with applications to shape theory, Proceedings of the Geometric Topology Conference, University of Utah, 1974, pp. 325-331.
- [6] S. Mardešić, Shapes for topological spaces Gen. Top. and its Appl. 3 (1973), pp. 265-282.
- -- On the Whitehead Theorem in shape theory I, Fund. Math. 91 (1976), pp. 51-64.
- On the Whitehead Theorem in shape theory II, Fund. Math. 91 (1976), pp. 93-103.
- and S. Ungar, The relative Hurewicz Theorem in shape theory, Glasnik Mat. 9 (29) (1974), pp. 317-327.
- [10] M. Moszyńska, Uniformly movable compact spaces and their algebraic properties, Fund. Math. 77 (1972), pp. 125-144.
- [11] The Whitehead Theorem in the theory of shapes, Fund. Math. 80 (1973), pp. 221-263.

UNIVERSITY OF FLORIDA Gainesville, Florida

Accepté par la Rédaction le 29.7.1974