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Some fixed point theorems
by
Barada K. Ray (W. Bengal)

Abstract. A, fixed point theorem for set-valued mappings in a complete metric space and some
interesting theorems on fixed points in a reflexive Banach space and arbitrary topological spaces
have been presented in this paper. The theorems extend and generalize some recent theorems of
Sam B. Nadler Jr., R, Kannan, the author and many others.

The famous Banach contraction principle states that if (X, g) be a complete
metric space and if T be a contraction mapping (i.e., o(Tx, Ty)<op(x, y) for all

‘x,yeX, 0<oc<1) of X into itself, then T has a unique fixed point, i.e., a point z,

exists such that Tz, = z,. Recently S.B. Nadler [6] has proved a sm'nla.r theorem
on multivalued contraction mappings.

THEOREM [6]. Let (X, @) be a complete metric space. If F: X—CB(X) be a multi-
valued contraction mapping, then F has a fixed point.

In one of our recent papers [7] we have established the following theorem:

TrEOREM. If T be a self mapping of a complete metric: space (X, o) such that

o(Tx, Ty)<ag(x, Tx)+fo (v, Ty)+ye(x, ¥)

for all x,yeX, a>0, >0, y>0, a+p+y<l1, then T has a unique fixed point.

The aim of this paper is (i) to extend our result for multivalued mappings in
a metric space and (ii) to extend our result in arbitrary topological spaces. A few
related theorems have also becn presented here.

Preliminaries. We use the following notations and definitions as given in [6].
DERNITION, Let (X, @) be a metric space, then

(i) CB(X) = {C| C is a nonempty closed and bounded subset of X7},

(i) 8(x, A) = inf{o(x,»): ye 4},

(i) N(e, ©) = {xe X] o(x, c)<e for some ceC}, >0 and Ce CB(X),
(iv) H(4, B) = int{s] A=N(e, B) and B=N(z, A)}, ¢ >0 and 4, Be CB(X).
The function A is a metric for CB(X) called the Hausdorff metric for CB(X).

DEFINITION 2. Let (X, g;) and (Y, ;) be two metric spaces. A function

F: X—CB(Y) is said to be a multivalued contraction mapping of X into Y if

H(F(x), F(z))<og,(x,2z) for all x,ze X, 0<a<lI.
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DEFINITION 3. A point x is said to be a Sixed point of a multivalued mapping F
if xeF(x).

TueOREM 1. Let (X, ) be a complete metric space and F: X->CB(X) be a multi-
valued mapping such that

H(F(x), F())<ad (x, FGx))+ o (v, F»))+ve(x, ),

for «ll «>0, >0, y>0, a+p+y<1, x, ye X. If F be continuous on X, then F has
a fixed point.

Proof. Let x, € X, then F(x,) € CB(X). Pick a point x; € F(x,). Since F(x,),
F(x;) e CB(X) and x, e F(x,), there is a point x, € F(x,) such that

+V
1=

Similarly, since F(x,), F(x,) € CB(X) and x, € F(x,), there exists a point x5 € F(x,)

such that
/3

and contmumg this way we get a sequence {x;};2; of points in X such that
x;€ F(x,_,) and, that

(%) ooy, x)< H(F(xp), F(x))+
o(x3, x3) <H(F(x1) F(xz))+(

L
e(xy, X )<H(F(x;-), F(x))+ (1 ﬁ)
Now ‘

8(x;, F(x)) = inf{o(x;, ): y e F(x)}<o(xy, x14,), . since x4, € F(x) .

Therefore
o(xis Xu ) SH(Flx;-), F(x.>)+< +Z>

A
S8 (%11, Flxi 1))+ B8 (1, Fx))+ 10, %1 1) |( %)
Hence
(@+y)

Q(‘xnxz+1)<(1 ﬁ>g(x, 1,;vc,)-f- Tt

Again

i1
ce(Xi- 1:xi)<< ﬁ>g(x,_2, ‘_1)+(a+v)/)))l .
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So
2 faty\itt
xl? i < x 9 +-— T g
¢ 1) S (1 ]3> QX525 %—1) a+y(l—-ﬁ)
a+p\ i (oc+y)i+1
<l —2 ) o(xp, X)+—— — .
(1—/3) 0 (%o, %1) atpl1—p
But then
@(xs, X4 ) SO 0%s, Xiwa) Foer H0(Kisi— 15 Xi4)
k-1 k-1
1
< E 1"g(xo,x1)+;;r—y E nt o ki>1,
n=i n=i
where A = aty .
1-8

+ . .
Now from the given condition A = 0{—-—2 <1. So the right hand side becomes

sufficiently small as i—oco. Thus the sequence {x;};%, is ‘a Cauchy sequence and by
the completeness of X we have limx; = poe X. Since F is continuous on

. i=w
X, {F(x)}2, converges to F(p,). Now x;€F(x;_,) for all'i=1,2,.. Hence ¢

Po € F(py). Thus p, is a fixed point of F. This complétes the proof.

(s%) T 4,BeCB(X), x€A4, n>0, then from the definition of H(4, B), we infer

that there is a y e B such that g(x, »)<H(4, B)+#. In the proof of the
1
3;) play the role of #, i=1,2,.
Remark. The conclusion of the above theorem may be obtained by replacing
the hypothesis F: X—CB(X) by a weaker one that the diagram of Fis closed. T am
very much thankful to the referee for pointing out this.
THEOREM 2. Let E be a topological space, d be a metric on E, and T be a continuous
self mapping of E such that

d(Tx, Ty)<ad(x, Tx)+pd(y, Ty)+yd(x, y)

for each x # y e E, u>0, p>0, y>0, a+p+y<1. Suppose also that there is a point
X, € E such that the sequence of iterates Tt has a cluster value u in E. Then u is the
unique fixed point of T.

Proof. Suppose ' # u'’ be two fixed points of T. Then by the given condition

A, u") = (T, Ty <ad@W', Tw')+pd (", Tv'")+yd(', u"’)

So d(u', "y <yd (', ') which is impossible. Hence we infer that T’ can have, at-most
one fixed point and we will prove that u is a fixed point of 7. Let v = Tu and suppose

o
above theorem 1—+VB and consequently (

6 — Fundamenta Mathematicae t. XCII
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u # v. Now there exists a subsequence x, = Tqy of Ty, which converges to in E
But . o
d(Tx,, TTx,) <ad(%,, T%)~+ pd(Tx,, TTx,)+yd(x,, Tx,) .

So
d(Tx,, TTx,) < '_—"ﬁd(xn Tx),

d(T?x,, T*Tx,)<od(Tx,, TTx,)+Bd(T%x,, T’Tx,) +yd(Tx,, TTx,) ,

or,

d(T%x,, Tsz,)< ( /3) d(Tx,, TTx)< < ) a(x,, Tx,) .

~-B
d(T3x,, TTx,) <ad(T?x,, Tx,)+ pd(T3x%,, T>Tx,) +yd(T?x,, T*Tx,) ,

n

or,

AT, T3Tx,.)<< ﬁ>d(T2x,,T2Tx, ( };)Bd(x,,Tx,),

AT, T"Tx)<k"d(x,, Tx), k= —o

for m = 1,2, ... and in particular for m = n,.{—n, we have
d(x, 41, T%, 4 )<RA(x,, Tx,), R=k"™""<],
Now from the triangle inequality
A(%ps 1, T%, 4 1) <RA(x,, TX) S RA(x,, u)+Rd(u, v)+Rd(v, Tx,) .
Now proceeding to the limit r—»o0 we get v
d(u, v) < Rd(u, u}+Rd(ﬁ, )+ Rd(u, v} = Rd(u, v).

Hence d(u, v)<d(u, v) since R<1 and so it follows from this contradiction (hot
u=yv = Tu Thus u is a fixed point of T )

COROLLARY. If n>1 be a fixed integer and if the conditions of Theorem 1 hold
with T replaced by T" then u is unique fixed point of T.

) Proof. By Theorem 2 s a unique fixed point of T and since Tu is also a fixed
point. T we have u = Tu.

THEOREM 3. Let X be q Hausdorff space and T be a continuous self-map of X.
Let &: X% X—[0, c0) be continuous mapping such that for all x,pe X, x # y

o(Tx, TY)<ad§(x, Tx)+ﬂd§(y, _'Zty)—]-'yr])‘(x, »,
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where a>0, >0, y>0 with «+f+y<1. If for some x,€ X the sequence of iterates
{T2} has a convergent subsequence, then T has a fixed poini.
Proof. Let us define the sequence {x,} of elements in X as follows: assume

X, % X,y and let .

. = - 72 ‘ = Ty % . = Ty =
Cxy =Ty, xp = Txg = T?xy, oy X, = T"%, X4y = Tx,, n=0,1,..

Then
B(xy, X2) <ad(xg, Txo)+BP(x1, Tx ) +yP (x5, x1) 5
ie.,
: : c+y
. By, x5)< 1—:7345(x0,x1)<(b(x0,x1).
Similarly
B(xy, x3) = O(Txy, Tx,)<ad(xy, Txy)+pP(xs, Tx,) +yP(xy, X2)
or, .

q)()‘la)"S)< qj(xlzx2)<q)(x1ax2)<¢(xo,x1)

and continuing this process we get a monotone sequence of nonnegatwe real numbers
D(xg, x1)> B (x5, X3)> 0. > P (X, Xy 1) > e

which must converge along will all its subsequehces to some real number 1 say

By hypothesis we have a convergent subsequénce {x,} in X which converge

to a point z, € X, i.e., limx,, = z5;x,, = Ta we will show now that z, = Tz,
k— o0 :

Suppose z, # Tz,. We define Z,., = Tz,, n=10,1,2,... Then
(€)) B (2, 2)>D(2, 23)> o> B(Zys Zyr 1) > oo
But since T is continuous, we get ' , '
@ 8o, Teo) = @(im ;. Tlimx,) = S(lim . ‘}i;'n s )
o wo ke
= By ) = A D K) = D) "

Hence we get a contradiction from (1) and (2) and it follows from this contradiction
that z, is a fixed point of 7. In a similar way we can prove the following theorem.

THEOREM. Let T, and T, be two continuous selfmaps of a Hausdorff space’ X
and ¢: Xx X—[0, o) be continuous such that

(Tyx, Toy)<ad(x, Ty )+ BO (Y, Toy) +yP(x, »)

Jor all x #ye X, a>0, >0, y>0, oc+/;’+v“<_1._1ffo( some .xq € X the sequence
{2} where x3,41 = Ty X35, Xg0pu 1= ToXgpiro 2 =0, 1,2, ... has a convergent sub-
sequence then T, and T, have a common fixed point. .
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THEOREM 4. Let T be a contractive mapping of a complete metric space X into
itself such that there exists a subset E'< X and a point x € E' satisfying the following:

(i) @Cx, x0)— (T, Txo)=20(xo, T,) for every xe X—E',

@) o(Tx, TV)<a(e(x, )elx, T+ (e, My, T)+y(e(x, »)elx, ) for
every x,y € E' where a, 8, y are monotonic decreasing functions from [0, co) to [0, 1)
such that

a(+B@+y(N<1  for all rel0, ).

Then there exists a unique fixed point.

Before we prove the theorem we need the following definition.

DErRINITION. A mapping T of a metric space X into itsell is said to be con-
tractive if o(Tx, Ty)<g(x, )Vx,ye X, x # y.

A contractive mapping is obviously continuous,

Proof of Theorem 4. We first show that x, € E' for all n. Suppose x, 5 Tx,
and define a sequence {x,} as x, = T"xq, X,41 = Tx,, n =0, 1,2, ., Since T is
contractive ¢(x,, X,+,) is non-increasing and since x, % Tx, it follows that

0%y, Xpe)<0(x0, %),  n=1,2,..

Now from the triangle inequality

0(xo, X)<e(xg, X)) +0(xy, Xpa )+ (%, Xyit)
= Q(xo 3 Tx0)+Q(TxO’ Txn) +Q(xm Xyt ])
>Q(Tx0; x0)+Q(Tx0: Txn)+9(x0: TxO) .
Thus
01y, xo)—@(Tx,, Txp)<20(Xg, TXo) -
So from the condition (i) of Theorem 4, x, € E’ for every n. We now prove that the
sequence {x,} is bounded. Now
0(xy, %1 1) = 0(Txo, Tx,) . ‘
<a (oo, x))e(xo, Txo)+B(2(%o, %)) (%, T, +7(0(x0, %)) 2 (X0, X,)-

So from the triangle inequality we get

2 (xos X))@ (X0, Tx0)+a(Txq, T%,) 4+ (%, Xy 1)
. <2¢(xo, Txg)+0(Txo, 1,)
<20(x0, Txo)+ap ((xo: xn))Q(xo » Txg) +
+B (2o, x))e (%, Tx)+7 (2 (%o, X))@ (X0, X,)
<20(xo, Txo)+a(Cro, %) (%o, Titg) +
+.B(Q(xm xn))Q(xo; Txo)+7’(9(xo= xn))Q(x03 X5
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[1—7y(e(x0, x)le(x0, X,) ) .
<20(xq, Txo)+ [“(Q (o, xn))"‘ﬂ(@ (0, X)) 0 (xq, Txo)

Or
20(xq, Txg a(o(xy, x,))+ X4 Xy,
T i L [ = (xﬁ(gx(» e .
Now
a(o(xo, %)) <)<, BleCro, X)) <L v(e(o, x))<1.
Hence

‘o %,) <3 (xo, Txo) = R

say. Hence the sequence {x,} is bounded. Now let m>0 be. an arbitrary integer.
We have

o(xy, x3) = 0(Txo, Txl)su(Q(xo; x1))2(xo= TXo)
+B(e(xo, x1))e(ey, Txy)+7(2(xo, ¥1))@ (X0, Xs) -

Hence
Q(xl ? x;)S a(g (xflzlziz;z(g;i;;’ xl))Q(xo 3 Txo) .
0(xp, X3) = é(Tx; ) Tx%)
<“(Q (%1, x2))0 (%, Tx1)+ﬂ(@(x1 s %)) e (%q, Tx) +
+'Y(Q(x1’xz))9(x1axz) . ,
Or,

“(Q(Jﬁ » XZ))"'Y(Q(xu xz))
0€x2, %3)< 1 "ﬁ(Q(XL, xz)) —~o(xy, x5)
c2(eCey, X))+ (e, %)) @felxo, x00)+7 (e (xo, x1)
h 1"5(@(351:352))

1 “ﬁ(@(xo > xl))
Continuing this way we get

-0(xg, Tx) .

Q(xmxn-i—l) -

< [a (0(xy=1> %)) +7(0 (%1, %))
TIPS B

a0 (xo, 1))+ (2 (%0, 1))
1_5(9()‘0, x1))

]Q(xcn Tx) -

Now

0 (X Xy i m) SO (X0 X ) F0 (X115 Xt 2) t e F0Entmm1s Xptem) -
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Hence
0% Xy ) S IO+ A0) + {2} +..J0 (Ko 1)
<[AO)"R,
where
1 dO+©
Ro=m“(0*)0(xo,x1), A0 =-17 50 as  n—eo.

So there exists an integer N independent of m such that
oGy, Xyam <&, Ym>0, &>0,

So {x,} is a Cauchy sequence and the completeness of X guarantees the existence of
£ e X such that lim x, = &, But the continuity of T (since a contractive mapping

n—>w

is continuous) we have

T¢ = Tlim x, = lim Tx, = lim x,,., = £.

n—e o n— o0
If 5, & n # & be two fixed points then
o(&,m) = o(T¢, Tmy<e(&,m)
which is a contradiction. So ¢ is a unique fixed point of T.

THEOREM 5. Let (X, o) be a compact metric space and let T be a mapping of X into
itself such that

o(Tx, Ty)<alo(x, Tx)+o(y, Ty)]+ve(x, y)

for all x,ye X, 2a+y<1, a>0, y>0.with x 5 y. Then T has a unique fixed point.

Proof. Let u = inf{o(x, Tx): x € X} and let us take a sequence {x,} such that
o(x,, Tx,)—»u. Now there exists a subsequence {y,}<={Tx,} which converges to certain
ve X. So

e, To)<e(v, y)+e(Tx,, Tv),
- where y, = Tx, and we denote x,, by x,. Or,

e, To)<o(v, y)+ug(xe, Tx)+og (v, Tv)+ye (v, v) )
or,

e, To)<e(v, y) +oo(x, Txy) +ag(v, To)+
+70 (% T +90 Vs T 70 (0, 1)
or :

1+y aty
o(w, Ty ma(v,yk)+ me(xk, Tx;)

<20(v, y)+o (i, Ty .

icm

Some fixed point theorems . 87

Thus u = ¢(v, Tv). Suppose v 5 T, Thenwg(u, Tv)>0. Now

o{To, T*0)<ag(v, To)+ao(To, T*s)+yo(v, T0),
or,

-+
o(To, T?)< T2 (v, To) <o (v, T9),

which is a contradiction. This coinpletes the proof.

THEOREM 6. Let (X, ¢) be a compact metric space and T be a self-map of X such
that

@ o(Tx, Ty)<alaCx, Tx)+o (v, T+ Pe(x,y) for all x,yeX, 2a+Bp<l,
B=0,

(i) o(x, Tx) is not constant on any closed subset of X which contains more than
one point and is invariant under T. Then T has a fixed point.

Before we prove Theorem 2, we require the following:

DEerINITION. A family of sets has the finite intersection property if every finite
sub-family has a non-empty intersection.

LeMMA. A topological space is compact if and only if every family of closed sets
with the finite intersection property has a non-empty intersection.

Proof. Sse Dunford and Schwartz [3, p. 17].

Proof of Theorem 2. Let F denote the collection of all non-empty closed
subsets of X with finite intersection property, each of which is mapped into itself
by T. Since X is a compact metric space, so by Zorn’s lemma there exists a minimal
in F and let M be the minimal subset of X with respect to being non-empty, closed
and invariant under T. If M contains more than one point, then there are p and ¢
with r = o(p, Tp)<o(q, Tq). Let A= {x e M: ¢(x, TX)<r} and let N be the closure
of T(A). If y € N then y is the limit of sequence {Tx,} with o(x,, Tx,)<r for each n.
Now,

oy, Ty)<e(y, Tx,)+o(Tx,, Ty)
<oy, Tx,)+og(x,. Tx,)+ag(y, Ty)+ fo(x,, ¥)
< Q(ya Txu) + oQ (xn 4 Txn) + oQ (yu Ty) —+ /30 (ys TX,,) + ﬁQ (xn > Txn) ’

or, . .
(1 “OC)Q(J’, Ty) <(1 +/j)0(y? Txll)+(a+ﬁ)9(x!/9 Txu) .
Hence '

+p
O(y, Ty)< Q(Y= Tx,,)+ — @(xm Tx,)

Thus ¢(y, Ty)<r. Hence NcA and T(N)cT(4)=N which is a contradiction
since N is a proper subset of M. This completes the proof.

‘s
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Turorem 7. Let X be a strictly convex reflexive Banach-space and K a bounded
closed convex subset of X. Let T be a mapping of K into itself such that

ITx—Tyll <o fx =T+ B ly=Tvl

for all x,y e K, a+p<1, >0, B>0, (min (o, <1 and max(a, §)>0). Then T has
a unigue fixed point in K. '

Before we prove this theorem we introduce the following definitions and nota~
tions etc. .

DEFINITION. For a bounded subset M in X let D(M) be the diameter of M

D(M) = sup{llx—y”: x,ye M}

coM and coM will denote the convex hull and the closed convex hull of M.

Trrorem (Smulian [8]). A necessary and sufficient condition that a Banach space
is reflexive is that:

(C) Every bounded descending sequence (transfinite) of non-empty closed convex
subsets of X have a non-emply intersection.

Proof of Theorem 7. Let 4 denote the collection of all non-empty closed and
convex subsets of K, each of which is mapped into itself by 7. Then by (C) and
Zorn’s lemma A has a minimal element and let M<K be minimal with respect to
being hon-empty, closed, convex and invariant under T. Then D(M) = 0 will
imply that T has a fixed point. Suppose D(M)>0. From now on we shall write D
instead of D(M). Let x € M and assume that |x—Tx| = D. Take y = $(x+Tx)
then y € M and hence

[Ty—x)|<D and |[Ty-Tx|I<D.
Now from the strict convexity of X' we have
3Ty —x+(Ty-Tx)||<D.

In other words we have ||[Ty—y| < D. So there exists a point y belonging to M such
that
ITy—y| = r<D.
Take
N={yeM: |Ty-yli<r}, P =co(T(NV)).

Then P is non-empty closed and convex subset of M. Now we wish to show that
T: P—P. So let y € P, then the followings cases are to be considered.

Case 1. y = Tp from some p € N. Then

1Ty=yll = | Ty—Tpll<afy—Tyl+B lp~Tpl.
Or,

B
ITy=yli<— llp=Tpl<r
and so ye N and TyeP. .
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Case 2.
’ . N n
y =2 MTpi pieN, 3 =1, 430,
i= i=1
Then

ITy=yll = ITy= ¥ ATpil
n
< ZAITy=Tpi|
i
-n
< Ty =Tyl+A i~ Tpil)
<aly=Tyl+ 3 L:pr.
i=1
So [[Ty—yli<r,yeN, TyeP.
Case 3. y is thelimit of terms of the form )’ 1,Tp;, 1,20, Y, 4; = 1 and p, e N.
i=1 i=1
Then
WZy=yll = WTy— ¥ 2 Tp.ll+ 12 4Tpi=yl
i= =
<r+ Y A4Tp-yl.

Hence ||Ty—y||<r. Thus ye N and Ty e P. Since M is minimal we should have
M = Pand D(M) = D(P). Now it can be easily shown that if 4 be a subset of a Ba-
nach space then D(4) = D(co(4)). So
D(P) = D(co(T(N))) = D(T(N)).
= sup{|Tx—Ty||: x,ye N}
<sup {aflx—Tx ||+ B ly=Tyll: x,y e N}
L(a+pPHrsr<D(M).

This contradiction shows that D(M) = 0 and so T has a fixed point z, say.
If possible let y,, yo # zo be another fixed point of T. Then

leo—yoll = 1T20—Tpoll
Saflzo—Tzo [+ Blyo—T¥oll = 0.

Hence z, = Yo This completes the proof.
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