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o

Abstract. Through the investigation of new mapping conditions, the authors are able to estab-
lish metrization theorems for certain locally compact, locally connected spaces. In particular, it
is shown that: () each normal locally compact, locally connected Moore space is metrizable;
and (2) each perfectly normal, subparacompact generalized manifold is metrizable.

The authors would like to dedicate these results to their teachers, Ben Fitz-
patrick and D. R. Traylor.

1. Introduction. In this paper, the authors introduce new mapping conditions
and investigate spaces which are the preimages of metric spaces undér maps satisfy-
ing these conditions. As a consequence of this investigation, significant progress
is made on two long outstanding questions in general topology concerning the
metrization of locally compact, locally connected spaces.

Tn 1937, F. B. Jones showed in [13] that under the assumption of the continuum
hypothesis each normal, separable Moore space (*) is metrizable. Since that time,
Jones’ “normal Moore $pace conjecture”, i.e., the conjecture that each normal
Moore space is metrizable, has been one of the most tantalizing open questions
in general topology. Furthermore, other than R. H. Bing’s result of 1951 in [6]
that each collectionwise normal Moore space is metrizable, the only positive results
on this particular problem have depended on various set theoretic assumptions.
In fact, the work of Bing in [6] and [7], R. W. Heath in [12], J. H. Silver, and
F. D. Tall in [24] and [25] has shown that the metrizability of normal, separable
Moore spaces, as well as several related conjectures, are actually independent of
set theory.

In Seclion 3, a positive resull concerning the metrization of normal, locally
compact Moore spaces is given which requires no set theoretic assumptions. B. Fitz-
patrick and D. R. Traylor showed in [10] that if there exists a normal, separable,
nonmetrizable Moore space, then there exists one that is also locally compact.
Also, W. G. Fleissner has recently shown in [11] that it is consistent that each
normal, locally compact Moore space be metrizable. Thus, it is now known that

(*) A Moore space is a developable Ty-space. .
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the metrizability of normal, locally compact Moore spaces is independent of set
theory. However, the question has often been raised (Jones in [14] and Traylor
in [26], for example) as to whether each normal, locally compact, locally connected
Moore space is metrizable. This question seems to be a good candidate for yet
another independence result since it follows from known results that it is consistent
to claim the existence of a normal, complete, locally connected, nonmetrizable
Moore space. But this is not the case, for in Theorem 3.4, the authors show, without
any set theoretic assumptions other than the axiom of choice, that each normal,
locally compact, locally connected Moore space is metrizable,

In [5] by Alexandroff and again in [27] by Wilder, the question has been raised
as to whether each perfectly normal generalized manifold (*) is metrizable. To the
authors’ knowledge the only two substantial results pertaining to this question are:
(1) each paracompact generalized manifold is metrizable (Smirnov’s Metrization
Theorem); and (2) each generalized manifold M such that M? is perfectly normal
is metrizable (Zenor in [29]). Recently, the seemingly unrelated question as to
whether each perfectly normal space is subparacompact has arisen in the study
of abstract spaces. In Theorem 3.8 it is shown that each perfectly normal, sub-
paracompact generalized manifold is metrizable.

"2. Preliminary results and definitions. Throughout this paper, our spaces are
Hausdorff. .# will denote the class of metric spaces and %.# will be the class of
separable metric spaces. If & is a class of spaces, then C(X, &) will denote the class
of continuous functions with domain X and range in &.

2.1. DeFNITION. If & is a class of spaces, then X is &-refinable if, whenever
% is an open cover of X, there is a member f of C(X, &) so that the fibers of f
refine %. X is &-contractible if there is 2 member f of C(X, &) which is one-to-one.

In [1], #-contractible spaces are called submetrizable spaces while in [31.
[16], [17], and [23], an . -contractible space is said to be contractible to a metric
space. Obviously, an &-contractible space is &-refinable. In [30], it is shown that
if C(X, #)) determines the topology (*) on X and if & is hereditary and finitely
productive, then X can be embedded as a closed subset in a product of members
of &. In particular then, any completely regular .#-refinable space is Dieudonné
complete and any completely regular &.# -refinable space is realcompact.

2.2. THEOREM. An M -refinable M-space is paracompact.

Proof. In [20], an M-space X is characterized as a space which admits a quasi-
perfect member of C(X, .#); i.e., there is a closed map f taking X into a metric
space with countably compact fibers. We will show that a closed countably compact
subset of an . -refinable space is compact. It will then follow that [fis perfect and
that X" is paracompact.

(*) A generalized manifold is a space that is locally Euclidean.
(*) The statement that C(X,§) determines the topology on X means that {f~*(U)| U open in
the range of £, fz C(X, &)} forms a subbasis for the topology on X.
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Let H be a closed countably compact subset of X and suppose that H is not
compact. Let & be a centered collection of closed subsets of H with no common
part. Since X is .4 -refinable, there is a member g of C(X, .#) whose fibers refine
{X—K| Ke A}. Since H is countably compact, g (H) is compact and {g(K)| Ke £’}
is a centered family of closed subsets of g(H). Thus, there is a point x
e NV {g(K)| Ke #'}. This is a contradiction from which it follows that H is compact.

2.3. THEOREM. X is M -contractible (&4 -contractible; resp.) if and only if
X is an M -refinable (& M -refinable; resp.) space with a Gy-diagonal.

Prool. Clearly, if X is .4 ~contractible or & -contractible, then X is .#-re-
finable of &.#-refinable, respectively; and also, X has a G,-diagonal. Suppose
that X is .#-refinable (& -refinable; respectively) and X has a Gj-diagonal.
According to Ceder [9], there is a sequence ¥, ¥,, ... of open covers of X so that

o
it pe X, then (\St(p, %)) = {p}. For each i, let g; be a function from X into the
i=1
metric space M; so that the fibers of g, refine &,. Let ¢: X~ [] M, be defined by
i=1

mi{@(¥)) = g{x) where 7; is the projection of [] M; onto M;. According to the
=1

Embedding Lemma (page 116, [15]), ¢ is continuous. Clearly, the g/’s distinguish
points; and so, ¢ is one-to-one.

2.4. COROLLARY. X is metrizable if and only if X is an A -refinable M-space
with a Gy~diagonal.

Proof. In [21], Okuyama shows that a paracompact M-space with a Gy-di-
agonal is metrizable. .

Recall that, according to Burke [8], a space X is subparaciompact if wl?enever
9 is an open cover of X there is a sequence F(, F,, ... of discrete collections of
closed sets such that G &, covers X and refines %. Subparacompact spaces were

=1
called F,-screenable spaces by McAuley in [18].

2.5. THEOREM. If X is a perfectly normal subparacompact space such that | X| <c,
then X is &M -refinable.

Proof. Let % be an open cover of X and let {1, F,,... be a sequence of
discrete collections of closed subsets of X such that 'L_Jis’ ; covers X and refines %.
Let 4 be o countable basis for % (# = real line). For each positive integer i, let
f,be a one-to-one Tunction from &, into #. For each i and each /}wegﬁ, let H.“,,,)
=\ {Fe & fi(F) e b}. For cach i and each b e &, let g,y be 2 continuous function
from X into [0,1] so that Hyp = {x] gamn() = 0}. For each (i, b), let Iy, denote
a copy of [0,1] and let 7 , denote the projection of H=[[{uwli=1,2,-.; 0%}
onto ;. Let ¢ denote the map taking X into H defined by @(i’b)((p () = g(i’b)(l?é
Since cach gy, is continuous, ¢ is continuous (see the Embedding Lemma, page
of Kelley [15]).
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Note that, for each xe X, 0™ *(p(x)) = N {gan@un)i=1,2,..; be #).
To see that the fibers of ¢ refine %, let x € X and let i denote an integer so that some
member, F, of &, contains x. Let B’ = {be B| f(F) e b}. Then we have that

F=[ {xl Fapn) = 0} .
be B’

Thus, ¢ " *(p(x))=F and F is a subset of some member of 4.
From 2.5 and 2.3 we have:

2.6. THEOREM. If X is a perfectly normal subparacompact space with a Gs-di-
agonal such that |X|<c, then X is &M -contractible.

2.7. Remark. The question has been raised by R. Hodel as to whether each
Moore space has a point countable, point-separating open cover. The indexing
technique employed in the proof of 2.5 can be used to show that if | X|<c and X is
a subparacompact space with a G;-diagonal, then X has a countable point-separat-
ing open cover. Hence, since each Moore space is subparacompact and has a Gj-di-
agonal, the above question has a positive answer for Moore spaces with cardin-
ality <c. For a discussion of this question with respect to higher cardinality, see’ [22].

2.8. ExamprE. The authors do not know if the condition that closed sets
be G-sets can be eliminated from the hypothesis of 2.5 or 2.6. However, the follow-
ing example shows that in 2.6 the cardinality condition can not be relaxed even
if . -contractible is replaced by . -contractible: Let H be the example H as
described by Bing in [6]; however, let the set P described by Bing have cardinality
greater than ¢. The space H is a perfectly normal o-space (and hence, X is a sub-
paracompact space with a G,-diagonal). Sippose that H is .4 -contractible. Let f be
a one-to-one continuous function from H into the metric space M. Since P has
more than ¢ points, f(P) is not separable. Let P’ be an uncountable subset of P so
that f(P’) has no limit point. Since M is metric, there is a collection {U(p)] pe P’}
of mutually exclusive open subsets of M such that f(p) e U(p) for each pe P’
Then {f~*(U(p))| p € P’} is an uncountable collection of mutually exclusive open
sets, each member of which intersects P. But Bing shows that every collection of
mutually exclusive open sets, each member of which intersects P, is countable.
This contradicts the assumption that H is .#-contractible.

3. Locally connected and locally compact- spaces.

3.1. LemMA. If X is a connected first countable space such that each point, p, is
contained in a connected open set U(p) with |U(p)|<c, then |X|<c.

Proof. Let Q denote the countable ordinals and let g € X. Define V: Q-2
as follows:
(a) Let V(1) = U(y).
(b) Having V(&) for a<p, let V(B) = U{U| xecl( U V).
a<p
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Then ¥ satisfies the following properties:

(i) Each V(x) is open and connected.

(i) If a<pf, then V{x)= V().

(iii} For each o, |V(a)|<¢.

That (i) and (i) hold is clear, To see that (iii) holds, suppose otherwise. Let 3 be
the first ordinal so that |F(B)|>c. Then || V(x)|<c. Since X is first countable,

a<f )
cd(UY Voa<e
a<f

Thus, [{U®)] xecl(U Vyll<e
a<f R

Tt follows that |V(f)|<c which is a contradiction from which (iii) follows.
Hence, |X|[<c¢ since X = | V().
aef2
3.2. THEOREM. Suppose that X is perfectly normal and subparacompact. If X is
locally connected and locally compact, then X is &M -refinable.

Proof. According to 2.5 and 3.1, each component of X is & .#-refinable.
Since X is perfectly normal and locally compact, by [4], X has local cardinality <c.
Thus, X is the union of a discrete collection of open & .#-refinable subsets. It
follows that X is & .# -refinable.

3.3. THEOREM. Suppose that X is a perfecily normal and subparacompact space
with a Gy-diagonal. If X is locally connected and locally compact, then X is metrizable.

Proof. According to 3.2 and 2.4, X is .-contractible; in particular then,
X has a regular G,-diagonal (i.e., there is a sequence of open sets U;, U, ... in
o0 [-e]
XxX so that 4 = (YU, = (\U;, where 4 is the diagonal of X). It now follows
i=1 i=1
from Theorem 5 of [28] that X is metrizable.
In [6], Bing shows that every Moore space is subparacompact, thus, we have
the following result-mentioned in the introduction: '

3.4. THEOREM. Every normal, locally connected, locally compact Moore space
is metrizable.

3.5. LEMMA. X is paracompact if and only if for every open cover ¥ of X, there
is a sequence @, %, ... of open covers of X so that, if x € X, then there are an n and
an open set V containing x so that SW(V, 9,) is a subset of some member of % (Arhan-
gel’skii [2]).

3.6. THEOREM. If X is a locally connected and locally peripherally compact
J -refinable space, then X is paracompact.

Proof. Let % be an open cover of X. Let " be an open refinement of % so
that the boundary of each member of ¥ is compact. Let %" be an open refinement
of ¥ so that the members of %" are connected. Let /e C(X,4) so that the fibers
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of f refine #". Then there is a normal sequence ,, %,, ... of open covers of X so
that for each x,

f-1(f(x)) = iélst(x, 9 ziastz(x, 4.

For each i, let ¢, denote the collection of components of members of #;.
Cram 1. 45, %;, ...
Proof. Let n be an integer. Let x € % € ¥, so that St¥(x, ,..) <= U. It follows

that St*(x, 9, ) is a subset of the component of x in U and the component of x

in Uis in 4.

CLAM 2. If x € X, then there are an integer nand a Ve ¥ so that St*(x, G)cV

is a normal sequence.

o0
Proof. Let ¥ be a member of ¥ that contains ) St(x, ;). Since %%, %3, ...
1

p=
is a normal sequence,
@ o0

N St(x, %) = Ncl(St*(x, %)) .
n=1 =1

n

Suppose that, for each #,

(S, ) N (X=V)# D . .
Since cl(St?(x, %,)) is connected, for each n,

cd(St*(x, %)) nBd(V) # S .

Since Bd(¥) is compact, there is a point
= ge Nel(St(x, ) n Bd(V).
n=1

Thus, ¢ is a point in [ (St(x, %,))]— ¥ which contradicts the choice of V. That X is
n=1

paracompact now follows from Lemma 3.5.
3.7. THeOREM. Suppose that X is locally connected and locally compact. Then
the following are equivalent:
a. X is metrizable,
. X is A -contractible,
. X has a regular G4-diagonal,
X? is perfectly normal,
- X is a perfectly normal and subparacompact space with a Gg-diagonal.
Proof. That (2) = (b), (b) = (d), (d) = (c) and (a) = (e) are obvious. That
(c) = (2) was done in Theorem 5 of [29]. That (¢) = (b) now follows from 3.2
and 2.4,

3.8. THEOREM. Every perfectly normal subparacompact generalized manifold
X is metrizable. S

o o

LS

Metrization of Moore spaces and generalized manifolds

209

Proof. From 3.2 and 3.6, it follows that X is paracompact. Hence, since X is
locally metrizable, it follows from Smirnov’s Metrization Theorem that X is
metrizable. )

Note. Ryszard Engelking has observed that the consistency of the Souslin
continuum shows that the G;-diagonal property can not be removed from (€) of
Theorem 3.7. Also, David Lutzer has kindly pointed out to the authors that, in [28],
Worrell and Wicke show that if a space X locally has a base of countable order,
X has a base of countable order. Since a 0-refinable space with a base of countable
order is a Moore space, we have that a normal 9-refinable generalized manifold
is metrizable,

Example B, p. 376, [19] is an example of a generalized manifold which is
a Moore space (and hence subparacompact) but it is not metrizable.

Added in proof. (1) Assuming (CH), Rudin and Zenor have displayed an example of
a.perfectly normal nonmetrizable manifold [31].

(2) In [32], it is shown that every perfectly normal manifold is collectionwise normal
with respect to Lindelof sets. This provides an alternate proof to our Theorem 3.4.
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Metacompactness and the class MOBI
by

J. Chaber (Warszawa)

i
Abstract. We construct examples of open compact mappings which are defined on metacom-
pact complete Moore spaces. The examples show that the range of such a mapping can be either
a Moore space which. is not metacompact or a regular nondevelopable space. This solves some pro-
blems connected with the class MOBI.

Let MOBI,; denote the minimal class of T, spaces containing all metric spaces
and closed under open compact mappings (see [1, Definition 5.4], and [10]).

1t is known that MOBI, contains hereditarily paracompact nonmetrizable
spaces [13, Example 2] (a similar example is constructed in [2]) and nondevelopable
nonmetacompact spaces [13, Bxample 3] (a similar example is constructed in [3]).

On the other hand, it is shown in [13, Theorem 2] implicitly (and independly
in [10]) that the paracompact members of MOBI; are metrizable.

The purpose of this note is to construct a space ¥ in MOBI,; which is neither
metacompact nor developable.

More exactly, we shall construct an example of an open compact mapping
of 4 completely regular metacompact developable Cech complete space X onto
a completely regular space ¥ which is not a p-space and contains a closed subset
which is not a G,-subset; moreover, ¥ has not a G,-diagonal (Examples 2.2 and 2.4).

From the results of the generalized base of countable order theory of
H. H. Wicke and J. M. Worrell, Jr,, it follows that ¥ is not §-refinable (see [6]
for simpler proofs and definitions); hence ¥ is neither metacompact nor subpara-
compact.

The example gives an answer to Problems 7.1,2,3,5,6 and, partially, to 12 Q)
from [10] (sec also Question 2 from [2]), and some questions from [3].

In the first section we present a general method of constructing open compact
mappings. This method is used in the second section to construct various spaces
in MOBI;.

We shall use the terminology and notation from [7].

(® It is easy to sec that Problem 7.1 is equivalent to the negation of Problem 7.5.
4*
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