On the Whitehead theorem in shape theory I
by

Sibe Mardesié (Zagreb)

Abstract. Recently M. Moszyriska [17] has proved for finite-dimensional metric compact
spaces and shape maps f: (X, x,)—(Y, »,) an analogue of the classical Whitehead theorem. In this
paper another analogue of the Whitehead theorem in shape theory is established. (X, x,) and (¥, y,)
are allowed to be arbitrary topological spaces of finite covering dimension. However, I (X, x0)
->(Y, o) is required to be a continuous map. If finduces isomorphisms of the homotopy Pro-groups,
then f is shown to be a shape equivalence (in the sense of [12]). At the same time a shorter proof of
Moszynfska’s original theorem is given.

1. Introduction

Of great importance in homotopy theory is this classical theorem of J. H. C.
Whitehead: Let f: (X, xo)—(Y, y,) be a map of connected (pointed) CW- complexes
and let fi: m{( X', x0)=n (Y, yo) be an isomorphism for i<n, = max{l+dim X, dim ¥}
and an epimarphism for i = ny. Then f is a homotopy equivalence. An analogue of
this theorem in shape theory has been recently proved by M. Moszysska [20] (*).
Her result reads as follows:

TueorREM (M. Moszynska). Let f: (X, xo)= (Y, y,) be a shape map of connected
(pointed) metric finite-dimensional compacta and let f: n (X, x)»7n, (Y, y) be the
induced maps of homotopy pro-groups. If f. is a bimorphism for 0<k<ny+1
= max{l+dimX, dim¥}+1 and an epimorphism for k = ny+1, then f is a shape
equivalence. .

In this paper we extend Moszyniska’s theorem to the case of arbitrary topological
spaces and contimious maps f: (X, x)—(Y, yo) (see Theorem 6). At the same time
we obtain a simpler proof of the original result, which consists entirely of steps anal-
ogous to corresponding steps in the proof of the classical Whitehead theorem.

The notion of shape used in this paper is that described in [12]. It has been shown
by K. Morita [16] that also in the case of topological spaces shape can be treated
essentially as in [14], i.e. that shape reduces to pro-homotopy category of CW-com-
plexes. This made the present generalization to topological spaces possible.

(M) In [20] Moszynska also exhibited a simpler theorem for the case when (X, xo) and (Y, yo)
are assumed to be movable. However, the proof contains a gap. Moszyniska has recently modified
this second theorem in a note of correction to appear in Fund. Math.
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The question of whether Moszyfiska’s theorem holds for topological spaces
and shape maps remains open. The difficulty consists in setting up a satisfactory
mapping cylinder. It should also be said that in this paper we do not discuss the case
of movable spaces.

2. Category pro (A")

2.1. With every category 2 one can associate a new category pro(#") intro-
duced in [7] (see also [1]). One first considers a category #~ whose objects are inverse
systems X = (X, pax, 4), where (4,<) is a directed set (*) and X; and py,, A<,
are objects and morphisms from." respectively. A morphism f: X—Y = (Y, ¢, M)
in o, called a mapping of systems, consists of a map f: M—A and of a collection
of morphisms St Xpp— ¥, such that for u<p’ there exists a A (), f(u") for which
FiPsuyn = QuufwPron- I g2 Y—>Z = (Z,, vy, N), then the composition / =Lq[:
X—Zis givenby h = fy: N—Aand by = @y foy: Xugy—Z,- The identity 1: X~ Xis given
by 1: A—Aand 1, =1: X,—X,. Two mappings of systems f, g: X—¥ are considered
to be equivalent, f~g, provided for every pe M there isa Ae 4, A=f(1), g(w,
such that f, p . = g:pg(u)z. This is an equivalence relation on every set A (X, Y).
Moreover, f~f" and g~¢g' implies gf~¢’f’. We thus obtain a quotient category
A |~ called pr?) ). It has the sameT)bj—egts X, Y, etc. as A and its morphism are
equivalence classes of morphisms f from 2 ; the class containing f will be denoted

by f (cf. [18], [20], [12].

2.2. Especially simple are maps of systems f; X—¥ where both X and ¥ are

indexed by the same set A, f=1: A~A and fp,, = Qo for ASA'. We refer
to such maps as to special maps of systems.

For every map of systems f: X— Y there exist systems X', ¥’ and maps of sys-
tems it X—X', j: ¥>¥, f': X' ¥ such that f'i = jf, i and j are isomorphisms
in pro(#") and f* is a special map of systems. In orde to see this, one considers the
set N of all morphisms nﬁ eA (X, Y,) which admit a A'zf(u), 4 such that nﬁpul
= fuPsqyw- Note that 2 and p run through cofinal subsets of A and M respectively
as n runs through N. Putting n<n’ provided A< A, u<p’ and nlp,y = Guutin, N
becomes a directed set. Now one defines X' = (X,, pyy, N), ¥ = (¥, dyw> N)
by putting X1 = X;, Yo = Yy, Putet = Dz, Qi = e and f e (X', ¥)

, » [ v ww - -
by fui = n’:. Purthermore, i consists of a map i: N—A, where i(n3) = A and of

. :
identity morphisms i = 1: X;—X,2 = X, j consists of a map j: N—M, where

[ ] Z
j(nf;) = pand of ja=1: ¥,~ Yoo = Y, (ct. Corollary 3.2, p. 160 of [1]) .
[ ]
2.3. (M, <) is said to be closure-finite provided every ue M has only finitely

many predecessors. In this case every function f: M—4 into an ordered set admits
an increasing function f': M—A such that /<f’ (Lemma 5, [14]).

(®) We do not need the greater generality as in {1].
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Every system X = (X, p,; , 4) admits a system ¥ = (Y, g,,,, M) isomorphic
to X in pro(s#’) and such that M is closure-finite. Moreover, every Y, is some X,
and every g, Yy~ Y, is some p;;: X;— X, (cf. Theorem 10 of [12]). Indeed,
one can take for (M, <) the set of all finite subsets u = {4, ..., 4,} of A ordered

by inclusion. One defines then an increasing function f: M—>4 such that f({A}) = 4

for every Aed. Let Y, = Xy and g, = proyppy, #SE ¥ = (¥, @y, M)-
One defines maps of systems f: X—Y and g: Y=X by f, =1: Xowy= Yo = Xy
g =1{A}, g,=1: Yya = X3~ X;. Clearly, fg(A) = A, Gafyny = 12 X;= X, so
that gf = 1. On the other hand, gf(u) = {f(} and fugsy =11 Yop = Xy
> Xy = Yuo I 0'2gf(W), p, then

Ju8rworaow = Proasen = Qs Yo = Xy Xpn = Yo
so that fy = 1..

3. Pro-homotopy category and shapes

3.1. Let #" denote the category whose objects are topological spaces having
the homotopy type of a CW-complex and whose morphisms are homotopy classes
of maps. Note that a topological space has the homotopy type of a CW-complex
if and only if it has the homotopy type of a simplicial CW-complex (with the weak
or with the metric topology) or equivalently of an ANR for metric spaces (see
e.g. [12]).- :

Following K. Morita [16], we say that an inverse system X = (X}, p,x, 4)
in W is associated with a topological space X provided there are homotopy classes
P X=X, such that p,,, p,» = p, for 1<, each homotopy class m: X—P, where P is
an object of %, admits a factorization m = m,p;, where, m;e # (X,,P) and
whenever m,p, = myp,, m;, my € W(X,, P), then thereis a A'>1 such that
My Py = My, (compare with conditions (i), (if) in Theorem 5.2 of [12] and with [9]).

3.2. If Y is isomorphic with X in pro(#") and X is associated with a space X
then so is Y. Indeed, let f: X— ¥, g: Y- X be inverse isomorphisms. We define homo-
topy classes g,: X—Y, by ¢, = fups- Clearly, p<y' implies g, = guegy. I
m: X—P is a homotopy class of maps, PeOb %, then a factorization exists
m = m,p,. where my,: X,—P. Since gf =1, there is a A'>4, fg(A) such that
Do D rgyw = Py and therefore, ¢, fyoy P oy = Pa- Consequently, (7, 6,) 7,0y = M2 P2,
= m. Similarly, n,q, = n,q, implies 1, f,ppu = MuSub s and therefore 1, fup s
= m,fp s for some A f(n). Since fy = 1, there is a p' = gf(w), p, g(A) such that

Qe = oo Qurqow = JaP saa¥adeom -
Consequently, 1, ¢, = MGy
3.3. Morita has shown [16] that every topological space X is associated with
the inverse system X in % formed by the nerves of all open locally-finite normal (*)

(® By definition, an open covering 4 of X is normal provided there is a sequence of open
coverings Ay, 16 N, such that Ay == 1 and Ay +1 is astar-refinement of A,. The existence of canonicat
mappings shows that open locally-finite normal coverings coincide with open locally finite numerable

coverings as defined in [4]. o
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coverings of X. For p,: X=X, one takes (unique) homotopy classes determined by
canonical mappings, i.e. mappings ¢;: X—X) such that (X (St(U, XD)=U for
every element U of the covering 4.

3.4. Following Morita [15] we say for a topological space X that dimX<n<co
provided every finite open normal covering admits a finite open normal refinement
of order <n+ 1. Notice that dim X<n implies that every locally finite open normal
covering % = (U,, « € A) admits a locally finite open normal refinement of order
<n+1, Indeed, let @: X—~N(%) be a canonical map, where N(%) is the nerve
of % provided with the metric topology. Then there is a metric space M, dim M <n,
and a factorization ¢ = y through M ([15], Lemma 2.2). I V, = 1M (St(U,, N@)y)),
then ¥ = (V,, x € 4) is an open covering of M such that ¥ V)= U,. Since M is
metric and dim M <n, ¥ admits an open locally finite refinement %" of order <n+1
([21], Theorem IL. 6, p. 22). #" is normal because every open covering of a metric
space is normal. Now (%) is an open covering of X with all the desired proper-
ties.

Since the nerve of an open covering of a connected space is connected, we see
that every connected space X with dim X'<» admits an associated system X in % all
of whose members are connected simplicial complexes of dimension <.

3.5. In this paper shape theory for topological spaces is understood in the sense
of [12]. Tt thus coincides with Borsuk’s theory [2] on metric compacta (see [12])
with Fox’s theory [6] on metric spaces (see [13], [16]) and with the ANR-system
approach [14] on compact Hausdorff spaces (see [12], [16]).

Generalizing results from [14] and [12] Morita has shown ([16}, Theorem 2.4)
that there is a functorial bijection between shape maps ¢: X— ¥ of topological spaces

and morphisms f: X—Y from pro(#), where X and ¥ are systems associated

_with X and ¥ respectively. ¢ and f correspond to each other provided ¢(g,) = fu ¢
for every pe M. This fact enables us to use the same notation f for morphisms
X— Y from pro(#") and for the corresponding shape maps X—Y. A similar
approach to shape was studied by T. Porter [22], [23].

3.6. In this paper we also consider the homotopy category #", of pointed spaces
(X, x,) having the homotopy type of a pointed CW-complex (the base-point is
a 0-cell of the CW-decomposition). We also deal with the category %5 of pairs of
pointed spaces (X, 4, x,), xo€ Ac X, having the homotopy type of a pointed
CW-complex and a subcomplex. The shape of pointed spaces and pairs of pointed
spaces can be described in terms of pro (%) and pro(#°3) following the same pattern
as in the absolute case [16].

4. Pro-category of groups

4.1. Let ¢ be the category of groups and homomorphisms. Objects of the cor-
responding pro-category pro(%) are called pro-groups. In this section we recall some
facts about pro(%) essentially established already by Moszyriska in [20].

pro(¥) is a category with zero objects, Indeed, a system O consisting of a single
trivial group is obviously a zero-object in pro(#). A pro-group G = (G, pay, A)
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is a zero-object of pro(G) if and only if it is isomorphic with €. This is the case if
and only if every 1 admits a A'>1 such that p,, = 0, Indeed, if f; G—0 and
g: 0—G are maps of systems and gf~], then every A admits a Z’;l such that
0= !]x.ﬂ;(l)l’jg(l)x’]’w = Paar-

4.2. Let G = (Gy, p, A), H=(H,, q,,,, 4) be pro-groups and let f: G—~H
be a special map of pro-groups consisting of homomorphisms f;: G,l—>H:. I N,
= (/2" 0), then pu(Np)=N, for A<A' so that N = (N, p,,| Ny, A) is a pro-
group. Let i: N—G consist of inclusions i;: N;—G,. Then i is the kernel of f
in pro (@) (1201, § 1, 3.3). Indeed, f;i; =0 so that fi = 0. Moreover, if M
= (M, Sz, A) and m: M— G is a morphism in pro(%), fm = 0, then there is no
loss of generality in assuming that m is determined by m: A—4 and by homo-
morphisms m,: M,,—G, such that fim, = 0 for every Ae A. Consequently, m,
factors’ uniquely through N, and we obtain a unique morphism of pro-groups
m': M~ N such that im’ = m. Now it follows by 2.2, that every morphism in
pro(%) has a kernel, i.e. that pro(%) is a category with zero-objects and kernels.

4.3. Notice that for a special map of pro-groups f: G—H, fis an epimorphism
inpro(%) if all f;: G,— H, are epimorphisms ([20], § 1, 3.1). Indeed, let g, g": H>K
be morphisms in pro(%) and let gf = g’f. There is no loss of generality in assuming
that g = ¢': M—A, K = (K,,ry, M). Then there is a Axfg(u) such that
IusPrawrs = Iufoe Proenas Consequently, gudyqnfa = Gudyqoafss Which implies
Gulooa = Judypunar because f; is an epimorphism. This proves that g = g’, and
fis indeed an epimorphism in pro(#).

4.4, Tn general in a category # with zero-objects and kernels one can define
exactness of sequences ([24], p. 114). A sequence

Jog
G—+H—-K
in A is said to be exact at H provided: (i) gf = 0, (ii) in the unique factorization
f=1if", where i: N—H is the kernel of ¢, the morphism f” is an epimorphism.

Now let us establish the following fact ([20], § 1, Corollary 3.6): Let;f: G—-H,
g: H- K be special 'maps of pro-groups with the property that

Ta_ ga
G, H,—K,
is exact at My in %. Then the sequence
f 4
G—-H-K

is exact at H in pro(%). Indeed, g,f, = 0 implies gf = 0. Let (N, 7;) = Kerg,,
5o that N = (N,, ¢,/ Ny, 4) and i given by the inclusions i,: Ny—H, define the
kernel of g. By the exactness assumption, f; admits a unique factorization f; = i f1s
where f, : G,—N, is an epimorphism. The homomorphisms S define a morphism
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f': G- N of pro-groups for which if* = f. However, f’ is an epimorphism in plo(%
because all f; are epimorphisms.

4.5. In this paper we shall also need the category &, of pointed sets and
base-point preserving maps. Its zero-objects are singletons. The corresponding
pro-category pro(&,) also is a category with zero-objects and kernels. The anal-
ogues of the above results are established for &, in the same way as for .

5. Homotopy pro-groups ‘

5.1. Let (X, %) = ((X, x);, paz> A) be an object of pro(#) (*). For every
k=0 we define systems m(X, x) = (m,(X, %), Pazi» 4) called the k-th homotopy
pro-group of (X, x); note that 7,(X, x) is an object of pro(&,).

Every morphism f: (X, x)—(¥, y) in pro(#",) determines morphisms of pro-
groups fi: (X, x)-7n, (¥, p), k=0. If fis given by f* M~A and by morphisms
Jut (X, X740y =(Y, ¥), in W'y, then f is given by f* M—/ and by homdmorphisms
St (X, %) py— (Y, ¥),. Clearly, (gf), = gifi, 1, = 1, so that we have a co-
variant functor. Consequently, systems isomorphic in pro(# ;) have isomorphic
homotopy pro-groups.

Similarly, one defines relative homotopy pro-groups n (X, 4, x), k=1, for
systems (X, 4,x) in #7%. They belong to pro(%) for k=2 and to pro(&y)
for k = 1.

5.2. Along with a system (X, 4, x) = (X, 4,x);,p;p, A) in %5 we also
consider systems (4, x), (X, x) and morphisms i: (4, x)— (X, x) in pro (¥'3) given
by the inclusions #;: (4, x),—(X, x);, and by j: (X, x, x)=(X, 4, x) given by
the inclusions j,: (X, x,x);—(X, 4, x),. They define morphisms of pro-groups
i m(d, X=X, x), k20 and j: m(X, x)- (X, 4, x), k>1. Finally, we define
morphisms 8, m(X, 4, )7y (4, x), k21, by 8,: n(X, 4, x,)>m,_ (4, x),. The
naturality of the boundary operator 8, proves that d,, 1€ A, form a morphism in
pro(%). We thus obtain the homotopy sequence of pro-groups of (X, 4, x):

(A, x)ilink(X, x)-j—kr (X, 4, x)z'; Tp—1(A, X) ...
By (X, 4, 1) B, ) B mo(X, x)

Since the corresponding sequence for each A is exact in @ (or &), we conclude,
by 3.4, that this sequence is exact in pro(%) (or in pro(&y)) (1201, § 2, 1.1).

5.3. In the proof of the Whitehead theorem we need the following result
([20], § 2, 1.3):

Let (X, 4, x) be a system in #°5. If for a given k1, iy: my(d, x)—»my(X, x)

is an epimorphism and i, : m,_ (4, ¥)>m,_ 1(X, x) is a monomorphism in pro (%),
then 7,(X, 4, x) = 0.

(" We simplify the notations (X;, x3), (X2, Az, x2), ete. to (X, %)z, (X, 4, x);, cte.
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This is an immediate consequence of the following assertion:
Let A be a category with zero-objects and kernels and let

A B 4,54.584,54,

be an exact sequence. If fy is an epimorphism and f, is « monomorphism, then Aj is
a zero-object.

Proof. Since f4f3 = 0, f3 factors through Kerf,. However, f, being a mono-
morphism, Kerfy = 0 and thus f3 = 0. Let Kerf; = (K, k). By exactness at 45,
there is an epimorphism g: 4,—K such that kg = f,. Now f; = 0 implies & = 1,
sothatf, = ¢is an epimorphism. By assumption on f;, we conclude that f, f;: 4, — 45
is an epimorphism too. On the other hand, f3f; = 0 and therefore, 45 must be
a zero-object.

5.4. For a pointed topological space (X, x,) we can define homotopy pro-
groups, only up to isomorphic objects in pro(%), as m(X, x), where (X, x) is any
system in %", associated with (X, xg). Indeed, any two systems (X, x), (X', x')
associated with (X, xp) are isomorphic in pro(#7,), because the identity shape
map 1: (X, xy)—(X, x,) determines a unique isomorphism (X, x)—(X’, x'). Simi-
larly, one defines homotopy pro-groups for pointed pairs of spaces (X, 4, x,). One:
then obtains an exact homotopy sequence for pro-groups of spaces.

6. Shape deformation retraction

6.1. In this section we shall prove the following

THEOREM 1. Let (X, 4, x) and (¥, B, y) be inverse systems in W3. Let (X, 4, %),
be simplicial, dimX,<n<co. Let (Y, B,¥) = ((Y, B, ), Ques M) be such that
m (Y, B,y) = 0, for 1<k<n+1, each Y, is connected and M is closure-finite. Then
every morphism f: (X, A, xX)—-(Y, B, y) in pro(#'%) admits a morphism g: (X, x)-
—(B, y) in pro(#y) such that

Jg=rf (X, 0,9, ¢i(4,%) =rI(4,%): (4, x)~(B,y),

where ji (B, y)-(Y, ) is given by the inclusions j,: (B, ¥),=~(Y, ¥)u-

Tt onc applics Theorem 1 to the identity morphism 1: (X, 4, x)—(X, 4, x),
one obtaing

THEOREM 2. Let (X, A, x) be an inverse system in W' over a closure=finite index
set A, Let (X, 4, x), be simplicial, X, connected and dim X, <n < co. If m(X, 4, x)
=0 for L<k<n+1, then there is « morphism v: (X, x)—(d, x) in pro(#o) such
that jr =1 and rj = r|(d, x) = 1. Consequently, the morphism j: (4, x)-(X, x)
given by the inclusions j,: (A, x);~(X, %), is an isomorphism in pro(# ).

The proof of Theorem 1 is based on two lemmas.

6.2. Livmma 1. There is an increasing function §: M—M, é(u) = p*=q, such
that for any pair of simplicial complexes (P, Q, Xo), dim(PN\Q)<n-+1, and for any
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map @: (P, Q, x0)~>(¥, B, Yy there is a map i (P, Q, %)= (B. B, y), such that
(1) jylp"v“xuu*(/’: (Pa Qa xO)"’(Y-: B: y)u:

where w,, is any map from the class gy, p<y', and j,: (B, B, »),~(Y, B, y), de-
notes inclusion.

Proof. Let g = o<, < oo Sphppy = u* be a chain in (M, <) such that
for every k, 1<k<n+1, the homomorphism

((Iujuj+1)k: nh(Y’ B: y)uj+1—+nk(x Ba J’)u,

equals 0, 0<j<n. Such a chain exists because (Y, B,y) = 0, 1<k<n+1. We
choose a map %,,,,, from g,,,,, and denote by 2, j<j’, the corresponding
composition of such maps; %,,, = 1. We also choose a triangulation of (P, Q, x0)
such that Qis a full subcomplex of P (i.e. if all vertices of a simplex belong to Q, then
so does the simplex). Let L, = (Q U P¥)x T u (P x0), where P* is the k-skeleton
of P, 0gk<n+1.

We shall define, by induction, maps x.: Ly—Y,,,,_, such that

(2) Xk(x: t) = %un+l—kun+1(p(x> 2 (xz t) € (Q XI) v (PXO) 2
(3) Xk(x: 1) € Bu,,q.1_‘k7 X E—Pk:
’(4) Xk(xa 1) = yu,..;.L_.u: X € PO\Q .

For k = 0 and (x, H e (@ x 1) u (Px0) we put yo(x, ) = @(x). If x is a vertex
of PN\Q, we put yo(x,1) =y, ,,. Since Y, . is pathwise connected, one can
define y, on x x I as a path connecting ¢ (x) to.y,,,,. Thus yo has all the required
properties.

Assume now that y,_, has already been defined. Then we put yxlLe—,
= s i ormsa-x ki1 If E¥is a k-simplex of PA\Q, it has a vertex x not belonging
to Q. (E¥x0w dE*xI,dE*x 1, xx 1) is homeomorphic to the standard k-cell,
its boundary and a base-point and y,_, maps this pointed pair into (Y, B, ¥),, ...
Since %y, unsz— induces the zero-homomorphism

‘[Ek((Y, B, y)uun-n)_)nk(( Y: Bs y)/;,,,”_k) »
we conclude that

G (B*x0 U BE*X I, 0E*x 1, xx 1)~(Y, B, ¥),,., .

determines the zero element of (Y, B, y),.,,..)- Consequently, there is a homo- .

topy rel (3E*x 1) of E*x0 U 8E*XI into Y, ,, , connecting y, with some map
(E¥x0 U 0E*x I)~>B B, o1 ([25], Theorem 1, p. 372). This homotopy yields an
extension of y; to E*xI such that y, (E*x1)<B,,,, .. This completes the in-
duction step.

Now observe that .., = P xIand consider Anw1: PRI Y, By (2) 2,4 (@ %)

By, A 1o xI) = {p,} and gy i(X, 0) = 2,,,0(x), x€ P, Comequently, putting
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W(x) = yy41(x, 1), x &P, we obtain a map : (P, Q, xo)—(B, B, ¥), such that (1)

holds.

Finally, using 2.3, one can achieve that u<y’ implies u*< ™.

6.3. LEMMA 2. For every pue M let y* > u be chosen in accordance with Lemma 1.
Let (P, x,) be a simplicial complex, dimP<n. Furthermore, let o, ¢1: (P, xp)
(B, ¥)» be maps such that

%) ju* Po a"’ju" Py (P: x)~(Y, y)p,* .
" Then
(6) %mt“ ‘Po&”fwfmﬁ (P: xO)-"(B: y)u .

Prool. Consider the triple (PxI, Px0 U Px1, xoxI) and shrink x,x I to
a point. Let

D: (PxI,Px00UPXL,xoxD(xgx D)=(Y, B, )

be a map given by a homotopy (5). Since dim(Px I/x, X I)<n+1, Lemma 1 yields
a map

Wi (P, xgx I)(xgx )= (B, y),
such that

N PI(P)O W PXL, xox Do x )23, w®|(Px0 O Px1, x4%xI)/(x,% 1)

and the homotopy takes place in (B, y),.
Consequently,
®) Hur P02V (P X0, XX 0) W [(Px 1, x0 X 1)
230010 (P, X0)—(B, )y -

6.4. Prool of Theorem 1. Let f: (X, 4, x)—(Y, B,y) be given by f and
by homotopy classes of maps f,: (X, 4, %)y~ (Y, B, ), with representatives ¢,.
Since M is closure-finite, we can assume that f is increasing and that

r

(9) . f/'tl’/ml = ‘[uu'f;c’ » M<H .

For every ' we choose p* according to Lemma 1. Then for each pe M lhere is
a mapping et (X, x) pgumn= (B, P such that

(l O) j“*lllﬂm 020w Pown (X, X)f(,m)—')(Y, JJ)“*
(] l) (//“*l(A , x)f(ll-**) O g (P“u](A, x)f(#m): (A » x)f(”w)*(B, y)#* .
We now put g(u) = f(u**) and

(12) gu = qlm‘v['//pﬂ]: (X’ x)](u"')"’(Bs y)u 3
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where square brackets denote homotopy classes. The map ¢ and the homotopy
classes g, determine a map of systems g: (X, x)—~(B, ). Indeed, let p<<yu’. Then,
by (10)

(13) Tl ey v = Q@ pursuony - (X 2= (Y, Vs
a4 Juhun e @uone = ey syt (X X)X Py 5
where g,; is any map from the class p,; . Since

(15 P gy oy~ Ky Pt (Ko %) purmy= (X Py 5

(13) and (14) yield

(16) T @y pueony = Jus g iliyon (X, ) poany= (X, Vo«

Applying Lemma 2 to (16), we now conclude that

(17) %W*l//,‘*gf(,m)f(um) o~ %mt'*l//u’*: (X, x)f(u'w)—)(B, y)},,* N
so that
(18) Dulromosoemy = Quulpt (X, X) gy (B, Wy -

This proves that g is indeed a map of systems in %.
From (12) and (13) we derive

19 U9 = GuunJusPromroey = FuProo st (X %o) (Y, 9),
which proves that

(20) jg =f X, x)—>(¥,y).
Finally, by (11),

(21) ‘ gﬂ!(A N x)f(u**) = qﬂl‘*'f;l*:l(A N x)f(l‘**)
= JuProsan|(ds X) g (A, X) o=~ (B. ¥y »
so that g|(4, x) = f|(4, x): (4, x)—(B, y). This completes the proof of Theorem 1.

6.5. From Theorems 1 and 2 follow analogous results for spaces. In particular
we have

THEOREM 3. Let (X, 4, xq) and (¥, B, yo) be pointed pairs of topological spaces,
let dimX<n<co, let ¥, B,y) =0, 1<k<n+1 and let Y be connected. Then
every shape map f: (X, A, xo)~(Y, B, yo) admits a shape map g: (X, xo)—(B, y,)
such that jg = f, gl(4, xo) = f1(4, xo), where j is the shape map induced by the
inclusion j: B—Y.

Proof. According to 3.4, there exist inverse systems (X, 4, x), (¥, B,
in #73 associated with (X, 4, x,) and (Y, B, y,) respectively and such that each
(X, 4, x), is-simplicial, dim X,<n and each Y, is connected. Moreover, by 2.3
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and 3.2, one can achieve that the index set M of (¥, B, y) is closure-finite. There-
fore, Theorem 1 yields the desired conclusion.

From Theorem 3 (or from Theorem 2) one derives

THEOREM 4. Let (X, 4, xo) be a pair of pointed topological spaces, let X be
connected and let dimX<n<co. If n(X, 4,%) = 0 for 1<k<n+1, then (4, x,)
is a shape deformation retract of (X, x,), i.e. the inclusion j: (A, xg)—(X, xo) in-
duces u shape equivalence.

DerINITION.  We say that a space (X, x,) is shape-n-connected, provided
(X, x) = 0 for 0gk<n (%),

THEOREM 5. Let (X, xo) be a pointed connected topological space, dim X <n< oo.
If (X, xo) is shape-(n+1)~connected, then (X, xo) is of trividl shape.

Proof. It suffices to apply Theorem 4 to (X, x,, Xo)-

Remark. D. 8. Kahn [10] has defined a metric continuum (X, x,) which is

shape connected for all n but is not of trivial shape as shown by D. Handel and
J. Segal [8]. However, dimX = co.

7. The Whitehead theorem for maps

7.1, Let /2 (X, x0)=(Y, yo) be a map of pointed topological spaces. The map-
ping cylinder (Z, z) of fis obtained from the topological sum (X< I) U Y by iden-
tifying (x, 1) and f(x), x € X, and by shrinking (xoxI) U {y,} to a point z,. The
image of (x,f) and y under this identification will be denoted by [(x, 7)] and [y]
respectively. Along with the mapping cylinder, we consider embeddings : (X, x,)
~(Z, 20), j: (Y, p0)=(Z, 20), given by i(x) = [(x, 0)] and j(y) = [y] respectively,
as well as the map g: (Z, z0)=(Y, yo) given by gl(x, )] = f(x), g[y] = y. Note
that gj = 1 and jg=1 so that j and g are homotopy equivalences. Furthermore,

Jf=~i and therefore, f = gi.

Since ¢ is a homotopy equivalence and f~gi, we conclude that f is a shape
equivalence if and only if i is a shape equivalence. Similarly, f induces a mono-
morphism (epimorphism) of homotopy pro- g1 oups (X, x)—n, (Y, y) if and only
if { induces one.

Note that the dimension of the mapping cylinder (Z, zo) of f: (X, x0)—(¥, ¥o)
satisfies

M dimZ < max{l +dim X, dim ¥’} .

n—1 n
Indeed, consider the subsets Z, = XxI[xoxI,cZ, where I, = [*“‘n ,n——-+1],

n=1,2,.. These subsets are C*-embedded in Z, i.e. every map f,: Z,—~1I = fo,11
admils a continuous extension to all of Z. This is easily seen by considering the
mapping cone C of fand the mapping Z— C which identifies ¥ to a point. Since Y

(") K. Borsuk has introduced this notion in [3] under the name “approximative n-connect-
edness™.
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is a retract of Z, it is also C*-embedded in Z. Now Lemma 5.9 of [15] yields the
assertion because Z = (U Z,) v Y and dimZ, = dim X xI<dim X'+1 (Theorem 5.5

of [15]).
7.2. We can now state and prove our main result.
THEOREM 6. Let (X, xo) and (¥, yo) be pointed topological spaces, connected
and finite-dimensional, and let f: (X, x0)—(Y, yo) be a map which induces bimorphisms
fii m(X, x)-n(¥, ) of homotopy pro-groups Jor

0<k<ng+1 = max{l-+dimX, dim ¥} +1

and an epimorphism for k = ny+1. Then f is a shape equivalence, Le. there is a shape
map g: (Y, yo)—(X, xo) such that fg =1, gf = L.

Proof. Let (Z, z,) be the mapping cylinder of f. Z is connected and dimZ
<max{l+dim X, dim ¥} = ny<co. Furthermore, by 7.1, the inclusion induces
a bimorphism i, of homotopy pro-groups for 0<k<ny+1 and an epimorphism
for k = ng+1. By 5.4, there is an exact sequence of homotopy pro-groups belonging
to the pair (Z, X, o). We conclude, by 5.3, that m(Z, X, x) = 0 for 1<k<n,+1.
Consequently, by Theorem 4, the inclusion i: (X, xo)—(Z, Xo) is a shape equiv-
alence, which implies that f is a shape equivalence too.

8. The Whitehead theorem for shape maps

8.1. TusoreM 7 (5). Let (X, x,) be a compact Hausdorff space, (¥, yo) a com-
pact metric space and f: (X, xo)—(Y, yo) @ shape map. Then there is a compact
Hausdorff space (Z,z,) and there are embeddings i: (X, x)=(Z, z0), j: (Y, o)
—(Z, zo) such that j admits a shape inverse g: (Z, zg)—>(Y, yo) and f= gi. If X is
metric, then so is Z.

Proof. There exist an inverse sequence (¥,¥) = ((¥, )., duns1> N) in #7y
of compact polyhedra (Y, y), whose inverse limit is (¥, o). Then f is given by
homotopy classes of maps f,: (X, x5)—(Y, »), such that ¢, ,41 et =Sy NEN.
For each ne N let ,,., and ¢, be maps from the classes g,,,+, and f, respectively,
let (Z, 2), be the mapping cylinder of ¢, and let i,: (X, x0)—>(Z, 2),, Ju: (Yo ¥)u
—(Z, 2),, be inclusions as in 7.1. We choose for every ne N a homotopy

‘p,,: (XX I, Xo X])"’*(Y: y)n

which connects ¢, and %, 41 ¢,41. Then a map g, 41 (Z, D)y > (Z, £), is defined by

_ bes21], 01y, xe X,
(1) Qn,n+1[(’x: t)] _{[(D,,(x,2t—~1)], '}gtgl, XEX,
(2) Qn.n+1[y] = [%n,n-l-l(y)] ) y € Y'

(*) According to a communication from M. Moszyniska the theorem has been already Lﬁroved
by W. Holsztyfiski (unpublished) if both X and ¥ are metric compacta (cf. also [17]).
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We thus obtain an inverse sequence (Z, z) = ((Z, 2),, 0nni1, N) and a space
(Z,20) = lim(Z, z). Note that (Z, z), has the homotopy type of (Y; ), so that

(Z, z) is a system in %#",. Moreover, each Z, is compact and therefore Z is compact
too. Since 7, is an embedding and i, = @, 4.1 i,4{, We obtain an embedding 7: (X, xg)
—+(Z, z¢). Similarly, the maps j, define an embedding j: (¥, yo)~(Z, 2,), because
Ont 1wt = Ju¥yur1+ SINCE jy4y is @ homotopy equivalence, j is a shape equiv-
alence. Finally, j, ¢, 21, implies jf = i, i.e. f = gi, where g is the shape inverse of j.

8.2, We now prove a slight generalization of Moszyniska’s theorem stated in
Introduction,

Turorem 8. Let (X, xo) be ¢ compact Hausdorff space and (7, Yo) a compact
metric space, let both be connected and finite-dimensional and let f: (X, x5)~(Y, yo)
be a shape map which induces bimorphisms of homotopy pro-groups m(X, x)~m(¥, yy
Jor 0k<ng+1 = max {1+ dim X, dim Y} +1 and an epimorphism for k = ng+1.
Then fis a shape equivalence.

Proof. We apply Theorem 7 and obtain a factorization f= gi, where i: (X, x,)
—(Z, z¢) is an embedding. Since ¢ is a shape equivalence, the assumption on f
carries over Lo . As in the proof of Theorem 6 we conclude that 7,(Z, X, x) = 0
for 1<k ny+1, and therefore i: (X, xo)— (Z, xo) is a shape equivalence. This
implies that £ is a shape equivalence too. ’

References
[L 7 M. Artin and B. Mazur, Etale homotopy, Lecture Notes in Mathematics, Vol, 100, Betlin:
1969. '
[21 K. Borsuk, Concerning the homotopy properties of compacta, Fund., Math. 62 (1968),
pp. 223-254.

[31 ~ A note on the theory of shape of compacta, Fund. Math. 67 (1970), pp. 265-278.

[4]1 A. Dold, Lectures on Algebraie Topology, Berlin 1972,

[51 D.A.Bdwards and R, Geoghegan, Compacta weak shape equivalent to ANR’s, Fund.
Math. 90 (1976), pp. 115-~124. .

[6] R.H. Fox, On shape, Fund. Math. 74 (1972), pp. 47-71.

[71 A.Grathendieck, Technique de descente et théorémes d’existence en géométrie algébrique 11,
Le théoréme d'existence en théorie formelle des nombres, Sém. Bourbaki, 12 année, 1959-60,
Exp. 195, pp. 1-22,

[81 D. Handel and J. Segal, An acyelic continuum with non-movable suspension, Bull. Acad.
Polon, Sci. S6r. Sci. Math. Astronom. Phys. 21 (1973), pp. 171-172.

[9] W. Holsztynski, An extension and axiomatic characterization of Borsuk’s theory of shape,
Tund, Math. 70 (1971, pp. 157-168.

[10] D.S. Kahn, dn example in Cech cohomology, Proc. Amer. Math. Soc. 16 (1965), p. 584.

[11] A.T. Lundell and S. Weingram, The Topology of CW-complexes, New York 1969.

[12] S. Mardedié, Shapes for topological spaces, General Topology and Appl. 3 (1973),
pp. 265-282.

[13] ~~ Equivalence of two notions of shape for metric spaces, Bull. Acad. Polon. Sci. Sér. Sci.
Math. Astronom. Phys. 21 (1973), pp. 1137-1142.


Artur


64 S. Mardesic¢

{141 S. Marde§ic¢ and J. Segal, Shapes of compacta and ANR-sys’tems, Fund. Math. 72 .(1971),

pp. 61-68.

1151 K. Morita, Cech cohomology and covering dimension for topological spaces, Fund Math.,

87 (1975), pp. 251-259.
[16] — On shapes of topological spaces, Fund, Math. 86 (1975), pp. 251-259.

{171 M. Moszynska, On shape and fundamental deformation retracts 11, Fund. Math. 77 (1972),

pp. 235-240.

[18] — Uniformly movable compact spaces and their algebraic. properties, Fund. Math. 77

(1972), pp. 125-144.

‘191 — Various approaches to the fundamental groups, Fund. Math. 78 (1973), pp. 107-118.
[20] — The Whitehead Theorem in the theory of shapes, Fund. Math, 80 (1973), pp. 221-263.

1211 J. Nagata, Modern Dimension Theory, New York 1965.

[22] T. Porter, Cech homotopy 1, J. London Math. Soc. 6 (1973), pp. 429-436,

231 — Borsuk’s theory of shape and Cech homotopy, Math. Scand. 33 (1973), pp. 83-99.
[24] H. Schubert, Kategorien I, Berlin 1970.

[25] E. Spanier, Algebraic Topology, New York 1966.
UNIVERSITY OF ZAGREB

Zagreb, Yugoslavia

Accepté par la Rédaction le 20. 5. 1974

Invariant uniformization

by

Dale Myera * (Honolulu)

Abstract. We show that the invariant version of the Kondo-Addison Uniformization
Theorem fails. Several counterexamples of algebraic interest are presented.

Can one pick a point from each countable linear order? To make this problem
model-theoretically interesting we identify isomorphic structures and to make it
nontrivial in ZFC, set theory with choice, we require that the picking be done in
a countable-ordinal-sequence-definable way. Roughly speaking, a set is definable
from a countable sequence of ordinals iff for some ZF formula ¢ and some countable
sequence o of ordinals, it is the unique solution of ¢ (x, «). A set definableinany mathe-
matically accepted way will be countable-ordinal-sequence-definable, Henceforth
we shall interpret “one can pick a point (proper substructure, proper extension, etc.)
from each linear order” as meaning that there is a countable-ordinal-sequence-
definable function which assigns to each isomorphism type of a countable linear
order the isomorphism type of a point (proper substructure, proper extension etc.)
of the linear order, i.e., to the isomorphism type of {4, <) it assigns the isomorphism
type of some structure (4,<, a) where ae 4 ({4, B,<) where BS4, {(B, 4,<>
where 4 = B, etc.). “One cannot always pick...” shall be interpreted as meaning that
it is relatively consistent with ZFC that there is no countable-ordinal-sequence-
definable function which picks... All of the results below of the form “one cannot
always pick a..” have as consequences “it is relatively consistent with ZF and
the principle of dependent choices that there is no function (definable or not) which
selects a..".

We first show that one cannot always pick points from certain structures called
bireals and then show that: One cannot always pick a point from each countable
linear order or from cach countable semigroup and one cannot always pick a proper
substructure for each countable algebra which has such. Although one can always
pick a proper extension by adding a new point, it is relatively consistent with the
existence of an inaccessible cardinal that one cannot pick a countable nonisomorphic
extension of each countable structure which has such. It is also relatively consistent

* The author is grateful to Robert L, Vaught and ‘Gerald E. Sacks for assistance with and
interest in this paper. ‘ ‘

§ — Fundamenta Mathematicoe, T, XCI


Artur




