Arcwise connected and hereditarily smooth continua

by

T. Maćkowiak (Wrocław)

Abstract. We say that X is smooth at the point $p \in X$ if for each convergent sequence x_n, x_{n+1}, \ldots of points of X and for each subcontinuum K of X such that $p, x \in K$, there is a sequence K_1, K_2, \ldots of subcontinua of X such that $p, x_n \in K_n$ for each $n = 1, 2, \ldots$ and $\lim K_n = K$.

The set of all points of a continuum X at which X is smooth is denoted by $I(X)$. A continuum X is said to be hereditarily smooth at p provided each subcontinuum of X which contains p is smooth at p. The set of all points of a continuum X at which X is hereditarily smooth is denoted by $HI(X)$.

It is proved that if a continuum X is arcwise connected and $HI(X) \neq \emptyset$ then X is hereditarily arcwise connected and $HI(X) = I(X)$; and if C is the constituent of the set of all points at which X is locally connected, and $C' = HI(X) \neq \emptyset$, then $C = HI(X) = I(X)$. Also other properties of an arcwise connected and hereditarily smooth continua are studied in the paper.

§ 1. Introduction. The notion of smoothness of continua in a general form has been introduced in [10]. In that paper relations are studied between this notion of smoothness and that which was introduced previously in [5] by Gerdich. In particular, it is proved that both notions coincide on metric continua which are either hereditarily unicoherent at some point or irreducible between two points, i.e., any continuum X smooth in the sense of [5] is smooth in the new sense of [10]; and any continuum smooth in the new sense which is either hereditarily unicoherent at some point or irreducible is smooth in the sense of [5]. For example, smooth dendroids (see [2]) are those arcwise connected continua which are smooth in the sense of [5]. The class of arcwise connected continua which are smooth in the sense of [10] is essentially larger than the class of smooth dendroids. Any dendroid X (and, more generally, any continuum X hereditarily unicoherent at some point) is hereditarily smooth at p (see [10], Corollary (7.1); cf. [9], Theorem (2.6)). In this paper we consider arcwise connected continua which are hereditarily smooth at some point.

The author is very much indebted to Dr. J. J. Charatonik for encouraging this investigation and for many helpful suggestions and conversations while this paper was in preparation.

§ 2. Preliminaries. The topological spaces under consideration will be assumed to be metric and compact. If the space X under consideration is established, then d denotes a metric on X; $B(N, d)$ denotes the union of all open metric balls with the
centres in a given set \(N \) and with the radii \(r > 0 \), and \(ab \) is an arbitrary arc with endpoints \(a \) and \(b \).

The numbering of conclusions in the proofs is separate in every proof. If \(A_1, A_2, \ldots \) is a sequence of subsets of a space \(X \), then \(L(A_n) \) denotes the set of all points \(x \in X \) for which every neighbourhood intersects \(A_n \) for almost all \(n \), and \(L(A_n) \) denotes the set of all points \(x \in X \) for which every neighbourhood intersects \(A_n \) for arbitrarily large \(n \). A sequence \(A_1, A_2, \ldots \) of subsets of \(X \) is said to converge to a set \(A \) (denoted by \(\lim A_n = A \)) in the case \(\lim A_n = A = L(A_n) \).

It is known (see [8], § 47, II, Theorem 6, p. 171) that:

Proposition 1. If \(C_1, C_2, \ldots \) is a sequence of subcontinua of the space \(X \) such that \(L(C_n) \neq \emptyset \), then the set \(L(C_n) \) is a continuum.

It is proved (see [10], Lemma 2.2) that:

Proposition 2. Let \(C_1, C_2, \ldots \) be a sequence of subcontinua of the space \(X \) and \((x, y) = L(C_n) \). If \(L(C_n) \) is irreducible between points \(x \) and \(y \), then the sequence \(C_1, C_2, \ldots \) is convergent.

We say that \(X \) is smooth at the point \(p \in X \) if for each convergent sequence \(x_1, x_2, \ldots \) of points of \(X \) and for each subcontinuum \(K \) of \(X \) such that \(p, x, x_1, \ldots \) is in \(K \) for each \(n \in N \), there exists a sequence \(x_1, x_2, \ldots \) of subcontinua of \(X \) such that \(p, x, x_1, \ldots \) is in \(K \) for each \(n \in N \) and \(\lim x_n = K \) (see [10]).

We have the following characterizations of continua which are smooth at some point (see [10], Theorems 2.4 and 3.1):

Proposition 3. The continuum \(X \) is smooth at the point \(p \in X \) if and only if one of the following conditions holds:

(i) for each convergent sequence \(x_1, x_2, \ldots \) of points of \(X \) and for each irreducible continuum \(I(p, x) \) between \(p \) and \(x \), there exists a sequence \(I(p, x_1), I(p, x_2), \ldots \) of irreducible continua between \(p \) and \(x_n \), respectively, such that \(\lim I(p, x_n) = I(p, x) \);

(ii) for each subcontinuum \(N \) of \(X \) and for each open set \(V \) of \(X \) there exists a continuum \(K \) such that \(p \in N \subset V \) implies \(N \subset \text{Int} K \subset K \cap V \).

We can characterize the smoothness by the notion of nonaposyndeticity of F. B. Jones (see [6], p. 104). Let \(A \in X \). Then we define \(X \setminus T(A) = \{ x \in X : \exists \text{ a subcontinuum } Q \text{ of } X \text{ such that } x \in \text{Int } Q = Q \setminus X \setminus A \} \) (see [3], p. 113), and put \(T^p(A) = T^{p^{-1}}(A) \) with \(T^p(A) = A \).

Corollary 1. A continuum \(X \) is smooth at \(p \in X \) if and only if for each subcontinuum \(N \) of \(X \) such that \(p \in N \), and for each closed set \(A \) in \(X \) the condition \(N \cap A = \emptyset \) implies \(N \cap T(A) = \emptyset \).

Indeed, if \(N \cap A = \emptyset \), then \(N \cap T(A) = \emptyset \). Thus, by Proposition 3(ii), there exists a subcontinuum \(Q \) of \(X \) such that \(N \cap Q = \emptyset \). Therefore \(N \cap X \setminus \text{Int } Q = \emptyset \). By the definition of \(T(A) \), i.e., \(N \cap T(A) = \emptyset \).

Conversely, if \(N \) is an arbitrary continuum in \(X \) such that \(p \in N \), and let \(T \) be an open set in \(X \) containing \(N \). Then there is a closed set \(A \) in \(X \) such that \(N \cap X \setminus A = \emptyset \). We have \(N \cap A = \emptyset \), i.e., for each \(x \in N \), there is a continuum \(Q_x \) such that \(x \in \text{Int } Q_x \subset Q_x \subset X \setminus A \). Put \(Q = \bigcup \{ Q_x : x \in N \} \).

It is easy to verify that the set \(Q \) is a continuum satisfying \(N \cap Q = \emptyset \) in \(X \). Thus condition (ii) from Proposition 3 holds. Since \(T(A) \) is closed (see [3], Lemma 1, p. 114), we have by Corollary 1.

Corollary 1'. Let \(X \) be an arbitrary continuum in \(X \) such that \(p \in N \). If \(N \cap T(A) = \emptyset \), then \(N \cap T(A) = \emptyset \) for each \(n = 0 \).

The set of all points of an arbitrary continuum \(X \) at which \(X \) is smooth is called the initial set of \(X \) and is denoted by \(I(X) \). If \(I(X) \neq \emptyset \), then \(X \) is said to be smooth.

The next two theorems are easy consequences of Proposition 3.

Corollary 2. A continuum \(X \) is locally connected at each point of \(I(X) \).

Corollary 3. A continuum \(X \) is locally connected if and only if \(I(X) = X \).

A continuum \(X \) is said to be hereditarily smooth at \(p \) provided each subcontinuum of \(X \) which contains \(p \) is smooth at \(p \). The set of all points of an arbitrary continuum \(X \) at which \(X \) is hereditarily smooth is called the hereditarily initial set of \(X \) and is denoted by \(H(X) \). If \(H(X) \neq \emptyset \), then \(X \) is said to be hereditarily smooth.

Corollary 2'. For each sub continuum \(Q \), \(X \) is locally connected at each point of \(Q \) and \(H(X) \).

Corollary 3'. A continuum \(X \) is hereditarily locally connected if and only if \(H(X) = X \).

§ 3. Arcwise connected continua. The main result of this section says that any arcwise connected and hereditarily smooth continuum is hereditarily arcwise connected.

Theorem 1. Let an arcwise connected continuum \(X \) be hereditarily smooth at a point \(p \in X \), let \(A \) be an arbitrary subcontinuum of \(X \) and let \(p_q \) be an arc in \(X \) which is irreducible between \(p \) and \(A \).

Proof. We have \(p_q \cap Q = (q) \). Let \(K \) be an arbitrary subcontinuum of \(Q \) such that \(q \in K \). Then \(p_q \cap K = (q) \). We will show that \(K \) is smooth at \(q \). Let \(x_1, x_2, \ldots \) be a convergent sequence of points of \(K \) and put \(x = \lim x_n \). Let \(P \) be a subcon-
tinuum of \(K \) such that \(x, q \in P \). \(X \) being hereditarily smooth at \(p \), the continuum \(pq \cup K \) is smooth at \(p \). Therefore there is a sequence \(R_1, R_2, ... \) of subcontinua of \(pq \cup K \) such that \(x_n, p \in R_n \) for each \(n = 1, 2, ... \) and \(\lim R_n = pq \cup P \) by the definition of smoothness. We define \(P_n = K \cap R_n \). Obviously \(P_n \) is a continuum for each \(n = 1, 2, ... \). Moreover \(x_n, q \in P_n \subseteq K \) for each \(n = 1, 2, ... \) and \(\lim P_n = P \). The proof of Theorem 1 is complete.

Corollary 4. If \(X \) is a hereditarily smooth arcwise connected continuum, then any subcontinuum of \(X \) is also hereditarily smooth.

Recall that a continuum \(X \) is said to be decomposable if there is a decomposition of \(X \) into two proper subcontinua. A continuum is said to be hereditarily decomposable if any subcontinuum of it is decomposable.

Corollary 5. Any hereditarily smooth arcwise connected continuum is hereditarily decomposable.

This is obvious if we observe that, by Corollaries 2 and 4, any subcontinuum of hereditarily smooth arcwise connected continuum is locally connected at some point.

It is well known that for every irreducible continuum \(X \) there exists an upper semi-continuous decomposition of \(X \) into continua (called *layers of \(X \)) (see [8], § 48, IV, p. 199) with the property that the decomposition of \(X \) into layers is the finest of all upper semi-continuous decompositions of \(X \) into continua (8), § 48, IV, Theorem 3, p. 200, [7]. Fundamental theorem, p. 259). If each layer of \(X \) has a void interior, then \(X \) is said to be of type \(\alpha \) (see [8], § 48, III, p. 197, the footnotes, and also [11], Definition 4, p. 13, where these continua are said to be of type \(\alpha \)). It is well known (see [8], § 48, VII, Theorem 3, p. 216; [11], Theorem 10, p. 15; [4], Theorem 2, p. 650) that an irreducible continuum \(X \) is of type \(\alpha \) if and only if each indecomposable subcontinuum of \(X \) has a void interior. Thus, by Corollary 1, we have

Corollary 6. Any irreducible subcontinuum of a hereditarily smooth arcwise connected continuum is of type \(\alpha \) (in fact, it is an arc — see Theorem 3 below).

Recall that a subcontinuum \(K \) of \(X \) is called a *continuum of convergence* (see [12], p. 127, cf. [8], § 47, VI, p. 245) provided \(X \) is a topological limit of the sequence of continua such that

\[
K = \lim_{n \to \infty} K_n \quad \text{and} \quad K \cap K_n = \emptyset \quad \text{for each } n = 1, 2, ...
\]

If \(X \) is compact, then we can assume that \(K_1, K_2, ... \) are mutually disjoint. We have

Theorem 2. Let \(X \) be an arcwise connected continuum which is hereditarily smooth at the point \(p \in X \). If \(K_0 \) is a continuum of convergence in \(X \) and \(pc \) is an arbitrary arc, then \(K_0 \cap pc \) is connected.

Proof. Suppose, on the contrary, that \(K_0 \cap pc \) is not connected. Then there is an arc \(a_0b_0 \) in \(pc \) such that

\[
a_0b_0 \cap K_0 = \{a_0, b_0\} \quad \text{and} \quad a_0 \neq b_0.
\]

Obviously we can assume \(a_0 \in pB_0 \). Since \(K_0 \) is a continuum of convergence in \(X \), \(K_0 \) is a topological limit of the sequence of continua such that

\[
K_0 = \lim_{n \to \infty} K_n \quad \text{and} \quad K_n \cap K_0 = \emptyset \quad \text{for each } m \neq n \text{ and } m, n = 0, 1, 2, ...
\]

Therefore there are sequences \(\{a_n\} \) and \(\{b_n\} \) of points of \(X \) such that

\[
\lim_{n \to \infty} a_n = a_0 \quad \text{and} \quad \lim_{n \to \infty} b_n = b_0,
\]

\[
a_n, b_n \in K_n \quad \text{for each } n = 0, 1, 2, ...
\]

Let \(p_{ab} \) be the arc in \(pc \). So we have \(p_{ab} \in K_0 \subseteq X \setminus \{b_0\} \). Let \(\varepsilon \) be a positive number such that \(\varepsilon < 1/2 \varepsilon(p_{ab}, p_{ab}, p_{ab}) \). Since \(X \) is smooth at \(p \), by Proposition 2 (i) there is a continuum \(Q \) in \(X \) such that

\[
p_{ab} \in \text{Int} Q = \{Q = B(p_{ab}, \varepsilon) \subseteq X \setminus \{b_0\}\}.
\]

By (3) and (5), and by the choice of \(\varepsilon \), we can assume that

\[
a_n \in Q \setminus \{b_n\} \quad \text{for each } n = 1, 2, ...
\]

For each \(n = 1, 2, ... \) take in \(K_n \) the continuum \(I(d_n, b_n) \) irreducible between \(Q \) and \(b_n \). Let \(e_n \) be an arc in \(a_n b_n \) such that \(e_n \cap Q = \{a_0\} \). It suffices to consider only two cases.

1. \(I(d_n, b_n) \cap e_n = \emptyset \) for each \(n = 1, 2, ... \) (or there is a subsequence \(I(d_n, b_n) \) of the sequence \(I(d_n, b_n) \) such that \(I(d_n, b_n) \cap e_n = \emptyset \) for each \(k = 1, 2, ... \), but then the proof is the same). Then we consider the following continuum

\[
R = Q \cup K_0 \cup \bigcup_{n=1}^{\infty} I(d_n, b_n).
\]

Since \(X \) is hereditarily smooth at \(p \), \(R \) is smooth at \(p \). Thus, by (3), there is a sequence of continua \(R_n \) in \(R \) such that

\[
p_n \in R_n \quad \text{for each } n = 1, 2, ...
\]

and

\[
\lim_{n \to \infty} R_n = p_{ab} \cup a_0b_0.
\]

But for each \(n = 1, 2, ... \) we have

\[
I(d_n, b_n) \subseteq R_n.
\]
Indeed, by Corollary 6 the irreducible continua $I(d_n, b_n)$ are of type λ, and by the definition of R any layer of $I(d_n, b_n)$ separates R between b_n and p. Thus any layer of $I(d_n, b_n)$ is contained in R_n, i.e., (9) holds.

Therefore, by (7) and (9) the set $\lim R_n$ contains some irreducible continuum z_0 between b_0 and Q, which is contained in K_0, contrary to (8).

2. $I(d_n, b_n) \cap e_n \neq \emptyset$ for each $n = 1, 2, \ldots$. Then we can take, by Corollary 6, irreducible continua $I(d_n, z_n)$ in $I(d_n, b_n)$ such that

\[z_n \in e_n \]

and

\[\text{no proper subcontinuum of } I(d_n, z_n) \text{ containing } d_n \text{ intersects } e_n. \]

(2) and (10) imply that $\lim \, x_n = b_0$. By the standard construction we can take, by (11), irreducible continua $I(d_n, x_n)$ in $I(d_n, z_n)$ such that $\lim \, x_n = b_0$, and $I(d_n, x_n) \cap e_n = \emptyset$ for each $n = 1, 2, \ldots$. Then we obtain a contradiction as in case 1'. The proof of Theorem 2 is complete.

Let an irreducible continuum X be of type λ and let $T_n, n \in [0, 1]$, denote a layer of X. Thus $X = \bigcup \{T_n : 0 \leq t < 1\}$. Put

\[L_i = \bigcup \{T_n : 0 \leq u < t\} \quad \text{and} \quad R_i = \bigcup \{T_n : t < v \leq 1\}. \]

Therefore

\[L_i = \varphi^{-1}(0, 0) \quad \text{and} \quad R_i = \varphi^{-1}(1, 1), \]

where φ is the canonical mapping from X to the unit interval $[0, 1]$; we see that both L_i and R_i are connected. (Here the capital letters L and R stand for left and right, respectively). Adopt the following definitions (see [1], p. 46). A layer T is said to be a layer of left cohesion if either $t = 0$ or $T_n = L_n \cap T_n$; and T is said to be a layer of right cohesion if either $t = 1$ or $T_n = R_n \cap T_n$. One can see that T_n is a layer of right cohesion (T_n is a layer of left cohesion) provided the interior of T_n (T_n) is empty. A layer T is said to be a layer of cohesion if it is a layer of both left and right cohesions (see [7], p. 260; [8], § 48, IV, p. 201). We have the following (see [1], Theorem, p. 48).

Proposition 4. An irreducible continuum X is smooth at a point p if and only if all three of the following conditions are satisfied:

(i) X is locally connected at p,

(ii) for each t satisfying $0 \leq u < \varphi(p)$ the layer T is of right cohesion,

(iii) for each t satisfying $\varphi(p) < v \leq 1$ the layer T is of left cohesion.

Lemma 1. For each two points x_0 and y_0 of an arbitrary layer T_n of an irreducible smooth continuum X, there exists a continuum of convergence K_n such that $\{x_0, y_0\} \subseteq K_n \subseteq T_n$.

Proof. By Proposition 4, the layer T_n is either of right or of left cohesion. Suppose that T_n is a layer of left cohesion (if T_n is a layer of right cohesion the proof is the same). Then either $t_n = 0$ or $T_n = L_n \cap T_n$. If $t_n = 0$, then T_n is a layer of right cohesion, and the proof is the same as for layers of right cohesion. If $t_n \neq 0$, then there are sequences $\{x_n\}$ and $\{y_n\}$ such that

1. x_n and y_n belongs to L_n for each $n = 1, 2, \ldots$.

2. $\lim \, x_n = x_0$ and $\lim \, y_n = y_0$.

Let φ be the canonical mapping from X to the unit interval $[0, 1]$. We can assume that for each $n = 1, 2, \ldots$,

$\varphi(x_n) < \varphi(y_n) < \varphi(x_{n+1}) < t_n$.

Put

\[K_n = \varphi^{-1}(\varphi(x_n), \varphi(y_n)) \quad \text{for each } n = 1, 2, \ldots. \]

Obviously, by (3), for each $n = 1, 2, \ldots$ the set K_n is a continuum and $K_n \cap T_n = \emptyset$, and by (1), we have $\{x_n, y_n\} \subseteq K_n \subseteq T_n$. We can assume that the sequence $\{K_n\}$ is convergent. Then $K = \lim K_n$ is a continuum of convergence, and $\{x_0, y_0\} = K \subseteq T_n$. The proof of Lemma 1 is complete.

Corollary 7. Let a continuum X be arcwise connected and hereditarily smooth at p. For each layer of an arbitrary irreducible submodule A of X and for each $x \in c$ in X the set $pc \cap T$ is connected.

Proof. By Corollary 4, A is an irreducible smooth continuum. Let a be an arbitrary point of $pc \cap T$. Therefore by Lemma 1, for each $y \in T$ there is a continuum of convergence K such that $\{a, y\} \subseteq K \subseteq T$. Thus $T = \bigcup \{K_y : y \in T\}$ and $pc \cap T = \bigcup \{K_y : y \in T\}$. But $K \subseteq pc$ is connected by Theorem 2, and $a \in K \subseteq pc$ for each $y \in T$. This implies that the set $pc \cap T$ is connected (see [8], § 48, II, Corollary 30), p. 132).

Lemma 2. Let $I(a, b)$ be an irreducible continuum between a and b which is smooth at the point a and let $I(c, d)$ be an irreducible subcontinuum of $I(a, b)$. If I is a layer of $I(c, d)$, then T is a layer of $I(a, b)$.

Proof. Let φ be the canonical map from $I(a, b)$ onto $I = [0, 1]$ such that $\varphi(a) = 0$. Suppose that $\varphi(c) < \varphi(d)$. (If $\varphi(c) > \varphi(d)$ the proof is the same). It follows from Theorem (5.3) in [10] that $I(a, b)$ is hereditarily unicoherent at d; thus $I(c, d) = \varphi^{-1}(\varphi(c), \varphi(d))$. Consider the continuum

\[K = \varphi^{-1}(0, 0) \cup I(c, d) \cup \varphi^{-1}(0, 0). \]

Since $a, b \in K$, we have $K = I(a, b)$. Therefore $\varphi^{-1}(\varphi(c), \varphi(d)) = I(c, d)$. Thus

\[\varphi^{-1}(\varphi(c), \varphi(d)) = \varphi^{-1}(\varphi(c), \varphi(d)) = I(c, d). \]
by Proposition 4. We infer \(I(c, d) = \psi^{-1}(\{\sigma(0), \sigma(d)\}) \). This equality implies the conclusion of the lemma.

Lemma 3. Let \(I(c, d) \) be an irreducible continuum between \(c \) and \(d \), which is smooth at \(d \), and let \(\psi \) be the canonical map from \(I(c, d) \) onto \([0, 1]\) such that \(\psi(c) = 0 \). If \(x_0, y_0 \) is an irreducible subcontinuum of \(I(c, d) \) such that \(\sigma(x_0) < \sigma(y_0) \), then the set \(\psi^{-1}(\{x_0, y_0\}) \) is a layer of \(I(x_0, y_0) \).

Proof. Let \(I(x_0, y_0) \) be an irreducible subcontinuum of \(I(c, d) \) such that \(\sigma(x_0) < \sigma(y_0) \). Consider the continuum \(K = \psi^{-1}(\{0, \sigma(x_0)\}) \cup I(x_0, y_0) \cup \psi^{-1}(\{\sigma(y_0), 1\}) \). Since \(c, d \in K \), we have \(K = I(c, d) \). Therefore

\[
\psi^{-1}(\{\sigma(x_0), \sigma(y_0)\}) = I(x_0, y_0) \neq \emptyset.
\]

Thus \(\psi^{-1}(\{\sigma(x_0)\}) \) and the set \(\psi^{-1}(\{\sigma(y_0)\}) \) is nowhere dense in \(I(x_0, y_0) \) by Proposition 4. This implies by Theorem 7 in [8], § 48, p. 194, that the continuum \(I(x_0, y_0) \) is irreducible between each point of the set \(\psi^{-1}(\{\sigma(x_0)\}) \) and \(y_0 \). Moreover, since for each \(\sigma(x_0) < t < \sigma(y_0) \) the set \(\psi^{-1}(\{t\}) \) separates \(I(x_0, y_0) \), we conclude that \(\psi^{-1}(\{\sigma(x_0)\}) \) is the set of all points \(a \) of \(I(x_0, y_0) \) such that \(I(x_0, y_0) \) is irreducible between \(a \) and \(y_0 \). Therefore \(\psi^{-1}(\{a\}) \) is a layer of \(I(x_0, y_0) \) (cf. [8], § 48, IV, Theorem 4, p. 202).

Theorem 3. If an arwise connected continuum \(X \) is hereditarily thin, then \(X \) is hereditarily arwise connected.

Proof. It suffices to prove that any irreducible continuum in \(X \) is an arc. Let \(I(a, b) \) be an arbitrary subcontinuum of \(X \) irreducible between given points \(a \) and \(b \). Then \(I(a, b) \) is of type \(I \), by Corollary 6. Therefore it suffices to show that any layer of \(I(a, b) \) degenerate. Suppose, on the other hand, that there is a nondegenerate layer of \(I(a, b) \). Since \(X \) is arwise connected, there is an arc \(p \) in \(X \) such that

\[
(1) \quad pc \cap T = \{c\}.
\]

If \(pc \cap I(a, b) = \{c\} \), then the continuum \(I(a, b) \) is smooth at \(c \), by Theorem 1. Thus \(I(a, b) \) is locally connected at \(c \). This implies that the layer \(T_c \) of the point \(c \) in \(I(a, b) \) is degenerate. But \(c \in T_c \), and hence \(T_c = T \), i.e., \(T \) is degenerate — a contradiction.

Therefore we consider the remaining case, namely that of \(pc \cap I(a, b) = \{c\} \). Take an arc \(pd \) in the arc \(pc \) such that

\[
(2) \quad pd \cap I(a, b) = \{d\}.
\]

Then \(I(a, b) \) is smooth at \(d \) by Theorem 1; and thus, by Lemma 2, if we take the continuum \(I(c, d) \) of \(I(a, b) \) irreducible between \(c \) and \(d \), then the layer of the point \(c \) in \(I(c, d) \) coincides with \(T \) by (1). Let \(\psi \) be the canonical mapping from \(I(c, d) \) to the unit interval \([0, 1]\) such that

\[
(3) \quad \psi^{-1}(0) = T \quad \text{and} \quad \psi^{-1}(1) = \{d\},
\]

and let \(cd \) mean the subarc of the arc \(pc \).

Indeed, observe firstly that

\[
\psi^{-1}(\{a, b\}) \setminus \psi^{-1}(\{c\}) = \psi^{-1}(\{c\}) \cup \psi^{-1}(\{d\}).
\]

Since \(I(c, d) \) is smooth at \(d \), the layer \(\psi^{-1}(\{c\}) \) is of right cohesion by Proposition 4. Therefore by Lemma 3 the set \(\psi^{-1}(\{a, b\}) \) is a layer of an irreducible continuum \(I(x_0, y_0) \) in \(I(c, d) \) such that \(x_0 \in \psi^{-1}(\{a\}) \) and \(y_0 \in \psi^{-1}(\{b\}) \). Then \(pc \cap I(x_0, y_0) = pc \cap \psi^{-1}(\{a, b\}) \) by the definition of \(\psi \); hence, \(x_0, y_0 \) is smooth at some point of \(\psi^{-1}(\{a, b\}) \) by Theorem 1. We infer that \(I(x_0, y_0) \) is locally connected at some point \(\psi^{-1}(\{a, b\}) \); hence

\[
(10') \quad \psi^{-1}(\{a, b\}) \text{ is a one-point set.}
\]

Suppose now that

\[
\lim_{n \to \infty} z_n = x_0 \in \psi^{-1}(\{a, b\}) \cap pc \neq \emptyset.
\]

Since \(I(c, d) \) is smooth at \(d \), the layer \(\psi^{-1}(\{b\}) \) is of right cohesion by Proposition 4. If

\[
\psi^{-1}(\{a, b\}) \setminus \psi^{-1}(\{b\}) \cap pc = \emptyset,
\]

then there is a sequence \(\{z_n\} \) of points of \(\psi^{-1}(\{a, b\}) \), i.e.,

\[
\psi(z_n) \in (a, b),
\]

such that

\[
\lim_{n \to \infty} z_n = x_0 \in \psi^{-1}(\{b\}) \cap pc.
\]
We can assume that $t < \varphi(z_n) < \beta(t)$ for each n. Take the arc $p z_0 < p c$, and consider the continuum L of the form

$$L = p z_0 \cup \varphi^{-1}(t, \beta(0)) \cup \varphi(z_n).$$

Then, by assumption, L is smooth at p, and thus there are, for each $n = 1, 2, \ldots$, irreducible continua $I(p, z_n) \subseteq L$ such that

$$\lim_{n \to \infty} I(p, z_n) = p z_0.$$

Since any layer $\varphi^{-1}(t')$ for $t' < \beta(t)$ separates the continuum L, we conclude that

$$\varphi^{-1}(\varphi(z_n), \beta(0)) = \varphi^{-1}(\varphi(z_n), \beta(0)) \cap \varphi^{-1}(\beta(0)).$$

Therefore, since

$$z_n \in \varphi^{-1}(t, \beta(0)) \cap \varphi^{-1}(\beta(0)) = \varphi^{-1}(\varphi(z_n), \beta(0)) \cap \varphi^{-1}(\beta(0)),$$

we have

$$z_n \in \lim_{n \to \infty} I(p, z_n),$$

i.e., $z_n \in p z_0 < p c$ — a contradiction.

Therefore, we can assume

$$\overline{\varphi^{-1}(\varphi(z_n), \beta(0)) \cap \varphi^{-1}(\beta(0))} \cap p c = \emptyset.$$

By (10) $\varphi^{-1}(\alpha(t))$ is a one-point set. Denote this point by a. Take the arc $p c$ in the arc $p c$, and take a point e' in $p c$ such that $e' \cap \varphi^{-1}(\{\beta(t), 1\}) = \{e'\}$, where e' is an arc in $p c$. Consider two cases.

1'. $\varphi(e') \neq \beta(t)$. Then there is a point t_o such that $\beta(t) < t_o < \varphi(e')$. Consider the continuum K defined as follows:

$$K = \varphi^{-1}(\varphi(e'), 1) \cup \varphi^{-1}(\varphi(z_n), t_o).$$

The continuum K is irreducible between e and any point of $K \cap \varphi^{-1}(t_o)$, and K is smooth at d, because $p d \cap K = \{d\}$ (cf. Theorem 1). Therefore by Proposition 4,

$$\varphi^{-1}(\beta(t)) = \overline{\varphi^{-1}(\alpha(t), \beta(0))}.$$

By the definition of $\beta(t)$ we have $\varphi^{-1}(\beta(t)) \cap p c = \emptyset; \varphi^{-1}(\varphi(z_n), \beta(0)) \cap \varphi^{-1}(\beta(0)) \cap p c = \emptyset — a contradiction.

2'. $\varphi(e') = \beta(t)$. The layer $\varphi^{-1}(\beta(t))$ is of right cohesion of $I(c, d)$, and $\{e', z_0\} = \varphi^{-1}(\beta(t))$, we infer there are continua K_n such that $K_n \cap K_n = \emptyset$ for $n \neq m$. Let $K_n = K_n \cap [e', z_0] = K_n \cap \varphi^{-1}(\beta(t))$, $\varphi(K_n) \cap [e', \beta(t)] = \emptyset$ (cf. Lemma 1). Since the continuum $p e' \cup \varphi^{-1}(\beta(t), 1)$ is smooth at p, there is a continuum Q such that

$$p e' \subseteq \text{Int} Q = q e' \cup \varphi^{-1}(\beta(t), 1) \cup \varphi^{-1}(\varphi(z_n), \beta(0)).$$

(Cf. Proposition 3 (ii)), because $\varphi^{-1}(\varphi(z_n), \beta(0)) \cap p e' = \emptyset$ (Int Q denotes the interior of Q in $p e' \cup \varphi^{-1}(\beta(t), 1)$). Since $K_n \subseteq p e' \cup \varphi^{-1}(\beta(t), 1)$ and $\lim_{n \to \infty} K_n = K_0$ contains the point e', we can assume that $K_0 \cap Q \neq \emptyset$ for each $n = 1, 2, \ldots$ Since $x_n \in K_0$, there is a sequence of points $\{x_n\}$ such that $\lim_{n \to \infty} x_n = x_0$ and $x_0 \in K_0$. Take the continuum $I(x_0, c_n)$ irreducible between x_0 and Q (in K_0). We can assume that the sequence $\{x_n\}$ is convergent and put $c_0 = \lim x_n$. Then $c_0 \in Q$.

Consider the continuum

$$K = Q \cup e' \cup \varphi^{-1}(\alpha(t), \beta(0)) \cup \bigcup_{n \to \infty} I(x_n, c_n).$$

Since $p \in K$, K is smooth at p. The continuum

$$I(p, z_0) = p e' \cup \varphi^{-1}(\varphi(z_n), \beta(0))$$

is irreducible between p and z_0. Moreover, $I(p, z_0) = K_n$ and $\lim_{n \to \infty} z_n = z_0$. Then, by the smoothness of K at p, there are irreducible continua $I(p, z_n) \subseteq K_n$ in K such that

$$\lim_{n \to \infty} I(p, z_n) = I(p, z_0).$$

By the definition of K, we have $I(x_n, c_n) = I(p, z_n)$. Therefore

$$\lim_{n \to \infty} I(x_n, c_n) = I(p, z_0) \cup \varphi^{-1}(\beta(t)).$$

By Proposition 1 the set $M = \lim_{n \to \infty} I(x_n, c_n)$ is a continuum. Therefore, because

$$M = (p e \cap M) \cup \{\varphi^{-1}(\varphi(x_n, \beta(0)) \cap M \} \text{ and } z_0 \in \varphi^{-1}(\varphi(x_n, \beta(0)) \cap M,$$

we have either $p e \cap M = \emptyset$ or $p e \cap M \cap \varphi^{-1}(\varphi(x_n, \beta(0)) \neq \emptyset$. If $p e \cap M = \emptyset$, then

$$c_0 \in M \cap \varphi^{-1}(\varphi(x_n, \beta(0)).$$

But $c_0 \notin Q$ and, thus $c_0 \notin Q \cap \varphi^{-1}(\varphi(x_n, \beta(0)) — a contradiction, because

$$Q \cap \varphi^{-1}(\varphi(x_n, \beta(0)) \neq \emptyset,$$

and

$$\emptyset.$$
Take a sequence \(\{x_n\} \) such that \(\lim x_n = x_0 \), and \(\alpha(t_0) \in \varphi^{-1}(\varphi_x(t_0)) \). Then \(\varphi^{-1}(\varphi_x(t_0)) = T_0 \) is contained in a layer of \(\varphi^{-1}(\varphi(t_0)) \) and \(\{x_n, x_0\} \subset T_0 \). Consider the continuum \(P \) of the form

\[
P = \text{pc} \cup T_0 \cup \bigcup_{n=1}^{\infty} \varphi^{-1}(\varphi_x(t_n))
\]

Then, by assumption, \(P \) is smooth at \(p \); thus there are irreducible continua \(I(p, x_0) \subset P \) such that \(\lim I(p, x_n) = px_0 \), where \(px_0 \) is an arc in \(P \). Then any continuum \(I(p, x_n) \) must contain the point \(px_0 \), and thus \(x_0 \in px_0 \) — a contradiction by (14). The proof of Theorem 3 is complete.

§ 4. The initial set of a hereditarily smooth arcwise connected continuum. In this section we will prove that, if \(X \) is a hereditarily smooth arcwise connected continuum, then any point \(p \) of \(X \) is smooth, and there are irreducible continua \(I(p, x_0) \subset P \) such that \(\lim I(p, x_n) = px_0 \), where \(px_0 \) is an arc in \(P \). Then any continuum \(I(p, x_n) \) must contain the point \(px_0 \), and thus \(x_0 \in px_0 \) — a contradiction by (14). The proof of Theorem 3 is complete.

Theorem 4. Let a continuum \(X \) be arcwise connected and hereditarily smooth at the point \(p \). If \(K_0 \) is a subcontinuum of convergence of \(X \) for each point \(x_0 \) of \(X \), then they are arcs. Thus

\[
\lim_{n \to \infty} x_n = x_0 \in I(d, c) \setminus \text{pc}.
\]

Then, by assumption, \(K_0 \) is a topological limit of a sequence of disjoint continua, i.e.,

\[
K_0 = \lim_{n \to \infty} K_n \quad \text{and} \quad K_n \cap K_m = \emptyset \quad \text{for each} \quad m \neq n \quad \text{and} \quad m, n = 0, 1, 2, \ldots
\]

It follows from \((x_n, y_n) \in K_0 \) that there are sequences \(\{x_n\} \) and \(\{y_n\} \) of points of \(X \) and a sequence \(\{x_n, y_n\} \) of arcs in \(X \) (by the hereditary arcwise connectivity of \(X \)) such that

\[
\lim_{n \to \infty} x_n = x_0 \quad \text{and} \quad \lim_{n \to \infty} y_n = y_0.
\]

We may assume (see [8], § 42, I, Theorem 1, p. 45) that the sequence \(\{x_n, y_n\} \) is convergent and

\[
\lim_{n \to \infty} x_n y_n = K_0 \subset K_0.
\]
Since X is smooth at p, it follows by Proposition 3(ii) that there are continua Q_a and Q_b^* such that
\[(5) \quad p X \subseteq \text{Int } Q_a \subseteq Q_b \subseteq B(p X_0, 1/n), \]
\[(6) \quad p Y \subseteq \text{Int } Q_b^* \subseteq Q_b \subseteq B(p Y_0, 1/n). \]

We can assume by (2) that for an arbitrary but fixed n and for each $i = 1, 2, \ldots$ we have $x_i Y_i \cap Q_b \neq \emptyset$ and $x_i Y_i \cap Q_b^* \neq \emptyset$. Take arcs $a_i b_i \subseteq x_i Y_i$ irreducible between $x_i Y_i \cap Q_b$ and $x_i Y_i \cap Q_b^*$ for each $i = 1, 2, \ldots$.

If the sequence $\{a_i b_i\}$ contains a subsequence $\{a_i b_i\}$ of degenerate arcs, then there is a sequence $\{x_k\}$ of points such that $x_k \in a_k b_k \cap Q_a \cap Q_b^*$. Therefore there is a point $z_k \in \lim_{k \to \infty} x_k$ such that $z_k \in Q_a \cap Q_b^* \cap K_a^*$. If each subsequence $\{a_i b_i\}$ of the sequence $\{a_i b_i\}$ is a sequence of nondegenerate arcs, then there are arcs $a_k c_k$ such that
\[(7) \quad \lim_{k \to \infty} c_k = c_0 \in Q_b^*, \]
\[(8) \quad a_k c_k \subseteq a_k b_k, \]
\[(9) \quad a_k c_k \cap Q_b^* = \emptyset \quad \text{and} \quad a_k c_k \cap Q_a = \{a_k\}. \]

Put $R = Q_a \cap Q_b^* \cap K_a^* \cup \cup_{k=1}^\infty a_k c_k$. Obviously R is a continuum and $p \in R$.

Moreover, for each $k = 1, 2, \ldots$, by (4) and (9), we infer that
\[(10) \quad \text{any continuum } A \text{ in } R \text{ such that } p, c_k \in A \text{ contains } a_k. \]

Since X is hereditarily smooth at p, the continuum R is smooth at p. Therefore by (7) and by the definition of smoothness, there are continua A_k in R such that
\[(11) \quad \{p, c_k\} = \text{Lim } A_k = Q_b^* , \]
\[(12) \quad p, c_k \in A_k \quad \text{for each } k = 1, 2, \ldots \]

It follows from (10) and (12) that $a_k \in A_k$ for each $k = 1, 2, \ldots$. Let a_k be a cluster point of the sequence $\{a_k\}$. We have $a_k \in K_a \cap Q_a \cap Q_b^*$ is nonempty, by (6), (9) and (11).

Thus we find that for each $n = 1, 2$, the set $K_a \cap Q_a \cap Q_b^*$ is nonempty. Therefore
\[
\lim_{k \to \infty} (K_a \cap Q_a \cap Q_b^*) = K_a \cap \text{Lim } Q_a \cap Q_b^* = K_a \cap p X_0 \cap p Y_0
\]

is nonempty. Hence $x_0 = y_0$ by (1). The proof of Theorem 4 is complete.

Lemmata.

4. Let a continuum X be hereditarily arcwise connected. If the arc A_0 is a continuum of convergence of X, then any one of the arc A_0 is a continuum of convergence of X.

Proof. The arc A_0 is a continuum of convergence of X; thus A_0 is a topological limit of the sequence A_n of subcontinua of X such that
\[(13) \quad A_0 = \lim_{n \to \infty} A_n \quad \text{and} \quad A_0 \cap A_n = \emptyset \quad \text{for} \quad m \neq n \text{ and } m, n = 0, 1, 2, \ldots \]

Let a_0 and b_0 be endpoints of the arc A_0. There are sequences $\{a_n\}$ and $\{b_n\}$ of points of X and a sequence $\{a_n b_n\}$ of arcs of X such that
\[(14) \quad \lim_{n \to \infty} a_n = a_0 \quad \text{and} \quad \lim_{n \to \infty} b_n = b_0, \]
\[(15) \quad a_n b_n \subseteq A_n \quad \text{for each } n = 0, 1, 2, \ldots \]

by the hereditary arcwise connectedness of X. It follows from Proposition 2 that
\[(16) \quad \lim_{n \to \infty} a_n b_n = A_0 = a_0 b_0. \]

For each $i = 1, 2, \ldots$, there is an arc $a_i b_i$ such that
\[(17) \quad \lim_{i \to \infty} a_i b_i = A_0 \quad \text{for each } i \in a_i b_i, \]
\[(18) \quad \lim_{i \to \infty} a_i b_i = A_0 \quad \text{for each } i \in a_i b_i, \]

Let $c_i d_i$ be a subarc of the arc A_0 such that $a_i \leq c_i \leq d_i \leq b_i$ in the natural order of the arc A_0. It suffices to prove that $c_i d_i$ is a continuum of convergence of X.

Let i be a natural number and let $a_i b_i$ be an arc determined above. Let d_i be the first point in the arc $a_i b_i$, such that
\[(19) \quad \phi(d_i, d_i b_i) = 1, \]
where $d_i b_i$ is the subarc of the arc $a_i b_i$; i.e., for each $x \in a_i b_i \setminus (d_i b_i)$, we have $\phi(x, d_i b_i) > 1$. Let c_i be the least point in the arc $a_i d_i$ (in $a_i b_i$) such that
\[(20) \quad \phi(c_i, a_i c_i) = 1, \]
where $a_i c_i$ is an arc in the arc $a_i b_i$. Therefore, if $c_i d_i$ is an arc in $a_i b_i$, by (4)-(7)
\[(21) \quad \phi(x, c_i d_i) > 1 \quad \text{for each } x \in c_i d_i \setminus (c_i, d_i) . \]

Put $K_n = c_n d_n$. Consider $K_0 = K_{a_n}$. By (7), any cluster point of the sequence $\{a_n\}$ is contained in $a_0 c_0$, but (4) and (8) imply that any cluster point of the sequence $\{c_n\}$ is contained in $c_0 d_0$; therefore
\[(22) \quad \lim_{i \to \infty} c_i = c_0 . \]

In a similar way we obtain
\[(23) \quad \lim_{i \to \infty} d_i = d_0. \]
Moreover (4) and (9) imply that

\[K_0 = c_0d_0. \]

Thus, by (9), (10) and (11), we infer \(K_0 = c_0d_0 \). Therefore, by Proposition 2, we have \(\lim K_i = c_0d_0 \), i.e., the arc \(c_0d_0 \) is a continuum of convergence of \(X \) by the choice of \(K_0 \). The proof of Lemma 4 is complete.

Lemma 5. Let a continuum \(X \) be arcwise connected and hereditarily smooth at a point \(p \in X \). Let \(\{ p_{x_n} \} \) be a sequence of arcs of \(X \) such that \(\lim x_n = x_0 \) and \(\lim p_{x_n} \) is an arc \(p_{x_0} \). If \(\{ z_n \} \) is a sequence of points of \(p_{x_0} \) such that

(i) \(\lim_{n \to \infty} z_n = x_0 \).

(ii) If \(z_nx_n \) is an arc in \(p_{x_n} \) and \(p_{x_n} \) is an arc in \(p_{x_0} \), then \(p_{x_n} \cap z_nx_n = \{ z_n \} \),

then \({L}_{s_0}z_nx_n \) is the arc \(z_nx_n \) in \(p_{x_0} \).

Proof. By Theorem 3 the continuum \(X \) is hereditarily arcwise connected. By assumptions, \({L}_{s_0}z_nx_n \) is a subarc of the arc \(p_{x_0} \) and \(x_0 \in {L}_{s_0}z_nx_n \). Suppose, on the contrary, that \(z_nx_n \), \(z_0 \in p_{x_0} \) \(\\backslash \{ z_0 \} \) \(\subset p_{x_0} \). There is a sequence \(z_n' \in z_nx_n \) such that

\[\lim_{n \to \infty} z_n' = z_0. \]

We can assume that for each \(i = 1, 2, ... \), the arc \(z_i'z_i \), contained in \(z_nx_n \), are such that \(z_nx_n \cap p_{x_0} = \emptyset \). Since \(z_nx_n \subseteq z_0x_0 \), we have \(\lim z_nx_n = z_0x_0 \) by Proposition 2. Therefore

(2) the arc \(z_0x_0 \) is a continuum of convergence of \(X \).

Take the arc \(z_i'z_i \), contained in \(z_nx_n \), for each \(i = 1, 2, ... \) Consider

\[Q = p_{x_0} \cup \bigcup_{i=1}^{\infty} z_i'z_i. \]

Obviously \(Q \) is a continuum. Since \(X \) is hereditarily smooth at \(p \) and \(p \in Q \), \(Q \) is smooth at \(p \). Let \(e = \varepsilon(q_0, p_{x_0}) \), where \(p_{x_0} \) is an arc in \(p_{x_0} \). It follows from Proposition 3(ii) that there is a continuum \(K \) in \(Q \) such that

\[p_{x_0} \cap \text{Int} K = K \subset B(p_{x_0}, 0). \]

By (i) of the assumptions and by (1) we can take a natural number \(n_1 \) such that \(z_i' \in K \) and \(g(z_i, z_0) \subset e \). Let \(ab \) be an arbitrary arc in \(p_{x_0} \), such that \(ab \cap K = \emptyset \) and \(p < a < b \) is the natural order of the arc \(p_{x_0} \). The continuum \(K \cup z_i'z_i' \cup b_{i_0} \), where \(b_{i_0} \) is an arc in \(p_{x_0} \), contains an arc \(pb \) by the hereditary arcwise connectedness of \(X \). Then \(pb \cap ab = \{ b \} \). By Lemma 4 and (2) \(ab \) is a continuum of convergence; thus by Theorem 4 if we take the arc \(pb \) and the arc \(pa \), which is contained in \(p_{x_0} \), then we obtain \(a = b = c \) — a contradiction.

Theorem 5. Let a continuum \(X \) be arcwise connected. If \(H(X) \neq \emptyset \), then \(I(X) = HI(X) \).

Proof. Obviously \(H(X) \subset I(X) \) by definition. It follows from Theorem 3 that \(X \) is hereditarily arcwise connected. Let \(X \) be smooth at \(p \) and let \(Q \) be an arbitrary subcontinuum of \(X \) such that \(p \neq Q \). By the definition of hereditary smoothness it suffices to prove that \(Q \) is smooth at \(p \). By Theorem 1, if \(r \in H(X) \) and \(rq \) is an arbitrary arc irreducible between \(r \) and \(p \), then \(qp \) is hereditarily smooth at \(q \). Let \(\{ x_n \} \) be an arbitrary sequence of points of \(Q \) such that

\[\lim_{n \to \infty} x_n = x_0 \in p_{x_0}, \]

and let \(p_{x_0} \) be an arbitrary arc contained in \(Q \). We will prove that there is a sequence \(\{ x_n \} \) of subcontinua of \(Q \) such that \(\lim_{n \to \infty} x_n = p_{x_0} \).

Let \(g_0 \) be an arbitrary arc in \(Q \) which is irreducible between \(q \) and \(p_{x_0} \). Denote by \(y_0 \) and \(y_0x_0 \) arcs contained in \(p_{x_0} \). Put \(g_0 \in qg_0 \cup y_0x_0 \). Since \(g \) is an initial point of \(Q \), there is a sequence \(\{ g_0 \} \) of arcs in \(Q \) such that

\[\lim_{n \to \infty} g_0 = g_0x_0. \]

For each \(n = 1, 2, ... \), let the point \(z_n \) of \(qg_0 \subset qx_0 \) be such that, if \(z_nx_n \subset x_0 \), then \(z_nx_n \) is an arc in \(g_0 \), and \(g_0x_0 \) is an arc in \(g_0x_0 \). Then \(z_nx_n \) is an arbitrary cluster point of the sequence \(\{ z_n \} \), i.e., for some subsequence \(\{ z_n \} \) of the sequence \(\{ z_n \} \) we have

\[z_n = \lim_{n \to \infty} z_n. \]

Suppose that \(z_n \notin y_0x_0 \). Then (3) and Lemma 4 imply that

(4) any proper subarc of the arc \(x_0z_n \) is a continuum of convergence of \(X \), where \(x_0z_n \) is an arc in \(g_0z_0 \).

Let \(e = \varepsilon(q_0, p_{x_0}) \). Since \(X \) is smooth at \(p \), by Proposition 3(ii) there is a continuum \(K \) such that

\[p_{x_0} \cap \text{Int} K = K \subset B(p_{x_0}, 0). \]

By (1) and (3) there is a natural number \(n_1 \) such that \(x_n \in K \) and \(x_n \notin K \). Let \(A \) be a non-degenerate subarc of the arc \(x_0z_n \subset g_0z_0 \) such that \(A \subset x_0z_n \backslash (K \cup \{ z_n \}) \) and denote by \(a \) and \(b \) the endpoints of \(A \) (where \(q < a < b \) in the natural ordering of the arc \(g_0 \) from \(q \) to \(x_n \)). We have two arcs \(qa \) and \(qb \) such that

\[qa \in qg_0, \]

\[qb \in qg_0 \cup x_0z_n \cup K \cup y_0x_0. \]
where bY_0 is an arc in qX_0. We define $ra = rq \cup qa$ and $rb = rq \cup qb$. Since $ra \cap ab = \{a\}$ and $rb \cap ab = \{b\}$, we have $a = b$ by Theorem 4 and (4). This contradicts the choice of a and b.

Therefore any cluster point of the sequence (z_n) belongs to the arc y_0X_0. We define $R_n = y_0a \cup y_0z_n \cup z_nx_n$, where y_0z_n is an arc in qX_0. Then $\lim_{n \to \infty} R_n = y_0p \cup y_0x_n \cup y_0z_n = y_0z_n$ by Lemma 5. Therefore $\lim_{n \to \infty} R_n = y_0x_n$ by Proposition 2. Since the continuum R_n is contained in Q by the construction for each $n = 1, 2, ...$, the required condition is satisfied. The proof of Theorem 5 is complete.

Corollary 8. A continuum X is hereditarily locally connected if and only if $HI(X) \neq \emptyset$ and X is locally connected.

Indeed, if X is hereditarily locally connected, then $HI(X) = X$ by Corollary 3'. In particular $HI(X) \neq \emptyset$ and X is locally connected. Conversely, if X is locally connected and $HI(X) = \emptyset$, then $I(X) = X$ by Corollary 3 and $HI(X) = X$ by Theorem 5, because local connectedness implies arcwise connectedness. Therefore X is hereditarily locally connected by Corollary 3'.

Corollary 9. For every continuum X the equality $HI(X) = X$ holds if and only if $I(X) = X$ and $HI(X) \neq \emptyset$.

Theorem 6. Let a continuum X be arcwise connected. If $p, q \in HI(X)$ and if pq is an arbitrary arc in X with endpoints p and q, then $pq \in HI(X)$.

Proof. By Theorem 3, X is hereditarily arcwise connected. Take an arbitrary point r of pq and a convergent sequence (z_n) of points of X. Put

$$\lim_{n \to \infty} z_n = x_0,$$

and let R_n be an arbitrary arc with endpoints r and x_0. Denote by y_0, such a point a point of rX_0 that if y_0x_0 is an arc in rX_0 then $pq \cap y_0x_0 = \{y_0\}$. Let pr and rq denote the arcs in pq. Assume $y_0 \in pr$ (if $y_0 \in rq$ the proof is the same). Since X is smooth at p, there exists a sequence (px_n) of arcs such that

$$\lim_{n \to \infty} px_n = y_0p \cup y_0x_0,$$

where y_0p is an arc in pq. Take a sequence (z_n) of points of arcs px_n such that if z_nx_0 is an arc in px_n then $(y_0p \cup y_0x_0) \cap z_nx_0 = \{z_n\}$. Let z_0 be an arbitrary cluster point of the sequence (z_n). Suppose that $z_0 \in y_0p \setminus \{y_0\}$. Since z_0 is a cluster point of (z_n), there is a subsequence (z_{n_k}) of the sequence (z_n) such that

$$\lim_{k \to \infty} z_{n_k} = z_0.$$

Then, by Lemma 4, we infer that

any proper subarc of the arc z_0x_0 in $y_0p \cup y_0x_0$ is a continuum of convergence of X.

Let $e = \frac{1}{2}(z_0, y_0q \cup y_0x_0)$, where y_0q is the arc in pq. Since X is smooth at q, by Proposition 3(i) there is a continuum K such that

$$y_0q \cup y_0x_0 \subseteq IntK = K_0 = \{y_0q \cup y_0x_0, e\}.$$

By (1) and (3) we conclude that there is a natural number n_1 such that $x_n \in K$ and $z_0 \notin K$. Let A be an arbitrary arc in $y_0p \cup y_0x_0$, such that $A = x_n \setminus (K \cup \{z_0\})$ and denote by a and b the endpoints of A (if $a < c < b$ in the natural ordering of the arc $y_0p \cup y_0x_0$ from p to x_0). We have two arcs qa and qb such that

$$\lim_{n \to \infty} q \in qa,$$

$$\lim_{n \to \infty} q \in qb,$$

$$qa \cup K \subseteq qa \cup x_nz_n \cup z_na,$$

where z_na is an arc in pq.

Since $qa \cap A = \{a\}$ and $qb \cap A = \{b\}$, by Theorem 4 and (4) $a = b$, which contradicts the choice of a and b.

Therefore, any cluster point of the sequence (z_n) belongs to the arc y_0x_0. By Lemma 5, we have

$$\lim_{n \to \infty} z_nx_0 \subseteq y_0x_0.$$

Let rX_0 be the arc in rX_0. We define $R_n = rX_0 \cup y_0z_n \cup z_nx_0$, where y_0z_n is an arc in $y_0p \cup y_0x_0$. Then

$$\lim_{n \to \infty} R_n = rX_0 \cup y_0z_n \cup z_nx_0 \subseteq y_0x_0 \cup z_nx_0,$$

Therefore, by Proposition 2, we have $\lim_{n \to \infty} R_n = rX_0$.

Using the hereditary arcwise connectedness of X, we infer by Proposition 3(i) that X is smooth at r. Therefore X is hereditarily smooth at r by Theorem 5. Thus $pq \in HI(X)$. The proof of Theorem 6 is complete.

Theorem 7. Let a continuum X be arcwise connected and let $p, q \in X$. If X is hereditarily smooth at the point p and if X is locally connected at each point of an arc pq, then X is smooth at q.

Proof. By Theorem 3 we conclude that the continuum X is hereditarily arcwise connected, i.e., all irreducible continua in X are arcs. Let (x_n) be an arbitrary sequence of points of X such that

$$\lim_{n \to \infty} x_n = x_0,$$

and let qX_0 be an arbitrary arc joining q and x_0. Denote by y_0 the point of the arc qX_0 such that y_0x_0 is an arc in qX_0 then $y_0x_0 \cap pq = \{y_0\}$. Since X is smooth at p and (1) holds, there is a sequence (px_n) of arcs of X such that

$$\lim_{n \to \infty} px_n = y_0p \cup y_0x_0.$$
where $p_{y_{0}}$ is an arc in pq. Since X is locally connected in y_{0}, we have, for each natural number j, a continuum K_{j} such that

$$y_{0} \in \operatorname{Int} K_{j} \subseteq K_{j} \subseteq B(y_{0}, 1/j).$$

Take for each $n = 1, 2, \ldots$, the point x_{n} of $p_{x_{n}}$ such that if $x_{n} \neq x_{0}$ is an arc in $p_{x_{n}}$ then $x_{n} \cap (p_{x_{0}} \cup y_{0} x_{0}) = \{x_{n}\}$. If $x_{n} \notin y_{0} x_{0}$, then we define

$$q_{y_{0}} = y_{0} x_{0} \cup y_{0} x_{n} \cup x_{n},$$

where $q_{y_{0}}$ is an arc in $q_{y_{0}}$, and $y_{0} x_{0}$ is an arc in $y_{0} x_{0}$. If $x_{n} \notin y_{0} x_{0}$, then the arc $x_{n} y_{0}$ intersects the continuum K_{i} for some i. Therefore we have, for a subsequence $\{x_{n}\}$ of the sequence $\{x_{n}\}$ such that $x_{n} \notin y_{0} x_{0}$, a sequence of indexes $\{i_{n}\}$ such that

$$\lim_{n \to \infty} i_{n} = 0,$$

and

$$x_{n} y_{0} \cap K_{i_{n}} \neq \emptyset.$$

Let x_{n} be a point in the arc $x_{n} y_{0}$ such that if $a_{n} x_{n}$ is an arc in the arc $x_{n} y_{0}$, then $x_{n} y_{0} \cap K_{i_{n}} \neq \emptyset$. Since X is hereditarily arcwise connected, there are arcs $y_{0} a_{n}$ contained in $K_{i_{n}}$. Obviously, by (3) we have

$$\lim_{n \to \infty} y_{0} a_{n} = y_{0}.$$

Consider the continua $A_{n} = (p_{y_{0}} \cup y_{0} x_{0}) \cup a_{n} x_{n}$. Obviously $\lim A_{n} = p_{y_{0}} \cup y_{0} x_{0}$. A continuum A_{n} contains an arc B_{n} irreducible between x_{n} and y_{0}, and the first point in the arc B_{n} which belongs to $p_{y_{0}} \cup y_{0} x_{0}$ (in the natural order in $p_{y_{0}} \cup y_{0} x_{0}$ from x_{n} to y_{0}) is contained in $K_{i_{n}}$. Therefore we can assume that any cluster point of the sequence $\{x_{n}\}$ is contained in the arc $y_{0} x_{0}$, because we can consider arcs B_{n}, instead of arcs $p_{x_{n}}$. Thus, by Lemma 5, we have

$$\lim_{n \to \infty} x_{n} y_{0} = y_{0} x_{0},$$

and

$$\lim_{n \to \infty} x_{n} y_{0} x_{0} = y_{0} x_{0}.$$
It follows from (1) and (5) that \(x_n \in K \) for \(n > n_0 \), and \(z_n \notin \text{cl} \) for \(n > n_1 \). Let \(m > n_0 \) and \(m > n_1 \).

Take the arcs \(gc \) contained in \(gx_0 \) and \(qd \) contained in \(px_a \cup z_0 x_0 \cup K \cup yd \), where \(px_a \) and \(yd \) are arcs in \(px_0 \). Then \(pg \cup gc \) and \(pq \cup qd \) are both irreducible between \(p \) and the continuum of convergence \(\text{cl} D(\epsilon, f(4)) \); thus, by Theorem 4 we have \(c = d \) — a contradiction. The proof of Theorem 8 is complete.

Theorem 9. Let a continuum \(X \) be arcwise connected and \(HH(X) \neq \emptyset \). If \(S \subset X \) is a simple closed curve and \(p \) is an arbitrary arc which is irreducible between \(p \) and \(S \), where \(p \in HH(X) \), then \(N(X) \cap S = \{q\} \).

Proof. By Theorem 3 the continuum \(X \) is hereditarily arcwise connected. Suppose, on the contrary, that \(x_0 \in N(X) \cap S \) and \(x_0 \neq q \). Let \(x_0 \) be one of two arcs in \(S \) irreducible between \(x_0 \) and \(q \). The continuum \(X \) is not locally connected at \(x_0 \); therefore there is a closed neighborhood \(E \) of the point \(x_0 \) such that if \(C \) is a component of \(E \) which contains \(x_0 \), then \(x_0 \in E \cap C \). We infer that there is a sequence \(\{x_n\} \) of points of \(X \) such that

\[
\lim_{n \to \infty} x_n = x_0,
\]

\[
x_n \in E \cap C.
\]

Let \(p \in HH(X) \). Since \(X \) is smooth at the point \(p \) and (1) holds, there is a sequence \(\{\alpha_{x_n}\} \) of arcs of \(X \) such that

\[
\lim_{n \to \infty} \alpha_{x_n} = \alpha = \alpha_{x_0} \cup \text{cl} E.
\]

Take, for each \(n = 1, 2, \ldots \), a point \(z_n \) of the arc \(\alpha_{x_n} \) such that if \(z_n x_n \) is an arc in \(\alpha_{x_n} \), then \(z_n x_n \cap (\alpha_{x_0} \cup \alpha_{x_0}) = \{z_n\} \). Let \(z_0 \) be a cluster point of the sequence \(\{z_n\} \). Then there is a subsequence \(\{z_{n_i}\} \) of the sequence \(\{z_n\} \) such that

\[
\lim_{i \to \infty} z_{n_i} = z_0.
\]

There is an arc \(\alpha_{z_0} \) in the arc \(\alpha_{x_0} \) such that \(x_0 \notin \alpha_{z_0} \) and \(q \notin \alpha_{x_0} \cap \text{Int} E \). If \(z_n \in \alpha_{x_0} \setminus \{z\} \), then, by Lemma 5, \(x_n \in \text{Int} E \) for indexes \(i \) larger than some \(n_0 \), because \(\lim_{i \to \infty} x_{n_i} = z_0 x_0 \), where \(z_0 x_0 \) is an arc in \(\alpha_{x_0} \). Thus \(x_n \in C \) for \(i > n_0 \) — a contradiction. Therefore \(z_0 \notin \alpha_{x_0} \setminus \{a\} \). This implies that

(5) the arc \(\alpha_{x_0} \) is a continuum of convergence of \(X \).

Take the arc \(qg \) in \(x_0 q (q \neq g) \), and the arc \(I(x_0, q) \), irreducible between \(x_0 \) and \(q \), which is contained in \(S \cap x_0 q \). Then \(\alpha_{x_0} \cup \alpha_{x_0} \cup \alpha_{x_0} \cup \alpha_{x_0} \cup \alpha_{x_0} \cup \alpha_{x_0} \) arc both irreducible between \(p \) and the continuum \(\alpha_{x_0} \). It follows from (5) and Theorem 4 that \(a = q \) — a contradiction. The proof of Theorem 9 is complete.

Corollary 11. Let a continuum \(X \) be arcwise connected and \(HH(X) \neq \emptyset \). The continuum \(X \) is a smooth dendroid if and only if for each continuum \(C \) of the set \(X \cap N(X) \) the closure \(C \) is a dendroid.

Indeed, by Theorem 3, \(X \) is hereditarily arcwise connected. If \(X \) is a dendroid, then any subcontinuum of \(X \) is a dendroid. In particular, the closure of any continuum \(C \) of the set \(X \cap N(X) \) is a dendroid.

Conversely, if for each continuum \(C \) of the set \(X \cap N(X) \) the closure \(C \) is a dendroid, then, by Theorem 9, \(X \) fails to contain a simple closed curve. Therefore, by the hereditary arcwise connectedness of \(X \) (cf. Theorem 3), \(X \) is a dendroid.

References

INSTITUTE OF MATHEMATICS OF THE WROCŁAW UNIVERSITY

Accepté par la Rédaction le 9. 9. 1974