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Some problem in elementary arithmetics *

by
D. Jensen ** and A, Ehrenfeucht (Boulder) :

Abstract, Three different questions concerning peano arithmetic P are considered. (1) How
large can the set of theories of the submodels or end extensions of some fixed non-standard model
of P be? (2) What are the properties of the partial ordering of embeddibility between complete
extensions of P? (3) How is the isomorphism type of a model of P related to the “isomorphism
types’ of its reducts? ' :

This paper is concerned with (complete) extensions of elementary arithmetic P.
The bulk of the paper is contained in §§ 2, 3, 4 and each one of these sections is

concerned with a separate idea. }
Let M be a non-standard model of P, and let M ’ be a submodel or end ex-

‘tension of M, What can Th(M") be, and. how well does this family of theories

characterize M7 These questions are considered in § 2. )
Tn § 3 a partial ordering of complete extensions of P is introduced. (Ty<T;
if each model of Ty is embeddable in a mode} of Tj,) This ordering is shown to be

‘a tree, and several of its other properties are considered.

Tt is well known that for elementary arithmetic the. similarity type of the lan-
guage used is relatively unimportant. In § 4 a study is made of the relationship
between the isomorphism type of a model of P and the isomorphism type of certain
of its reduets. i ' .

The paper is completed by § 1, which contains the required preliminaries,
and § 5, which contains a collection of open problems.

§ 1. Preliminaries.
1A, P denotes the theory of elementary Peano arithmetic. ‘When technicalities
arise we may assume that the basic language L for P is suitably formalized with

variables, logical symbols (e.g. 71, A, 3, =), and the traditional symbols <, 0, ’

* This paper \was prepared by Don Jensen during 1973 at the University of Waterloo and

the University of Aberdeen. Tt resulted from work he had done in collaboration with Professor

Ehrenfeucht. The paper was near completion when Don Jensen was killed. §§ 1,_ 2, 3,4 had been
completed and § 5 was in the form of an unfinished manuscript. This last section has been left

‘unfinished. The introduction was written by FL. Simmons.
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+, -. But in discussion we freely use abbreviation, and even regard any symbol
defined from L as being present when it is convenient. V, and 3, will denote the
usual classes of prenex formulas of L, while B, denotes the class of propositional
combinations of V,’s. Correspondingly, we class a defined symbol according to
the class of its definition in L, while a 4,-symbol has both V, and 3, definitions.
By the theorem of Matijasevic (whose formal analog holds in P) we may disregard
bounded quantifiers in determining the Y, and 3, classes. In particular, any informal
recursive predicate may be present.as a 4, — (or recursive) — symbol. 7 denotes
the numeral (term in L) for n € . Formulas are denoted by ¢, ¥, «, etc. y = ux¢(x)
means ¢ () AVx(x<y—19(3)). Theories (P, its extensions, and reducts) are
identified with their sets of theorems (T ¢ indicates a theorem). Thus if 4 is a set
of formulas, P U 4 typically denotes the smallest theory containing 2 and 4. And
of course, P consists of the formulas of L obtained by logical deduction from
defining recursion axioms for the symbols of L and the schema of induction.

1B. We assume all of the standard results of general model theory. M, My,
M,, etc. always denote models of P while N denotes the standard model with
universe . M E ¢ means that M satisfies ¢ and Th(M) denotes the theory of formu-
las of L satisfied by M (a complete extension of P). M;c=M, means that M; is
embeddable as a submodel of M, (where both are models of P and the embedding
preserves the basic symbols of L; note that the interpretations of the recursive
symbols are also preserved). Where T, and T, are complete theories extending P,
we say that T’y admits embedding in T, provided every existential sentence of T,
is also in T}. Of course, this is equivalent to the condition that each model of T is
embeddable in some model of T,. M;~<M, indicates elementary embedding.
ae M means that a belongs to the universe of M. N is a submodel of every M,
which we call the standard part of M. M~ N is called the non-standard part of M.
Note that for M s N, the standard part cannot be defined in M, even with
parameters. As usual, by an n-type we mean a set of formulas, with at most n free
variables, which is maximally consistent with P. If T'is a complete extension of P,
then T has a prime model My which is an elementary submodel of each model of T,
Each element of My is a defined Skolem constant (e.g. some uxe (x)). This implies
that each type realized in My is principal (determined by a single formula). Given
a non-principal 1-type ¢ without parameters and consistent with a complete theory T,
there is a unique smallest elementary extension of My in which ¢ is realized. We
say such a model is single type generated.

1C. Where A<M, we say that 4 is an initial segment of M (and M an end-
extension of 4) if every element of M—4 is greater than every element of 4. M, is
a cofinal substructure of M, if every element of M, is less than some element of M.
EYery countable M s N has <-order type w+(w*+w)y (4: rationals; substructure
initial segments correspond to certain cuts in #). The following Gaifman result [3]
tells us that to determine the class of complete extensions of P satisfied by sub-
models of a given M, we need only to look at the initial segments:

* ©
Im Some problem in elementary arithmetics 225

PROPOSITION 1.1, Given M,< M, let M be the initial segment of M, which
is cofinal with M,. Then M,<M;.

We note another Gaifman result which extends the MacDowell-Specker
theorem:

PROPOSITION 1.2. For any M there is a family F of continuum many elementary
end-extensions of M which are pairwise non-isomorphic. If M is countable, then each
member of F is dlso.

1D. In §§ 2 and 3 we will use some arithmetization of syntax. If ¢ is a formula
of L, @ denotes the numeral for the code number of ¢. If 4 is a set of formulas,
the set of code numbers of these formulas is called the code set for 4. We use
a “dot” notatjon similar to that of Feferman (cf. [5], reference 6) to indicate re-
cursive function symbols which are the code analogs of syntactic operations (thus
"1 is 2 term with value 1, §—i has value ¢y, $ (%) has value as the code of
the result of substituting in ¢ the (x+1)-st numeral for free occurrences of an
understood variable). Also, corners (I, 1), placed around the description of a syn-
tactic property, will indicate the code analog. We let prfy(y, x) be a recursive proof
predicate for: y I is a proof in' P of | x. We also assume that this definition is natural
so that the usual intensional derivability conditions hold (cf. [6]), we will use various
consequences of these. For each n e we will have a truth definition tr,(x) whose
properties are noted below. ‘

PROPOSITION 1.3. (i) (Gédel lemma of self reference) given ¢ (x) with only x free,
obtain  such that Pty <o (); (i) P+ ¢ iff for some mew P+ prip(, §); (iid)
Pt prfp(y, xX)—x<y; (iv) for each n, tr, is a 4,,, symbol such that for any By -for-
mula ¢ (x) with only x free, Pt o (x)tr,(p(X)); and (v) for each formula 1, and
each me o, P+ AyAz(y<mm Atr,(2) Aprfp(y, z-5)) .

Remarks. We also use generalizations of (i). The 3, subclass of B, has and,
truth definition. "This leads to tr, being 4,.,, which is the best possible because
of (i). If T extending P is recursively enumerable, then (v) holds with P replaced
by T, for suitably chosen prfy (follows from (ii), (iii), (iv), and the derivability
conditions).

1E. P may be regarded as a set theory in which the axiom of infinity is negated:
certain numbers may be regarded as sets (e.g. the canonical sequence codes for
increasing sequences), and we take ¢ to be the recursive symbol for set membership.
We let power (x) be the recursive symbol whose value is the set of all subsets of x.
A standard set in M is a subset Acw such that for some aeM, 4
= {new| Mk} Here a is called a representative of A. (Note that 4 might
not be definable in M, although it is a segment of a definable sef). The family of
all standard sets in M is called the standard system of M (denoted $Sy(M)). The
following theorem of Friedman [2] will be important for some: of our results :

PROPOSITION 1.4. Let M, and M, be countable. Then M,cM, iff (i): Th(M,)
admits embedding in Th(M,), and (i) SSy(M,)=SSy(M,). Furthermore, M, is
isomorphic to an initial segment of M, iff (i) and (i) SSy(M,) = SSy (M,).
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1F: In § 4 we consider reducts of arithmetic. If K is a set (finite here) of

symbols definable in P, then Lg is the language (sublanguage of L) determined by .

the symbols in K. redgP denotes P N Ly. Similarly for a model M, redy M is the
structure with the universe of M, but only the functions and predicates of K (de-
termined. by their interpretations in M). We say that M, and M, are isomorphic
under K (M, ~xM,) exactly if redg My ~redyM,. An n-type under K means an
n-type in Ly consistent with redgP.

PROPOSITION 1.5. Both red P and red P are complete.

The first result is due to Presberger and the second to Mal’sev (cf, [1] references
60 and 50). We also: note a consequence of the Keisler-Shelah theorem (cf. [8]):

PropOSITION 1.6. For My and M, models (countable for our purposes), there
are ultrapowers MF = MIJU and MF = M3/U such that: if Th(redy M)
= Th(redg M,), then M} and M} are isomorphic under K.

~ §2 The complete theories of submodels of arithmetic. In this section we will
find that each non-standard model of P has very many submodels and these sub-
models satisfy very many distinct complete extensions of P. We also obtain similar
results about end-extensions. We first note some useful results about standard
systems.

LeMMA 2.1. Assume every model here is non-standard. (i) If A€ SSy(M) then
A has an arbitrarily s'mall representative in the non-standard part of M; (i) if M, < M,
then SSy(M,)=SSy(M,) and if M, and M, have isomorphic initial non-standard
segments then SSy(My) = SSy(M,); (iii) if @(x) is a formula which may include
parameters from M, then 4 = {ne w| Mk ¢(R)} is in the standard system of M;
(iv) 8Sy(M) is closed under usual recursion; (v) if My is the prime model of a complete
extension T of P and A € SSy(M), then 4 = {ne w| T+ ¢(R)} for some formula ¢
of L with one free variable and no parameters.

Proof. (i) Let a be a representative for 4 and let be M—N be arbitrary.
Choose ¢ such that power (power(c))<bd. Let d = a n power(c). Then d is a re-
presentative of 4 and d<b. (ii) Both parts follow from (i) and the absoluteness
of the recursive symbol ¢ under submodel embedding. (iii) Any set definable and
bounded in M behaves like a “finite” set in M. (iv) Clearly SSy(M) is closed under
stronger operations which are peculiar to M, but relative recursion depends only
on standard part. (v) Let a be a representative of some 4 € SSy(M,). Since My is
prime, a .is some Skolem constant uzj(z). So 4 = {new| T+7 eum//(z)}“ |

Our first observation concerning the diversity of submodels, of & given non-
standard model, is an easy consequence of theorems of Gaifman and Friedman:

PROPOSITION 2.2. Each countable M % N has a family F of initial segments
which realize 2™° distinct isomorphism types but such that for each M, € F, Th(M )
— Th(M), , ‘ e

Proof. By.Proposition 1.2; there is a family F of 24 elementary end-extensions
of M (each countable) which are pairwise non-isomorphic, If M, & F, then SSy (M)
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= §Sy(M) by Lemma 2.1 (if). But Th(M,) = Th(M) so the. other condition of
Proposition 1.4 (if) is satisfied and thus M, is embeddible as an initial segment of M. B

Note also that this argument indicates that M has a proper initial segment
isomorphic to itself (in fact at least 8, such segments). '

Lemma 2.3. Let M be given and let T be a complete extension of P with T # Th(N).
Then the prime model My of T is a submodel of M iff (i) T admits embedding in Th(M)
and (ii) for each ne o the code set of T n B, is in SSy(M).

Proof. We will suppose that M is countable (otherwise take a countable
elementary submodel of M preserving the code sets of the T n B,). We use Propo-
sition 1.4 (i) (the Friedman theorem).

Necessity. We need only to show that the code set for each T'n B, is in -
SSy(My). But this code set.is just {m e o| T+ tr,(m)} by Proposition 1.3 (i) and
such a set e SSy(My) by Lemma 2.1 (iii). . : )

Sufficiency. We need to show that SSy(My)<=SSy(M). By Lemma 2.1 (v),
if 4eSSy(My) then 4 = {mew| T+ (M)} where ¢ has no parameters. Let
¢ € B,. Then the set {F(#)| me o} is a recursive subset of the code set for B,.
So C = {kew| k = @(7M) where T+ o (M)} is recursive in the code set of T'n B,
and thus CeSSy(M) by Lemma 2.1 (iv). Similarly 4 e SSy(M) by recursively
decoding B. m ) ’

The characterization of the above lemma will enable us to show that each
non-standard model M has submodels satisfying very many distinct complete
extensions of P. Briefly, the idea will be to “define” these complete extensions in M.
The next lemma shows how we may represent in M, complete extensions with
certain syntactic properties, :

LemMa 2.4. Let M # N be given, along with a set of sentences A whose code
set is in SSy (M), and a sentence f such that P U A not b 1B, Then there is some C such
that: (i) C is a complete extension of P U A U {B}, and (ii) the code set for C is in
SSy(M). (However, we will usually ask only that C satisfy (i) up to some B,.)

Proof. For each element b € M we will form the. propositional closure of the
theorems of P U 4 u {B} with proof codes <b. For this purpose regard sentences
as atomic propositions and theorems as propositional combinations of sub-sentences.
Let « be a representative in M for the code set of A4, and define

prop(b, z) <> (z Tis a propositional consequence of 7

- {wl AxTy(y<bAxea Aprfp(y,x{\ﬁéw))}). v
Let ¢(v, b) be

Els(uasAVu(ues o (wvAuTis a sentence | A Tprop(d, AA Sey "lu)))) R

where 5, is a notation for the subset of s of elements < value u. Now we must
select a suitible parameter b so that ¢ (b, v) defines the code set of 2 desired comple- -
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tion of Pu 4 U {B}. Consider y(b) given by
Vo(( lPi_s a sentence | Av<d)-(p(v, B) v (710, b))).

The propositional closure of prop(fi, ) along with the actual consistency of
P u 4 u{p} ensure that M k(i) for each new. But M # N forbids us from
defining the standard part of M, so we may fix some b € M— N such that M Fy(b).
For this b, let C = {y| Mk ¢(7, b)}. Then the code set of C is in SSy(M) by
Lemma 2.1(iii). » :

Checking that C satisfies condition (i) of the lemma is straightforward: note
that “proofs” in M of length <b include all standard proofs (and possibly more),
so C will be a consistent extension of P U 4 U {f}. Completeness is automatic
because M F y(b). m

LemMa 2.5. Fopieach ne w there is a V1 Sentence o, such that for any set of
sentences A < B, which is closed under conjunction, if P U A is consistent, then neither
PUAdto, nor Pudbt Ta,.

(The corresponding result holds if P is replaced everywhere by a consistent
recursively enumerable extension of P.)

Proof. By the Godel lemma of self-reference, obtain a V,., sentence «, equiv-
alent to B

VwVx((tr,(x) Aprip(w, x>5,))»TpAz(y<w Atr,(2) Aprip(y, z- 1 &) -

(For n = 0, we delete the tr, parts and just obtajin the Rosser sentence). Suppose
P v 4 Fa, and such a proof has code m. Then noting Proposition 1.3(ii) and (iv),
we get
P U A+ I (tr,(x) Aprfe(, x58,)) Ad,..
So .
PudtAyAz(y<ii Atr,(x) Aprip(y, z= T15,) .

But then P U 4 F o, by Proposition 1.3(v). Then proof is similar if we assume
PUALFTo,. m

We identify the binary tree of length w (denoted A) with finite words on {0, 1}
'If 8 is such a word, then 50 is the left successor of s, sl is its right successor, and I,
is-the set of injtial subwords of s. Next we consider A labeled with sentences of I:

COROLLARY 2.6. There is a-labeled tree A, = {«f} s A} where: (i) o8 is o, as
in' Len?ma 2.5, (i) each oft is 1°, and (iii) each o’ satisfies the properties of 0,
given in Lemma 2.5, but with P U A L {of| rel} replacing P u A, Furthermore,
the labeling function f: A-»code set of A, (defined f(s) = oc—f,) is recursive.

Producing the o;, is a simple modification of Lemma 2.5. We call A, the B-in-
dependence tree. : '

DEFINITION 2A. T is called a complete B, extension of P (C"EP) provided
T<B, sentences, T is complete for sentences in B,, and T extends P n B,. Let
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Th"(M) denote the C"EP satisfied by M, and let Th"S(M) denote {Th"(M,)| M,
ranges over submodels of M},

LeMMA 2.7. Let M # N be given. For n>1, let T be a C"EP whose code set is
in SSy(M). Then there is a family F of %, distinct C***EP’s which all extend T and
all of whose code sets are in SSy(M).

Proof. Let X<A be a set of 8, words which are pairwise incomparable in A.
For se X, let f* be A\ A {as| r € L}. Corollary 2.6(iii) tells us that P U Tnotk 14"
So we may apply Lemma 2.4, taking T for 4, p° for B, and obtaining C from which
we form Ty as C n B, .. Then let F = {T}| se X}. Distinct words r and s in X
will yield distinct C"**EP’s noting Corollary 2.6(ii). m

THEOREM 1. If M # N, then there are 2™° distinct complete extensions of P
satisfied by submodels of M.

Proof. Let T, be a C'EP such that T, admits embedding in Th(M), and the
code set of Ty is in SSy(M). There exists such, namely Th(M) by Lemma 2.3.
Using Lemma 2.7 we form a tree I' of length o such that: (i) the nodes at height »n
are C"EP’s whose code sets are in SSy(M); (ii) the base node is T ; and (iii) each
node 7" has &, distinct immediate successors in I' all of which extend 7”. Clearly
the union of each branch of I yields a distinct complete extension T of P. And T
satisfies the conditions of Lemma 2.3, so MycM. m

COROLLARY 2.8. For M # N, the initial segments of M satisfy 2% distinct
complete extensions of P.

Remarks. This result follows immediately from Theorem 1 and Propo-
sition 1.1. We can obtain a stronger result: if M has a countable non-standard
initial segment, then there is a family F of 2% initial segments of M where distinct
members of F satisfy distinct complete extensions of P and each member of F is
theprime model of its respective theory. The idea is to build the theories leading
to F so that the standard system of M is coded in each theory (use Lemma 3.1 below).

We next note that elementary equivalence of models is not “local”: -

]

THEOREM 2. Given a countable M, # N, there exists an M, such that M, and M,
have identical sets of initial segments, but M, and M, are not elementarily equivalent.
(In fact M, may be chosen to refute any sentence which is not a logical consequence
of P Th(M,).)

Proof. Beginning with Th'(M,), simply choose a branch of the tree I' (of
the proof of Theorem 1) which determines a complete extension T' of P different
from Th(M). It follows from Lemmas 2.3 and 2.7 that My<=M,. Let M, be the
initial segment of M, determined by My. So Th(M,) = T by Proposition 1.1 and
SSy(M,) = SSy(M,) by Lemma 2.1(ii). Using this and noting that Th(M;)
= Th'(M,), Proposition 1.4 gives us that M, is itself isomorphic to an initial
segment of M,. The conclusion is immediate. @

Notice that each CIEP has 2% distinct C'EP’s (n>1) extending it because
each B, independence tree has continuum many branches. We next check that
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these extensions cannot all be realized by submodels of a given model with a count-~
able standard system. (Noting Lemma 2.3, they could all be realized by submodels
of a‘suitable model of power continuum.) The full strength of Theorem 1 requires
sentences ‘of ‘arbitrary complexity: '

COROLLARY 2.9. If M has a countable non;s;tandard initial segment, then
|Th"S(M)| = 8, for n>1.

Proof. Note that by the construction of the proof of Theorem 1, |Th".S(M)]
=1, for n>1. But by Lemma 2.3, the family of code sets of Th"S(M) is a subset
of SSy(M). And SSy(M) is countable noting the hypothesis on M and Lemma
2.13G). =

We next consider end-extensions of a given model M:

COROLLARY 2.10. If M is countable, then there are countable end-extensions
of M which satisfy 2™° distinct complete extensions of P.

Proof. Note from the proofs of Theorem 1 and Corollary 2.8 that there exists
a family F of injtial segments of M which satisfy Th*(M) and 2"° distinct extensions
of P. By Lemma 2.1(ii) and Proposition 1. 4(ii), M can be embédded as an initial
segment of each member of F. m

The end-extensions of the above result all satisfy Th'(M). In the next section
we will see that this is sometimes but not alw'lys necessary. The following result
characterizes what theories can be satisfied by end-extensions of M:

THEOREM 3. Let M, # N be countable and let T be a complete extension of P,
Then there is an end-extension M, of M, such that Th(M,) = T iff () Th(M,) admits
embedding in T, and (ii) for each ne w, the code set of T N B, is in the standard
system of M.

Proof. Necessity. (i) is obvious; and for (ii), the code set of each T'n B,
is in SSy(M,) by Lemma 2.3, and SSy(M;) = SSy(M,) by Lemma 2.1(ii).

Sufficiency. By induction, we produce a sequence of .restricted n-types,
each of which is consistent with T and is “defined” in M, : Let {4;, 4,, ..} be.an
enumeration of SSy (M) and let {v,, v,, ...} be a sequence of variables. At the kth
step we use the method of Lemma 2.4 to define in M, a k-type f, such that: f, is
restricted to formulas in By, ¢, extends T n B, andeach t; (j<k), and figy, is in 4
iff ne ;. Now let M, be the smallest elementary extension of My in which a se-
quence of elements {ay, a,, ...} realize the n-types in U {t};.. Clearly SSy(M,)
=88y (M,). On the other hand, if 4 e SSy(M,), then 4 is some {new| M k ¢(A)}
where the only parameters in ¢ come from {a, a,, ...}. But then 4 e SSy(M,)
by noting that {n € w| Mk ¢ (@)} can be retrieved from some t, which was defined
in M. So, M, can be embedded as an initial segment of M, by Proposition 1.4(ii). =

By using Theorem 3 and Lemma 3.1 (below), it is easy to produce a corplete
extension T of P such that a given countable M s N is a submodel of every model
of T but is embeddible as an initial segment of none.
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The description of the <-order of a countable M # N given in § 1C might
tempt us to ask about the topological properties of the set of those cuts in the
n-factor which yield submodels (note that the set of such cuts is order isomorphic
to the reals). However, the following minor technical result suggests that we should
not expect such a set to have simple topological properties:

THEOREM 4. For a countable M # N, let X be the set of reals which correspond
to submodels of M (in the sense described above under a fixed isomorphism). Then
X is nowhere dense (usual topology), and furthermore, if Th*(M) # Th*(N) then X is
not closed.

Proof. To see that X is nowhere dense: notice that there are cuts in the
n-factor between any g € M—N and 2a, but any submodel containing a must also
contain 2a. For the secand result, let @ be the sequence code for the first solution -
of a diophantine system which is solvable in M, but not N. Let 4 be the intersection
of the set of initial ségments of M which contain a and are themselves models.
A cannot be a model for otherwise it would have proper initial segments which
were also models containing a (by Proposition 22). ®

§ 3 Existential sentences and recursive numbers. How do the relative posmons
of (initial segment) submodels in the <-order of M depend on the complete
theories satisfied by the submodels? Lemma 2.3 implies that the relative positioning
of two submodels is restricted only by the 3, parts of their theories. However, this
réstriction is rigid due to the presence of recursively defined elements whose de-
finitions are absolute under submodel embeddings. In this. section we compare
the 3, parts of the complete extensions of P. This inquiry leads to information
concerning the distribution of recursively defined numbers in the non-standard
part of models.

We first note two useful lemmas concerning how a subset of w may be re--
alized in, or omitted from, the standard system of the prime model of a complete
extension of P. These are the natural questions, because given any d<w and 7, ,
there is always a single type generated model M of T with 4 e SSy(M).

LemMMA 3.1. Given S a C"EP and Acw, there is a C"*1EP, T extending S such
that A is a standard set of every model of P U T.

Proof. Select a branch b of the B, independence tree (cf. Corollary 2.6) as
follows: if of € b where s is a word of length k, then @ or o' € b depending as
kedor ké A Let T be a C""'EP extending S and containing b. Then the code
set for b (and hence A) is recursive in the code set for 7. The conclusion follows
by Lemmas 2.3 and 2.1(iv). @

LEMMA 3.2. Given A is not recursive, there is a complete extension T of P
such that A is not a standard set of the prime model of T (and T may be chosen to
contain any fixed consistent r.e. extension of P). :

Proof. Enumerate the formulas with one free variable: @q(x), @1(x), ... Let
T, = P. Assume T, is defined and is a consistent recursively enumerable extension
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of P. Now if 4, = {m| T, } ¢,(/)} is the complement of B, = {m| T,  “1¢,(#)}
then these sets are recursive and so neither could be 4. In this case let T, = T,.
If A, UB,# o, fix méd,uB, Then if med, set T,y =T, {"em};
otherwise set T, ; = T, U {@,(7)}. Let T'be any complete extension of U {T;| ne w}.
Then 4 ¢ SSy(My) by Lemma 2.1(v). ®

A typical application of Lemma 3.1 in the next theorem shows that all the
models of a certain theory can be “universal” for certain families of models.

DEFINITION 3A. A family F of models is called embedding compatible provided
U {3;-sentences n Th(M)| M e F} U P is consistent.

THEOREM 5. Let F be an embedding compatible countable family of countable
models. Then there are extensions T of P such that every model in F is a submodel
of every model of T.

Proof. Let S be a C'EP containing | {d,-sentences n Th(M)| M & F}, and
let 4 be a subset of w from which all of the standard sets of all of the models in F
may be recovered recursively. For S and A, choose T as indicated by Lemma 3.1,
and assume T is extended to include P. The conclusion follows by Lemma 2.1(iv)
and Proposition 1.4(). &

Remarks. Such a universal model can be obtained for any embedding com-~
patible family if we go to high enough cardinality. But the results of the last section
(e.g. Corollary 2.9) imply that Theorem 5 would not hold, in general, for uncount-
able F. We now turn to the natural question raised by Theorem 5: which families
of models (or C'EP’s) are embedding compatible ?

THEOREM 6. Ler E denote the ordered system of all C*EP’s under the order
“admits embedding in”. (i) E is a tree with 2™° branches, each of which has a maximal
element; (ii) Th'(N) is the only member of E which is comparable with every other
member; and (iii) there are branches of E which are not well-ordered.

* Remarks. These results only suggest the structure of E. Special techniques

might be needed in analyzing the structure of E because one is dealing with com-~
plete rather than recursive extensions of P. We suggest that the branches of £ split
very frequently and that each branch is order isomorphic' to a closed segment of
the real line. However, it is possible that not all branches are isomorphic (branches
11ave. different properties: for some, the maximal element has a 4, definition). (if) is
significant because an analogous result is false for incomplete extensions of P
(Kreisel has shown that any M is embedding compatible with some model of

P;J{WConsistentP}; cf. [6]). The proof of the theorem will be given following
a lemma,

Lemma 3.3. Let y be an existential sentence which is independent in P. Thep
there are existential sentences o and B such that P+ "lav ~1f and P U {y} Fav

ljutP w {} not ke and P U {y} not +1B. (Thus there are sentences which are A,
in PU {y} but not decided in P L {y}.)
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Proof. Let prfy be the proof predicate prip(y, 7—>9x) for P u {y}. We use
a “dual” form of the Godel lemma of self-reference to obtain:

aeTy((priR(y, H)v pris(y, T0) A Vz(z<y— pits(z, TP)) »
pez{pris(z, ) AVy(y <z (Tprtp(y, ) A Ipets, D)) -
1t is routine to verify that o and f have the desired properties, using the fact that
every true existential sentence is provable in P and the particular formal analog
of this: Pt y—=3yprip(y, 7). B

Proof of Theorem 6. (i) Suppose T4, Ty, and Ty are C'EP’s such that each
of T, and T, admits, embedding in Ty. Let M;, M,, and M; be models of these

"C'EP’s respectively, where we may assume by Proposition 1.1 that each of M,

and M, is an initial segment of M. So one of M; and M, must be an initial segment
of the other, and correspondingly one of T; and T, admits embedding in the other.
Thus E is a tree. Next we form, inductively, a binary, length o tree £ which is labeled
with 3,-sentences such that the conjunction of the predecessors of any node is
independent in P: fix the root node as an independent y,; if 2 node is labeled with ¥,
label the right and left successors with « and § as given in Lemma 3.3 where we
take y as A {y and its predecessors}. Notice that C'EP’s which extend distinct
branches of Q must be incomparable in E. The maximal member of a branch B
of E will-be the C'EP determined by | {3,-sentences n T| Te B} (and the nega-
tions of all other 3J,-sentences: verify consistency by a compactness argument).

(i) If T is a C'EP different from Th(N), then T contains an 3 ;-sentence y
independent in P. Apply Lemma 3.3 obtaining o and B. As Tis a C'EP it must
contain either o or else f. Assuming T' contains ¢, any C!EP containing f will be
incomparable with T -

(iii) Will follow from Theorem 8 (below) which shows branches for which
every non:trivial initial segment is not well-ordered. ®

" DEFINITION 3B. We call an element ae M a recursive number if there are
formulas a e V, and fe3, such that P a(x)ep(x) and MFa = pxp(x).

We note the following simple facts about recursive numbers: (i) their 4,
definitions are preserved under submodel embeddings; (ii) they are closed under
provably total recursive functions (and so with (i), form a “rigid” substructure,
although a larger class might have this property); (iii) all standard numbers are
recursive numbers, so we will mean non-standard recursive numbers where it makes
sense; and (iv) a model M contains non-standard recursive numbers iff Th(M)
5 Thi(A). It is worth noting that if Th'(M) # Th(N), then the initial segment
of M determined by the recursive numbers cannot be a model of P by (i), (ii) and
Proposition 2.2.

DErINITION 3C.. Let TE denote the code set for the set of 3;-sentences which
are true (in N). We say a theory T requires RTE (representation of true existentials)
in case TE is a standard set in every non-standard model of Tu P.
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LeMmA 3.4. For M s N, the recursive numbers are bounded below in M~ N iff
TE is a standard set in M.

Proof. Necessity. Let e M—N be such a lower bound.
A= {new| MEIy(y<arprp(y, D))} e SSy(M)

by Lemma 2.1(iii). Also A4 is the code set for the theorems of P, for otherwise there
would be non-standard recursive numbers <a. So TE may be recovered from A
recursively (assuming w-consistency of P). )

Sufficiency. The code set for Th*(N) is recursive in TE and thus in SSy(M).
So by Lemma 2.4 there is a complete extension T s Th(N) of P which extends
Thi(N) and whose code set is in SSy(M). Then by Lemma 2.3, My= M. Any ele-
ment a € My—N must be a lower bound on non-standard recursive numbers in M
because Thi(My) = Thi(N). &.

DEerNITION 3D. The recursive index of a number n is defined informally as
the first number m which: (i) codes formulas o and § as in Definition 3B, (ii) also
codes the proof of a(x)—f(x), and (iii) satisfies n = uxp(x). We also formalize
this as a defined function symbol, index (x) where condition (iif) may be expressed
properly using the truth definition tr; and noting Proposition 1.3(iv).

We note that: (i) index(x) is a provably injective and total function (hint:
-“formulas” o and B may have non-standard codes); and (ii) M F index(a) = i
for some new iff a is a recursive number.

LemmA 3.5. If M k a+7<b for all ne w, then there are non-recursive numbers
c €M between a and b. :

Proof. If all of the numbers between a and b are recursive, then the set
4 = {y| Ax(a<x<b Ay<index(x))}

is contained in N (by (i) above) and definable in M. But there are infinitely many

numbers between a and b, so the injectivity of index(x) makes 4 = N. But this

violates the undefinability of N in M. & ) ‘
The analogous result holds for the class of numbers with 4, definitions.

TueoreM 7. () The recursive numbers are. bounded above in every M # N,
(ii) there are extensions T of P such that for every model M of T, the recursive numbers
are bounded below in M~ N; (iii) there are extensions T of P with some models M % N
such that the recursive numbers are not bounded below in M~ N: and (iv) every max-
imal segment of non-standard recursive numbers has. order type 0" +co.

Proof. (i) follows immediately from Proposition 2.2 because cach M s N
has a proper initial non-standard segment containing all of the recursive numbers.
Both (ii) and (jii) follow from the characterization of Lemma 3.4 along with Lem-
mas 3.1 and 3.2 which allow us to obtain both T which require RTE and 7° which
do not require: RTE. For (iv), Lemma 3.5 tells us that a segment of recursive numbers
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cannot have elements which are infinitely distant, but also, recursive numbers are
closed under +1 and —1. ®

LemMA 3.6. Let T be a C'*EP which does not require RTE and let ¢ be ‘an
3,-sentence in T—Th(N). Then there is an 3 -sentence € T—Th(N) such that
PuU (T nVYy)notky—o. : ;

Proof. By Lemma 3.4, let M 5 N be a model of T'U P in which the recursive
numbers have no lower bound in M— N (so clearly there is some ¢ as hypothesized).
‘We define in M a function similar to the recursive index (notation: here z will be
the sequence code {zq, zy, z;»> Wwhile z, will be a recursive index and Jz, will
AyB(y) where f is the 3;-formula of definition 3B; let a be a representative in M
for the code set for Th(M) n Vy): -

orank(x) = uz(zo = index(x) Az,ea Aprip(z,, 2, Adzg— P)) .

"Now @rank(x) assumes a value in N exactly if x is a recursive number and

PuU(TAVY,)FIyB(»)—¢ where B() is the 3;-definition of x. Thus for ne o,
rank(r) € M—N because P not  y—¢ for any V-sentence y unless P 7y, Now let

4 = {y] Vx(x<y—x<prank(x))} .

So clearly N=A. But if no y exists as asserted in the conclusion then N = 4 (be-
cause there are arbitrarily small recursive numbers in M—N; consider the graph
of prank(x)). ™

THEOREM 8. There are complete extensions of P for which every model M has
the propertie.s':‘ M has non-standard recursive numbers, and if A is an initial segment
‘of M containing such a number, there are submodels included in' A which satisfy %o
distinct C*EP’s. _ :

Proof. A suitable complete extension T needs only extend a C!EP which does
not require RTE, and such exists by Lemma 3.2. Given that M is a model of T'with
an initial segment submodel M, containing a non-standard recursive - number,
we will exhibit M, =M, such that Th'(M;) # Th'(M,) # Th'(N). Clearly there
is an 3,-sentence ¢ & Th*(M;)—Th(¥). By Lemma 3.6. obtain. y (using T f‘\'_B1
and ¢). Now apply Lemma 2.4 taking T' n V; for 4 and ¢ A 1o for B thus obtain-
ing a complete extension € of PU(TAV)u{PA —¢} such that the code set
of C is in SSy(M). By Lemma 2.3 and Proposition 1.1 we may assume C has
a model M, which is an initial segment of M. Clearly My kA Tlg forces t.he
other conditions. m ’ ‘

Exactly as in Corollary 2.9, 8, is an upper bound in Theorem 8 for cguntable
models. Are the only possibilities for [Th*S(M)| for countable models elthm" Ko
or 1?7 A similar question holds for the number of CIEP’s satisfied by end-extensions
of a countable model (note that Theorem 6(i) implies that this can be exactly 1).
Either new techniques or a refinement of those of Lemma 3.6 might be'ne.eded for
these questions. Corresponding to each of the C'EP’s in Theorem 8, there IS.a velry
large “hole” in the recursive numbers of M (i.e. the proof of Theorem 1 implies
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there are 2% cuts in M yielding submodels which contain all of the recursive numbers
required by a given C'EP, but prior to any recursive numbers rejected by the same
C'EP). If we regard a “large hole” as a gap in M which cannot be bridged by certain
recursive functions, then the only “large holes” correspond to C'EP’s with code
sets in SSy (M) (otherwise we should be able to define other C'EP’s in M).

§ 4. Reducts of arithmetic. In this section we consider certain “interesting”
reducts K of P. We discover a fixed relationship between the isomorphism types
of a model under different reducts of this sort. However, we also show that such
reduct isomorphism type has almost no bearing on the elementary type of the full
model. We refer to each of {+}, {-}, and {|} (divisibility) as familiar examples.

DEFNITION 4A. We say that a reduct K is rich provided that for each new
there is a formula ¢,(v) of Lg such that whenever M is a model and A< w we have:
A eSSy(M) iff there is some ae M such that M F ¢,(a) exactly when ne 4. We
let @, denote {¢,(v)| ne 4} U {To,)| né& A4}, so the last condition is just that
a realizes @ 4. If in addition, the ¢, are effectively given and are all in some 4,,
we call K uniformly rich.

Lemva 4.1. Each of the reducts {+}, {|}, and {*} are uniformly rich.

Proof. In the language L, we can define #i[v with an 3; formula for each
n e o, separately. Let p, denote the nth prime, and set ¢,(v) as p,lv. If 4 e SSy(M)
we can clearly define an a which realizes @,. Conversely, if a € M realizes @, then,
A4 = {new| MFp,a}is a standard set by Lemma 2.1(iii). To see that {|} is rich,
notice that for eaEE_ new _t_liere is an 3,-formula @,(v) of Ly which defines dp
(p is a prime Ap™**|v Ap"*?v). Showing that each resulting &, has the desired
properties is similar to the case for {+}. The definability of | from - implies that {}
is uniformly rich. @

Levma 4.2. If K is a rich reduct (e.g. {+}, {*}, or {|}) and T is a consistent ex-
tension of P, there are 2° 1-types under K which are consistent with T (and thus 2%°
isomorphism types under K amongst countable models of T).

. Pro9f. Since any 4 & w can be in §Sy(M) for some model M of T, ¥, is con-
sistent with T. And 1-types under K extending distinct ¥,’s are distinct. m

COROLLARY 4.3. The 2"° countable isomorphism types under {+} cannot all
be embedded in a countable model.

Proof. Notice that if the {-+}-isomorphism type of a model M, is embedded
in M, the embedding must be the identity on the standard part. Thus if @ 4 18 as
given in the proof of Lemma 4.1, and a realizes @, in M, it will realize & 4 in M.
So if @, are realized for 2% distinct 4 in {+ }-isomorphism types embedded in M,
Lemma 4.2 implies that [SSy (M,)| >2  which implies | M| > 2% (by Lemma 2.1(1)). m

We do not consider whether an analogous result might hold for {} or {I},
except to note that the argument used for {+} would not seem to work without
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requiring some additional preservation properties for the embeddings (e.g. preserves
primes). :

When does an isomorphism of models under one rich reduct imply the ex-
istence of an isomorphism (perhaps different) under another? Clearly definability

"implies that an isomorphism under {-} is also an isomorphism under {|}. Further-

more, since multiplication preserves sums of prime exponents, an isomorphism
under {-} implies the existence of some isomorphism under {+}. We had guessed
that the corresponding implications would fail for the other combinations from
{+}, {-}, and {|}. Thus the strong result of Theorem 9 (below} was unexpected. -

DEFINITION 4B. We say that a reduct K is strongly complete in P if there is
a 4, formula y(x) of P such that for each formula @(xy, ..., x;) of Lg,

PEy(B(%Xy, s X)) 0 Xy oy X5) -

Lemma 4.4. Each of the reducts {+}, {-}. and {|}, is strongly complete in P.

Proof. By Proposition 1.5.each of red,,P and red, P is complete, and in
each case the proof of this was by elimination of quantifiers. The formalization
of this recursive procedure is easily (but tediously) duplicated in P, thus yielding
in each case a truth definition y(x) as required in Definition 4B. The definability
of | from - extends the result to {[}. @

Livma 4.5. Let M, and M, be countable non-standard models and let K be
a strongly complete reduct of P. If SSy(M,) = SSy(M,) then M, and M, are iso-
morphic under K. If K is rich, then conversely, an isomorphism under K implies
SSy(My) = SSy(My).

Proof. The converse follows directly from the definition of K being rich.
Assume SSy(M,) = SSy(M,). We build the K-isomorphism by a back-and-forth
argument. Let f be a mapping from a finite set {ay, .., a}=M, onto a set
{€1s s €y = M, (where f(a;)) = ¢;). We say fis K-good provided M, ¥ ¢(ay, .., a;)
if My E o(cy, .., ;) for every formula ¢ of Lg. Clearly the empty mapping is
K-good because K is complete in P. Let by, by, ... and d,, d,, ... be fixed enumer-
ations of M, and M,, respectively. Suppose at the 2nth stage that we have a K-good
mapping f as indicated above, and that b, is not among the a;’s. For vy as in peﬁ-
nition 4B, consider the standard set (of My) E = {ge o] M, #y(@(@y, ..., 45 b))}
Since SSy(M;) = SSy(M,), let ¢ € M, be a representative of E. We claim: for each
fixed me w,

M, kAxYy<m(yeeesy (Y@ oo, & ))-

To see this, consider the set A of formulas of K with code numbers <m and having,
at most, the first j+1 variables free. Now let @(x, ..., ¥;, x) be the conjunction
of those formulas of 4 whose codes are in E, along with the negations of formulas
of A whose codes are not in E. Clearly, M, k x¢(ay, ..., a;, X) because y is a truth
§ — Fundamenta Mathematicae, "T'. XCII
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definition, and so M,k 3xe(cy, .., c;, x) because f is K-good. And' if
M,k ¢(cy, ..., ¢;, d), then the property of y gives us

M, kVy<ii(yeeesy(y @y, s &, H))) ,

and so the claim is verified. But since we cannot define N in M, there is some
geM,—N and de M, such that

M,k Vy<g(yee<—>v(y(?:1, s &y El)))
Now extend f to f' by adding 7'(5,) = d. For large enough y<g, A /A %; # x has
1<y

code <y so d # any c¢;. The choice of ge M,—~N and the property of y ensure
that 7 is K-good. At the (2n-+1)-st stage of the construction, the argument is sym-~
metric extending the range of f' to d,e M,. & :

Lemma 4.5 is easily generalized to other applications, once we notice that
the argument does not require K to be strongly complete, but only that there be
a truth definition y and that the two models are Lg-elementarily equivalent. Thus
for example, two non-w-models of second order number theory with countable
bases have isomorphic bases exactly if they are first-order equivalent and the same
subsets of  are represented in each, using the full second-order language.

THEOREM 9. Let M, and M, be countable models, and let K, and K, be rich,
strongly complete reducts (e.g. {+}, {-}, or {|}). If M, and M; are isomorphic
under Ky, then they are isomorphic under K,.

Proof. We may dispose of the case in which one of the M, = N. This is be-
cause, if K is rich then N is not isomorphic to any non-standard model under X
(note the definition of rich and also that N is the only model whose standard sets

are all finite). If both M, and M, are non-standard, the result follows directly from
Lemma 4.5.

CoROLLARY 4.6. If M # N is countable, and K is a strongly complete reduct,
then' both non-standard initial segment submodels, and countable end-extensions,
of M are isomorphic to M under K.

Proof. Both non-standard initial segments and end-extensions have the same
standard systems as M by Lemma 2.1(ii). So the result follows by Lemma 4.5. m

DerniTiON 4C. Let I'y and T', be isomorphism types for reducts K, and K,
respectively. We say that Iy and I', are compatible if some model M has I'cand Iy
as its isomorphism types under X, and K,, respectively. And we call the isomor-
phism type of M under K U K, an amalgamation of Iy and I',.

Pairs of reducts become interesting when we can define the full language L

from them, in which case an amalgamation is just a model. We consider {+} and
{*} as an example. Each has 2% countable isomorphism types (Lemma 4.2) and

compatibility is a one-one correspondence between these two families (Theorem. 9).
But furthermore:
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CoRrOLLARY 4.7. Let I'y and I', be compatible, non-standard, countable
isomorphism types under {+} and {‘}, respectively. The family of amalgamations
of Ty and Ty satisfy 2%° distinct complete extensions of P.

Proof. Let M be a countable amalgamation of I', and I',. The non-standard
initial segment submodels of M satisfy 2%° distinct complete extensions of P, by
Corollary 2.8. But each of these is an amalgamation of I'; and I', by Corollary 4.6. ®

If I' is a non-standard, countable isomorphism type for some rich reduct K,
Lemma 3.1 implies that there are complete extensions T of P such that no mo-
del of T has K-isomorphism type I'. However this does not effect guestions of
independence :

THEOREM 10. Let K, and K, be strongly complete reducts from which full arith-
metic, L, can be defined (e.g. {+} and {-}). Let I', and I, be compatible, non-standard,
countable isomorphism types under K, and K,, respectively. Let ¢ be any sentence
independent in P. Then there are amalgamations M, and M,, K, and K, such that
M, Eo and M,k 7.

Proof. Let M; be an amalgamation of I'y and I',. Assume M, k ¢ since
M, # N we may apply Lemma 2.4 with 4 = empty set, B = T1¢, and thus
obtain a complete extension C of P (CF ~1¢) whose code set is in SSy(M;). Now
let {4y, 4, ...} be an enumeration of SSy(M;) and let {v,, v,, ...} be a sequence

. of variables. At the kth step use Lemma 2.4 to define in M; a k-type #, (in the full

language L) which extends C and also each f; (j<k), and such that 7ev, is in 7
iff n € 4;,. Now let M, be the smallest elementary extension of the prime model M,
of C in which the types #, are realized. So SSy(M,) = SSy(M,) (exactly as in the
proof of Theorem 3). Thus M, is an amalgamation of I'; and I', by Lemma 4.5.
And M, F 71 because CF T¢. ®

The argument of Lemma 4.5 does not seem to be simply adaptable to un-
countable models. Thus analogues of Theorem 9 and Corollary 4.6 for uncount-
able cases might fail. Flowever, the authors believe that such failures would not
be related significantly to the elementary types of models: the above results indicate
that elementary type has only a small effect on structure in the countable case, and
we would expect even less effect when we go up in power. We ignore the uncount-
able situation except for the following technical result which also applies to theories
in general:

THEOREM 11. Let {K;},cy be any (finite) set of reducts such that each K, is com-
plete in P. Let T, and T, be any complete extensions of P and let & be any infinile
cardinal. Then there are models My and M, of Ty, dand Ty, respectively, such that
each has cardinality s and such that My and M, are isomorphic under each K; sepa-
rately. L

Proof. Let M% and M¥ be Keisler—Shelah ultrapowers (Proposition 1.6) of
models of Ty and T, respectively, chosen so that [M¥| = |M}|>x. Since each K; is
5*
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V complete in P, there is an isomorphism f; of M3 and MZ¥ under K; for each . Let
Ay= M¥ have cardinality 8. At the 2nth stage let C, be the closure under Skolem
functions (in M¥) of Uf‘ A,]. At the (2n+1)-st stage let 4,,,, be the closure under
Skolem functions (1n M¥) of Uf; el Let My = U4, and M, = U C,.

new new
Clearly M, and M, satisfy the conclusxons of the theorem. @

If K, and K, are rich, strongly complete reducts (e.g. {+} and {-}) and I' is
4 countable 'K -isomorphism type, is there any reasonable way to determine its
compatible X, mate (unique by Theorem 9)? In particular, if Iy has a simple de-
scription (e.g. arithmetical) must I', also be simple? The answer will generally be
“yes™. For this we will us¢ certain recursion theoretic notions as follows: If I' is
a countable isomorphism type, we will say I' is 4,, arithmetical, etc., if there is
a 4,, arithmetical, etc. coding of I in N. If M is a countable model we will
correspondingly designate the full diagram of M as — if {p| M k ¢ with parameters}
can be — coded in N. If S is a countable family of countable scts, then a umiversal
set A for S is a set from which each member of § may be recursively recovered.

LemMA 4.8. Let A be a universal set for the standard system S of some countable
non-standard model. Then there is a model M such that SSy(M) = S and the full
diagram of M is 4, in A.

Proof. Let ¢y, €5, ... be a recursive listing of all of the Skolem set constants
of P; let A;, A,, ... be a listing of S given by A4; and let o, 03, ... be a recursive
listing of the sentences of L. Let T, = P. We proceed by induction, assuming that T,
produced at earlier stages are consistent. At the (3u+1)-st stage let

' T3n if T3n F _]U',, )
Type1= T . :
3w U {0,} otherwise.
(At the (3n+2)-nd stage let
Tspez.= Tapey U {ec| me A} U {mnotec] mé 4}

where i is smallest integer for which this is consistent (such ¢; exists by Lemma 3.1).
At the (3n+3)-rd stage let

Tanis = Tapsr U {ec,| me 4} U {finotec,| mé d,}

where iis the smallest integer for which this is consistent. We claim that such an 4,
must exist: The sets

Cy = {meo| Ty, tfiec} and Cp = {mew| Ty, b Mnotee,}

are disjoint sets which are each r.e. in the 4;’s previously used in the construction.
Because S is the standard system of a non-standard model it must include a separ-
ating set 4,5 C; and disjoint from C, (in a model with standard system S we form-
ally define a set of elements which are put in C, before they are put in C,; then 4,
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is the standard initial segment of this set). Let T'be |J T,. Tis a complete extension
of P which is 4, in A. Furthermore, the prime model My of T has SSy(My) = §
by construction. &

TueOREM 12. (1) K, and K, are rich, strongly complete reducts, K uniformly
rich, and T'y a countable Ky-isomorphism type. The unique K, -isomorphism type
compatible with I'y is arithmetical in T ,. (ii) Neither {~+} nor {-,|} can have recursive
isomorphism types in non-standard models.

Proof. (i) The standard system S associated with I'; can be universally coded
in 4 set A which is 4,, in I'y where m is as given in Definition 4A of uniformly rich.
So by Lemma 4.8 there is 2 model M whose full diagram is 4,,, in I'y, and such
that M has K,-isomorphism type I'; by Lemma 4.5. The K,-isomorphism type
of M is recursive in the full diagram of M. For (ii) first notice that the standard
system of a non-standard model always includes a non-recursive set 4 (e.g. a sepa-
ration of certain recurswely inseparable sets). For a countable non-standard {+}
isomorphism type I', if we are given the element 1, then 7 is recursive in I', as is
the ath prime, p,, while p,|a is r.e. in T. Let @ and b be elements. which realize b,
and <1>—|A 1e$peclively (the q),, s and P, as in the proof of Lemma 4.1). Then 4 is

""" -, |} isomorphism type I',
let @ and b be elemcnts which realize @, and (D-l 4 as given in the proof of Lemma 4.1.
Let ¢ be an element such that a prime pjc if pla or plb, but p*|c for any prime p.
Then ne A4 iff ‘

Ax(xle Ax"™ anx" g iff Vax(xle AX™ | x"2[b) .

So A is recursive in I'. (Using ¢ avoids having to know the primes). @

The results of Theorem 12 are only illustrative of the problems concerning
connection between isomorphism types of different reducts. Perhaps a general
method can be devised to comprehend (ii) for a certain class of reducts. We note
that the method of (i) also implies that any finite set of symbols define in P has an
isomorphism type compatible with Iy and 4,,, in I'y. Lemma 4.9 ilustrates one
way to amalgamate compatible reducts, but other sorts of amalgamations might
be informative for other purposes. Of course, there are too many distinct amalga-
mations of a given reduct pair for them all to be arithmetical, analytic, etc.

§ 5. Problems. Tn this section we pose a.number of p1oblems, and in some cases
give our related conjectures or hypotheses. A few of the questions might be an-
swered by purely technical results. But more often we tried to phrase a general
problem which yields many particular instances. We hope that investigations arising
from some of these questions may be useful in furthering our understanding of
the refation between model theory and practical proof theory for arithmetic. We -
have divided the problems into four groups, but the first two problems are intended
to provide a theme underlying the rest.

ProsLEM 1. How much of the structure of a model M do we need to know
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in order to determine: (a) the isomorphism type of M? (b) the elementary type
of M? or, (c) whether M satisfies a given sentence ¢?

As a simple example, we can omit finite (and certain infinite) sets of elements
and still tetrieve the isomorphism type of M. However, we have intended that by
“part” of a structure, several different measures might be used. Examples where
we have answered this question (negatively) are where we have taken “part” to be
the set of initial segments (Theorem 2), and also the isomorphism types under
each of + and - (Theorem 10). What about other measures? (cf, Problems 3 and 8).

ProBLEM 2. (a) Is there any structural “property of a model M which will
determine the elementary type of M, without determining its isomorphism type?
(b) Replace “elementary type of M” in (a) by “whether M satisfies a given sen-
tence o.”

‘We conjecture that for “useful” structural properties, the answer to (a) is no
(evidence provided in the above theorems). The situation for (b) is more hopeful.
For example, a large enough initial substructure will suffice for an ,-sentence.
However, we hope that even more useful properties based on various combinations
of reducts might be given for certain ¢ (cf. Problem 12).

The next group of six problems deals with structures under the full language L
of arithmetic.

ProsLeM 3. If M, and M, have final segments which are isomorphic, what
properties of M, are preserved in M,?

Ask the same question with “final segments” replaced by “closed segments
in the non-standard part”, or replaced by other structural properties.

PrOBLEM 4. What is the theory of the non-standard parts of all models of P?
(Is it decidable? arithmetical? analytic? note that it does not contain P).

Such a theory might be considered as the “eventual arithmetic” which is un-
effected by the irregularities caused by small numbers. Also, what is the set C of
sentences o of L which satisfy: for every M, there is a cut in the <-order of M
such that ¢ holds in the structure above the cut, and also in the structure below
the cut? Is C consistent? closed under A ?

ProBLEM 5. Determine the properties of the fine structure of the set of cuts
in the <-order of M which yield submodels.

Many such properties may be determined by refining the techniques of Propo-
sitions 1.4 and 2.2, Theorems 1,4, and 8, etc. But are any significant properties
preserved in certain limits of cuts? Note that the intersection of some downward
limits are not models of P (Theorem 4), while on-the-other-hand, every M # N
“has a sequence of non:standard initial segment submodels whose intersection is N
(one case follows from Theorem 8 and the other case by a refinement of Proposition 1.4),

ProsLem 6. (Intuitively, are any “interesting” problems which may be given
in number theory neither V; nor 3, 7) Specifically, given a particular sentence o,
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which is not apparently ¥, or 3,, can we prove! if & is not decided by P, then ¢ is
not implied by any consistent V¥, or 3, sentence?

The hypothesis avoids a full independence result for . This question is in-
tended to determine the potential setiousness of Theorem 2 for a particular problem
such as the twin-prime p1oblem. Because notice that many famous problems are V,
and thus not subject to Theorem 2 (e.g. Fermat’s Last Theorem, the four color
problem, the Goldbach conjecture). Undoubtedly ¥, and 3, questions are common

because they are concrete, and correspondingly they could be subject to special
techniques. '

ProBLEM 7. Determine the structure of the embedding tree, E, of Theorem 6:
(a) What are the isomorphism types of the branches? (b) What are the splitting
points? (c) Does the following hold for any or all 3,-sentences @ which are in
dependent in P: there is an 3,-sentence ¥ such that whenever o is an V,-sentence
and P F(aA)—¢@, then P+ g—Jo?

Tt would be most interesting, and possibly of proof theoretic significance,
if E were not homogeneous (homogeneous: if there is an automorphism of E ex-
changing any two elements which are neither maximal nor minimal). However,
there seem to be many possibilities for showing E to be homogeneous. For example,
if the syntactic property (c) held for all ¢, then no branch would be well-ordered
(compare with Lemma 3.6 but note that i is chosen “uniformly”). Similar uniform
syntactic properties correspond to other features of the structure of E. Even if
these uniform properties fail, technigues analogous to those of Lemma 3.6 might
apply. The points of E beyond which there are no splitting points corréspond to
“amalgamation bases” for models of P, while maximal elements of E correspond
to “existentially closed™ structures for P.

ProBLEM 8. What possibilities are there for the number of C'EP’s satisfied by:
(a) submodels; (b) end-extensions, of a model M # N?

In either case it can be 1 (Theorem 6) and for submodels it can be 8, (Theorem 8).
If each branch of the embedding tree of Theorem 6 is isomorphic to a closed segment
of the real line, then for countable models, the only possibilities for (2) and (b)
are 1 and &y (proof using Lemma 2.4 in a fashion similar to Theorem 8).

The second group of four problems concern reducts of P.

Prosrem 9. Characterize those reducts K of P for which the K-isomorphism
type of every non-standard model is not recursive, Does any rich reduct have a re-
cursive non-standard isomorphism type?

ProLEM 10. Assume K is a reduct with <, isomorphism types amongst
countable models of P. Can K have more than 2 isomorphism types amongst
countable models? Ask the same question, but with the weaker assumption that
there are <&, n-types under K.

We suggest that in each case the answer might be no. One might attempt to prove
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such 2 result by arguing that any non-standard model must be saturated under K
(the Vaught theorem concerning theories with countably many n-types might be
useful here). If such a result were obtained, it would suggest why number theory
has not led to any nice algebraic theories. And alternatively, any K which gave
a positive answer to Problem 10 could be quite interesting.

ProBLEM 11. Exhibit a reduct of P which is complete in P, but not strongly
complete.

. 'We think that such reducts should exist, but they might not be easy to produce.
For one thing, completeness could not be shown by an effective elimination of
_quantifiers. Secondly, completeness in P gives a formula y of L such that

P Ey(@@)ero ()
for each formula.gp of Lg. So if K is not strongly complete some

Va(y(§(2) >0 ()
will be independent in P.

ProBLEM 12. (a) Characterize those reducts whose countable isomorphism

types cannot all be embedded in a single countable isomorphism type. (b) When
" does the image of an embedding of a reduct K-isomorphism type in a model M
yield a submodel M,?

The isomorphism types under {+} could not be so embedded by Lemma 4.6.
Although'it is of separate interest, (b) is also related to (a). This is because under
such embeddings a standard set associated with the embedded isomorphism type
might also need to be realized in M.

The third group of problems deal with amalgamations of pairs of reducts,
‘We believe that this topic could be quite promising as it would permit us to “switch
relations” (i.e. select particular primitive symbols in our language) depending on
the particular number theoretic question at hand.

DerpiNiTION 5A. We call a set of reducts X, ...
of arithmetic can be defined from the K.

ProBLEM 13. Give useful criteria for a reduct pair to be full.

Before we expect any criteria, more examples need to be given. Most 01‘ the
currently available examples of interesting reduct pairs are due to Julia Robinson.

These include {+1, |} and {+, ¥’}. Are + and hyperexponentiation full? or are
these two concepts “too far apart™?

, K, full if the full language L

PROBLEM 14. (a) Is there a pair (or set) of reducts which is full, but where cach
reduct is not rich? (b) The same question, but instead of “not rich”, ask for a com-
‘patible set containing a recursive non-standard isomorphism type for each reduct.

Even more important than knowing what can be taken for full reduct pairs,
would be to know how isomorphism types can be amalgamated. Ideally, for given
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isomorphism types for a full pair of reducts, we would hope for an interesting class
of amalgamations which have useful descriptions. Different pairs of reducts might
behave differently in this regard.

ProBLEM 15. Let Ky and K, be a full pair of 1‘educts. Are there models M,
and M, with M # M, such that M, is interpretable in M, where the interpretation
is the identity for K ?

There are non-trivial interpretations of models in other models based on
formalizations of the completeness theorem. But here we are interested in useful
interpretations where the symbols of interpreted model are kept relatively close
to those of the interpreting model. For example, in Problem 15, think of X, and K,
both rich and strongly complete. Then the problem is whether there are f; and f,
which are K- and K,-isomorphisms, respectively, f;: M,—M,, such that £; *f;
is definable in M (so we can use this composition M; check what K, properties
elements have in M;).

DEFINITION 5B. Let K; and K, be a full pair of reducts and let J = {J;,J,}
give a class of formulas J; of Ly, (e.g. open formulas all formulas, etc,).
An n,J-amalgamation of compatible isomorphism types I'; and I', (under K
and K,, respectively) is a pair of n-types {t;,t,} under K, and K,.
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