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- To show that (IT) implies (I), it suffices to show that any ring satisfying ‘(IT) is

one of the types (i), (i), and (jii). According to Lemm’m 1, 4 has at most"two
proper ideals. -

Case 1. If 4 has no proper ideals, then, by Theorem 1, R is either a division
ring or is isomorphic to a 2 x 2 matrix ring over a division ring. Thus A is of: type
@) or (iii).

Case 2. If 4 has exactly one proper ideal, namiely /, then by Lemma 2, I (())
and R/I is a division ring. Thus I is the Jacobson radical of R. From Theorems 3, 4,
and 5, we can see easily that Iis the only proper right ideal in 4, so 4 is of type (11)

Case 3. If 4 has two proper ideals, then, by Theorem 2, A is isomor phlc to
a direct sum of two division rings, so 4 is of type (iii).
This completes the proof.

As we pointed out earlier, in view of Theorem 8 our results provide a furthel

classification for the rings studied by Koh.
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On subspaces of separable first countable 7,-spaces
by

G. M. Reed (Athens, Ohio)

Abstract, Tt is the purpose of this paper to provide conditions under which certain first count-
able Ti-spaces (in particular, Moore spaces) of cardinality < ¢ can be embedded in spaces of the
same type which are also separable. Related results deal with pseudo-compactness and pomt—
countable separating open covers.

In this paper the author considers the following questions: (1) Can each first
countable T,-space (Moore space) of cardinality <c be embedded in a separable
first countable T -space (Moore space)? (2) Can each locally compact Moore space
of cardinality <c¢ be embedded in a separable Moore space? (3) Can each locally
compact, separable Moore space be embedded in a pseudo-compact Moore space?
(4) Does each Moore space with the DCCC have cardinality <c¢? (5) Does each
Moore space have a point-countable separating open cover?

In Section 1, significant partial answers of a positive nature are given to Ques-
tion (1) from which it follows that the most obvious candidates for counter ex-
amples (i.e., certain CCC, nonseparable spaces, in particular Souslin spaces) will
not suffice. In Section 2, Questions (2) and (3) are given positive answers. The
answer to Question (2) is, however, obtained under the assumption of the con-
tinuum hypothesis, In Section 3, Question (4) is answered in the negative and signifi-
cant progress is made on Question (5).

.

(1) Motivation. Duung Professor Steve Armentrout’s talk at the 1967 Arizona
State University Topology Conference, the question was raised as to whether there
exists a separable, noncompletable Moore space. In 1970, J. Ott in [23] under the
assumpton of the continuum hypothesis, embedded a non-completable Moore
space due to M. E. Rudin in a separable Moore space. Furthermore, Ott obtained
the rather remarkable result that there exists a complete separable Moore space
which contains a copy of every metric space of cardinality <c. And, in 1972, the
author in [29] constructed a noncompletable Moore space which could be em-
bedded in a separable Moore space without any set-theoretic assumptions other
than the axiom of choice. Thus, the original question was answered completely.
However, in attempting to answer this question, Ott raised the seemingly more
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difficult question as to whether each Moore space of cardinality <¢ can be embedded
in a separable Moore space. Recently, the latter question has been raised again
by Professor Ben Fitzpatrick in his invited hour address at the November, 1973
meeting of the American Mathematical Society in Atlanta, Georgia.

Also, in [8] and [9], J. W. Green has defined a Moore space to be Moore-closed
provided that it is a closed subset of each Moore space in which it is embedded.
Green has shown that each Moore-closed space is complete. And, in [30], the
author has shown that (1) each Moore-closed space is separable and (2) for com-
pletely regular Moore spaces, Moore-closure is equivalent to pseudo-compactness.
Thus, .the following question arose in [30] which relates both to Ott’s question and
to the considerable literature on completing Moore spaces: Can each completable
Moore space of cardinality <c¢ be embedded in a Moore-closed space? Or, perhaps
the more approachable question: Can each locally compact Moore space of cardi-
nality <c¢ be embedded in a pseudo-compact Moore space?

Finally, due to the cardinality considerations in the above questions, the
question arises as to the cardinality of Moore spaces which have the DCCC. A space
has the DCCC (discrete countable chain condition) provided each discrete collection
of mutually exclusive open sets is countable. Moore spaces which have the DCCC
but not the CCC are given in [28] and [30]. It is well known (see [17]) that first
countable T,-spaces with the CCC must have cardinality <c.

(ii) Preliminaries.

Moore spaces. A development for a space S is a sequence G, G,, ... of open
covers of S such that for each i, G;; =G, and for each point p in S and each open
set D containing p, there exists an n such that each element of G, containing p is
contained in D. A regular T,-space which has a development is a More space.
A complete Moore space is one which has a complete development, i.e., a de-
velopment Gy, G, ... such that if for each i, M; is a closed subset of some element
of G; and M; contains M., then () M, # @. The source book for Moore spaces
is [21]. Note from [5], completely regular Moore spaces have a complete de-
velopment if and only if they are Cech complete.

DErINITION 1. [4] A T,-space S is (continuously) semi-meirizable provided
it admits a (continuous) distance function d from §'x S into the nonnegative real
numbers such that (1) if each of x and y is a point of S, then d(x, y) = d(y, x) =0,
(2) d(x,y) = 0 if and only if x = p, and (3) the topology of S is invariant with
respect to d.

DEeFINITION 2 [2]. A T),-space is submetrizable provided it admits a one-to-one
continuous map onto a metric space.

Dermviion 3 [11}. A sequence Gy, G, ... of open covers of a T,-space S has
the three link property provided that if p and ¢ are two points of S, then there
exists an n such that no element of G, intersects both St(x, G,) and St(y, G,).
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DsrRINITION 4 [39]. A T,-space S has a regular G;-diagonal provided there
exists a sequence D,, D,, ... of open sets in §x.S such that

A4S = {(x,x)| xeS} = D, = N D,.

THEOREM 5 [39]. A Tp-space S has a regular Gy-diagonal if and only if it has
& sequence Gy, Gy, ... of open covers satisfying the three link property.

THEOREM 6 ([4] and [37]). 4 T,-space which is either continuously semi-metriz-
able or submetrizable has a regular Gy-diagonal.

Notation. The positive integers will be denoted by N and the letters i, j, mn
will be used exclusively to denote elements of N. If M is a subset of the space S,
then CLg(M) will denote the closure of M in S. If H is a collection of sets, then H*
will denote |J {h| he H}.

1. First countable T,-spaces. In [30], [31], [32], [33] and [34] the author has
extensively developed a technique which associates a Moore space to each first
countable T,-space. Hence, the author’s original approach to Ott’s question was
an attempt to decide if each first countable T,-space of cardinality <c¢ could be
embedded in a separable first countable T,-space. Hopefully, a solution to this
question would then produce the corresponding solution for Moore spaces. How-
ever, although it is not difficult to show that each first countable T, -space can be
embedded in a separable first countable T -space [24], the valuity of the corre-
sponding result for first countable T,-spaces of cardinality <c¢ is apparently not
known. The only positive result concerning this particular question in the literature
seems to be the well-known theorem due to Tychonoff that each completely regular
T,-~space of weight <c¢ can be embedded in a compact, separable T,-space (I9).
But, as first countability of subspaces of I° is a very difficult property to establish,
perhaps a search for a counterexample might be a better attack. The obvious can-
didate, or so it would seem to the author, would be nonseparable, CCC first count-
able T,-spaces, in particular, Souslin spaces. However, in this section the author
establishes positive results which show that this is not the case.

TueoreM 1.1, Each first countable (developable) T,-space S with the countable
chain condition and a regular Gy-diagonal can be embedded in a first countable (de-
velopable) separable T,-space.

Proof. Suppose S is first countable. Since § has a regular G;-diagonal, by
Theorem 5, S has a sequence of open covers satisfying the three link property.
Hence, for each p e S, denote by g4(p). g2(p), ... a nonincreasing local base for p
such that G,, G,, ..., where for each i, G; = {g/{p)| pe S and j>i}, satisfies the
three link property. Furthermore, let H, denote a maximal collection of mutually
exclusive elements of G, such that H} is dense in § and for each i>1, let H; denote
a maximal collection of mutually exclusive elements of G; which refines H;_; ‘such
that H¥ is dense in S. Also, for each i, let H; = {he H;| hisnot a singleton}. Now,
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let H=|J H; and H' = | H;. Finally, let X = S U H’ and define a base ‘B fo
i=1 i=1
the desired topology on X as follows:
(1) if xe H', let {x} e B; and

o«
(2) if xe S, then for each 7, let by(x) € B, where b(x) = g,(x) U {h| he | H;
i=i

and g(x) N h % O}.

It is easily seen that X is a first countable T,-space and that S is embedded
in X. Also, from the construction, it follows that K = H' u {pe S| {p}e H} is
a countable dense subset of .S, hence X is separable.

If S is developable, let Gy, G, ... denote a development for S satisfying the
three link property. For each p €S, denote by g,(p), g.(p), -.. 2 nonincreasing local
base for p such that for each i, g,(p) € G;. Now, the space X obtained by the same
construction as above is easily seen to be developable also.

EXAMPLE 1.2. There exists a hereditarily Lindelof, nonseparable first count-
able T,-space which can be embedded in a separable first countable T,-space.

Proof. Consider the following well-known space (X, T). Let X denote a sub-
set of the real line with cardinality = x; and let Q denote a well-ordering of X in
which each initial segment is countable. For each point p in X and for each i e N,
let r{p) denote the open segment (p—1/i, p+1/i) of the real line topology and
let g(p) = r(p) 0 {x e X| x is p or x follows p in Q}. Then B = {g,(P)| pe X and
Je N} is a base for the desired topology T on X and X is easily seen to be a heredi-
tarily Lindelof, nonseparable first countable 7),-space. However Gy, Gy, ..., wWhere
for each i, G; = {g(p)| pe X}, is 2 sequence of open covers of S which has the
three link property. Hence, by Theorem 5, X has a regular Gs-diagonal and, by
Theorem 1.1, X can be embedded in a separable, first countable T, -space.

BXAMPLE 1.3. There exists a CCC, nonseparable’ Moore space which can be
embedded is a separable Moore space.

Proof. Let § denote the set of all finite subsets of the real line R. For each
xeR and ne N, let h(x) = (x—1/n, x+1/n). Foreach pe S and neN, let ,(p)
=U {h)] xep} and let g,(p) = {ge S| pcq and geu,(p)}. In [26], C. Pixley
and P. Roy show that Gy, G,, ..., where for each n, G, = {gp)l pe S and izn}
is a development for a CCC, nonseparable Moore space topology on S. In [18],
S. Kenton showed that S is continuously semi-metrizable. Hence, by Theorem 6
and Theorem 1.1, S can be embedded in a separable, developable T,-space JX.
The author does not know if the construction technique in the proof of Theorem 1.1
will, in general, preserve regularity. However, by considering a certain subspace S’
of S, we obtain the desired result.

Let I denote the irrationals with the inherited topology of the real line and
let §” denote the set of all finite subsets of 7. For each x & / and n e N, let h,(x)
denote an open set in I such that (x—1/n+1, x+1/n+1) N T'is contained in A,(x),
h,(x) is contained in (x—1/n, x+1/n) A I, and h,(x) has no boundary in I. For each
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point p € §" and cach ne N, let u,(p) = U {h,(x)| x € p} and let g,(p) = {ge S| pcg
and gcu,(p)}. It now follows (see [27)) that G, G,, ..., where for each n, G,
‘= {gdp)) pe S and i 2n}, is a development for a CCC, nonseparable Moore space
topology on S,

Claim. For each pe S” and neN, if ge 8'—CL (y,,(p)), then there exists m=n
such that no element of G,, intersects both g,(p) and g,,(¢). To see that this is true,
suppose ¢ ¢ CL(g,(p)- Then either (1) g&u,(p) or (2) ps£q. If (1), then there exists
x & ¢ such that x ¢ CL;(,(p))- Thus there exists m3>n such that if r € § and r <u,(p),
then x ¢ u,(r). Now, suppose that there exists re S’ such that g,() N g,(p) # @
and ¢,(0) N gulg) # O, Then, it follows that tcu,(p) and g<u,(f). But this is
a contradiction. Tt (2), then there exists xep such that x ¢ ¢. Thus there exists
m3zn such that if re $" and r<u,(g), then x ¢ u,(r). Now, suppose that there exists
te S such that g,(0 N g,(p) # @ and g, N g,.(9) # . Then, it follows that
tcu,(q) and p<u,(f). But, again this is a contradiction. It is easily seen that ths
“strengthened™ version of the three link property produced by the above claim ie
exactly what is needed in the construction technique of Theorem 1.1 to preserve
regularity. The desired result now follows.

Remarks on Example 1.3. Note, it follows from the work of B. Fitzpatrick
in [5] that $” is not completable. Hence, Example 1.3 yields perhaps the most simple
example yet of a separable, noncompletable Moore space. However, the techniques
used by the author in [33] will yield such examples that are easier to visualize.

Also, from the work of T. Przymusinski and F. Tall in [27], it follows that
if we had based the space .S” on a subset of the irrationals of card. = &, then it is
consistent that S’ be normal. Hence, it is consistent that there exists a normal,
CCC, nonseparable Moore space which can be embedded in a separable Moore
space.

Finally, the author does not know if there exists a Moore space with a sequence
of open covers satisfying the three link property but which has no such sequence
satisfying the stronger version of the property needed to ensure regularity in Ex-
ample 1.3. 1t would be helpful to know if continuously semi-metrizable or sub-
metrizable Moore gpaces have the “stronger” property.

Turorem 1.4, Euch submetrizable first countable (developable) T,-space S of
cardinality <¢ can be embedded in a first countable (developable) separable T -space.

Proof. Suppose that § is first countable. Let M denote a metric space an.d
let £ denote a one-to-one continuous map from S onto M. Now, M has cardf-
nality <¢, hence by [23] there exists a separable Moore space Y such that M is
embedded in Y. Furthermore, without loss of generality, let us assume that S ¥
=@, ¥Y=MuK where K= {k,k;,..} is countable and dense in ¥, and
M K =@. Now, denote by H,, H,, ... & development for Y. For each pe S,
let hy(f(p)), ho(F(p))... denote a nonincreasing local base for F(p) in Y such that
for each i, h(f(p))e H,. Then, for each pe S, let gi(p), g2(p), ... denote a non-
increasing local base for p in S such that for each i {fipeMlqge gi(p)}c:hi( f(p)).
3 — Fundamenta Mathematicae T, XCI
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Finally, let X = S U K and construct a base B for the desired topology on X as
follows: (1) if x € K, let {x} € B; and (2) if x € S, then for each , let b(x) € B, where
by = gix) vi{k;eK|jziand k; € h(f(p))}. 1t is easily seen that X is a first count-
able separable T,-space and that § is embedded in X.

If S is developable, let G,, G, ... denote a development for S. The same con-
struction as above with the added restriction that for cach p € S and each i, g,(p) € G,
will now yield a space X that is also developable.

Tueorem 1.5. Edch normal Moore space of cardinality <c can be embedded
in a separable developable T,-space.

Proof. In [35], the author and Phil Zenor show that each normal Moore
space of cardinality <c is submetrizable. Hence, the desired result follows from
Theorem 1.4.

In [25], L. I. Parovicenko showed that each compact T',-space of weight <
is the continuous image of SN—N. In [20], K. D. Magill showed that if § is
a T,-space which is the continuous image of fX—X for a locally compact
T,-space X, then there exists a T,-compactification a(X) of X such that a(X)—X
is homeomorphic to S. Based on these two results, S. P. Franklin and M. Rajago-
palan observed in [7] the very useful Theorem 1.6 given below. Theorems 1.7, 1.8,
and 1.9, are now obtained using the techniques which were established in [7].

TuEOREM 1.6 [7]. For each compact T,-space S of weight <N, there exists
a T, compactification a(N) of N such that «(N)—N is homeomorphic to S.

THEOREM 1.7. Bach compact first countable T,-space S of weight <8, can be
embedded in compact, first countable separable T,-space.

Proof. By Theorem 1.6, there exists a T, compactification Z(N) of N such
that Z(N)—N is homeomorphic to S. Hence, S is embedded in Z(N), Z(N) is
a compact T, -space, and N is an open, countable, dense subset of Z(). It remains
only to show that Z(X) is first countable. But each point p of Z(N) is a G,-set
in Z (W) since S is first countable and N is open in Z(N). Thus, since Z(N) is locally
compact, it follows that Z(N) is first countable.

TueoreMm 1.8. Each locally compact, first countable T,-space S of weight <8,
can be embedded in a locally compact, separable first countable T,-space.

Proof. Let X = Su {p} be the one-point T,-compactification of S. Then,
by Theorem 1.6, there exists a T, compactification Z(N) of N such that Z(N)—N
is homeomorphic to X. Thus, ¥ = Z(N)—{p’}, where p’ is the element of Z(N)
identified with p, is a locally compact, separable 7', -space. Furthermore, § is em-
bedded in ¥, and, as in the proof of Theorem 1.7, Y is first countable.

DEFINITION. A Souslin space is a nonseparable linearly ordered space which

satisfies the CCC. The existence of such space is known to be independent of the
usual axioms of set theory.

TaeOREM 1.9 (CH). Each Souslin space S can be embedded in a compact, separa-
ble first countable T,-space.
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Proof. Bach Souslin space S can be embedded in a compact Souslin space [19].
And, since X is first countable and perfectly normal, X has cardinality <c¢ [1].
Hence, with the assumption of the continuum hypothesis, the desired result now
follows from Theorem [.7.

Remark. Each connected Souslin space S can be embedded in a compact,
separable T,-space without the assumption of the continuum hypothesis. Each
such space S can be embedded in a compact, connected Souslin space X [19]. And,
from [[7], X has weight = density = x,.

Finally, Theorem 1.10 gives another approach to the embedding question.
1t follows from the work of J. Silver, F. Tall in [38], and T. Shinoda in [36] that,
under the assumption of Martin’s Axiom, each subset H of the x-axis with cardi-
nality < ¢ has the property that each of its subsets is an F, -set in the relative topology.
R. H. Bing has shown in [3] that the tangent disk topology defined on such a set H
yields a normal, separable Moore space S in which H is a discrete subset.

THEOREM [.10 (M. A.). Each T,-space X of cardinality <c¢ can be embedded
in a separable T-space.

Proof. If X has cardinality = m where 8,<m<¢, identify in a one-to-one
fashion the points of X with the points of the subset H of a Moore space S as above.
Let (Y,T) denote the space such that Y = S and u e Tif and only if u is open in the
space S and u n H, if nonempty, is identified with an open set in X. It is easily
seen that X is embedded in ¥ and that Y is separable. That ¥ is a T),-space follows
from the normality of S. -

Remark. Thus far, the author has been unable to use the technique involved
in Theorem 1.10 to embed first countable T,-spaces of cardinality <c in separable
first countable 7', -spaces. However, such a result seems resonable for spaces X with
cardinality = 8y <c.

Also, Teodor Przymusiriski has pointed out to the author that, under the
assumption of Martin’s Axiom, each completely regular T',-space of cardinality <c
can be embedded in I° This is true since, under Martin’s Axiom, if m<c, then
2m2™, Hence, X has weight <c.

2. Locally compact and psendo-compact Moore spaces.

THEOREM 2.1, Euch locally compact Moore space S of weight <8, can be em-
bedded in a locally compact, separable Moore space.

Proof. By the proof of Theorem 1.8, there exists a locally compact first count-
able Ty-space Y such that ¥ = S U N and N is open and dense in Y. It remains
only to show that Y is a Moore space. However, it follows directly from the work
of Ott in [24] that any such space is semi-metrizable. From [24], a semi-metric d
for S can be defined as follows: Denote by Gy, Gy, ... a development for S. For
each point p in S, let g,(p), ¢2(p), ... denote a nonincreasing local base for p in ¥
such that for each i, g,(p) N S € G; and g(p) N {1,2, ..., 1} = . Also for each i,
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let H; = {g/(p)| pe S} v {{j}l je N}. Now, define the function d from Yx ¥ into
the nonnegative real numbers such that if each of p and g is in Y, then:

(1) d(p, q) = glb. {l/n| n =1 or there is an element of H, which contains
both p and ¢} if {p,q}=S or {p,q}<=N;

(2) d(p,q)=glb. {I/n| n=1o0r geg, p)} if peS and ge N; or

(3 d(p,q) =glb. {Inf n=1or peglg} if geS and peN.

Thus, Y is a locally compact semi-metrizable 7',-space. And, R. W. Heath
shows in [10] that each such space is a Modre space. This completes the proof.

LeMMA 2.2. Each locally compact separable Moore space S can be embedded
in a locally compact separable Moore space X such that X = S U K where K is
countable and dense in X, S n K =@, and each point of K is isolated.

Proof. Let Gy, G,,... denote a development for S and for each pe S, let
g:1(P), g2(p), ... denote a nonincreasing local base for p such that for each i, g,(p)
e G, and CL{g(p)) is compact. Also, denote by (ky, k5, ..} a countable dense
subset of .S. Now, for each i and each j>i, let k;; denote an object that is not in
such that if (iy,jy) # (ip.ja) then k;j, # ki, Finally, let K = {k;| j=i} and
let X = S v K. Construct a base B for the desired topology on X as follows:

(1) if x e K, then for each n, let b,(x) € B where b,(x) = {x};

(2) if x € S, then for each n, let b,(x) € B where b,(x) = g,(x) v {k; il ke g,(x)
and jzmax{i,n}}.

It is easily seen that X is a regular first countable T,-space in which S is em-~
bedded and that K is a countable subset of X with the required properties. Further-
more, By, B, ..., where for each n, B, = {b,(x)| x € X and m>n}, is a development
for X.

To see that X is locally compact, recall that a closed subset H of a Moore space
is compact if and only if it is countably compact [21]. Hence, it is sufficient to show

that if x€ X, ne N, and H is an infinite subset of CL(b,(x)), then H has a limit
point.

Case 1, If x €K, then CL(b,(x)) = {x} and we are finished.

Case 2. If xe S and H ~ S is infinite, then H n S<CLg(g4(x)) and Hn S
has a limit point in S.

Case 3. If xe S and H n Sis finite, then A n K is infinite. But, by the con-
struction of X, for each j, {i| k;;e H » K} is at most finite. Thus, either (1) there
exists an infinite subset 7' of H n Kand an m e N such that if kyeT, then i =m,
or (2) there exists an infinite subset 7' of H n K such that if k,,;, and ky,;, are two
elements of T, then i; # #,. If (1), then k,, is a limit point of T'and, hence, of H.
If (2), then S(T) = {k; k;;e T for some je N} is an infinite subset of CLs(g,(%))
and, therefore, has a limit point y in . But y is also a limit point of 7. For suppose
that m € N, then b,(y) n S(T) is infinite. Also, since {k;| ki€ T and j<m} is finite,
b,(y) 0 T mwst be infinite. Hence y is a limit point of A. This completes the proof.
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LEMMA 2.3. Each locally compact, separable Moore space X which is zero-di-
mensional at each point of a countable dense subset can be densely embedded in a locally
compact, pseudo-compact Moore space Y.

Proof. In [30], the author noled that for completely regular Moore spaces,
pseudo-compactness is equivalent to Moore-closure. Also, in [30], it was observed
that a Moore space is Moore-closed if and only if each discrete collection of mutually
exclusive open sets in the space is finite. Hence, suppose X is not pseudo-compact,
then it is not Moore-closed. Thus, there exists an infinite discrete collection of
mutually exclusive open sets in X.

Let K = {py, Pz, .} denote a countable dense subset of X such that X is
sero-dimensional at cach point of K. For each i, let r(p;) denote an open set con-
taining p; such that r(p;) has no boundary in X and r(py) is compact. Denote by Yy
the collection of all sequences p = p,y, Pya» - of elements of K such that there
exists a discrete collection {u;(p), u,(p), ...} of open sets in X such that for each i,
pucup)er(p,) and u(p) has no boundary, and for each i>1, u(p) 0

i—-1

n(U r(pp) = @.
le\llow, denote by @ a well-ordering of ¥;. Define the subset Yy of ¥, as follows:
(1) the first element of Y4 is the first element p of ¥ and for each i, let h(p)
u‘((g;’il’ [ is an initial segment of Yy, then the first element of Y;—1Iis the ﬁ'rst
element ¢ = Py s Pmas - Of ¥;—I such that there exist a discrete collection
{hy(q), ha(g), ...} of open sets in X such that for each i, p,,; € hg)<uiq) and hfq)
has no boundary, and for each = p,;, Pya, - In 1,

{{h ), h{@)}| je N, ie N and k) nh {q) # 9}
is finite; and Y )
(3) if Y1 is a subset of ¥ satisfying (1) and (2) then either ¥; is Yy or ¥y
is an initial segment of Y7. o
Finally, let Gy, G, ... denote a development for X such that foF each i, if
g € Gy, then CL(g) is compact. Also, for each pe ¥; and for each i, let g«(p)
= {p} v (U {h(p)] j=i}). Then, let ¥ = YuX It now follows that for each n,
H, = G,u {g p) pe Y, and i>n}, is a base for the desired topology on Y. Further-
more, Hy, H,, ... is a development for the locally compact, pseudo-compact Moore
space Y. ) )
" To) verify that Y is a locally compact Moore space, consider the following:
Claim 1, I e G, for some n, then CLy(A)=X. For, if there were to eX}St
pe Yy such that pe CLy(h), then {h(p) jeN and A, (p) N h # Q} woulfl be in-
finite. But, since CLy(h) is compact and {i,(p)| j& N} is discrete in X, this would
involve a contradiction.
Claim 2. Tf x e X, then there exisis an 7 such that it xeheH,, thf:n CLy(h)cX.
For, if x ¢ r(p,) for je N, then x ¢ g(p) for pe ¥{ and ie N. And if xer(p;) for
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some je N, then x ¢ g,(p) for p¢ ¥y and ixj. Hence, there exists an » such that
if peheH,, then he G, and CLy(h)= X,

Claim 3, If p e ¥; and for some m, pe he H,, then h = g,(p) for some nzm
and g,(p) is compact. That h = g,(p) for some n=m is obvious. Also, by the con-
struction of Y7, it follows that g,(p) is closed in Y. Hence, since each infinite subset
of g,(p) has a limit point, ¢,(p) is compact.

To verify that Y is pseudo-compact, suppose that ¥ is not Moore-closed.
Then there exists an infinite discrete collection {r,, r,, ...} of mutually exclusive
open sets in ¥ such that for each 7, CLy(r;) is compact. Since K is dense in Y, for
each 7, let p,,eKnnr,. Let T = {Put>Pmzs -} Then there exists a sequence p
= Pnts Pu2, - of elements of T such that p e ¥;. But, either p €Yy, or there exists
g€ Yy such that {{r, i(9)}| i€ N, je N, p,; = po. and re N hy(g) # @} is infinite.
In either case, {r,, r,, ...} fails to be discrete. Thus, ¥'is Moore-closed and completely
regular, and therefore, is also pseudo-compact. ’

THEOREM 2.4. Each locally compact separable Moore space can be embedded
in a locally compact pseudo-compact Moore space.

Proof. The theorem follows immediately from Lemma 2.2 and Lemma 2.3.

Remark. The proof of Lemma 2.3 could be made much easier by requiring
that X have a countable dense subset each point of which is isolated. This weakened
version would still give Theorem 2.4. However, the author does not know if each
locally compact separable Moore space can be densely embedded in a locally com-
pact, pseudo-compact Moore space. Hence, as Lemma 2.3 in its stated form re-
presents the best result on this question, the complication seems warranted,

THEOREM 2.5. Each locally compact Moore space of weight <8, can be embedded
in a locally compact, pseudo-compact Moore space.

Proof. The theorem follows from Theorem 2.1 and Theorem 2.4.

THEOREM 2.6 (CH). Each locally compact Moore space of cardinality <c¢ can
be embedded in a locally compact, pseudo-compact Moore space.

3. The DCCC and separating open covers in Moore spaces.

THEOREM 3.1. For each cardinal a=No, there exists a DCCC, locally separable
Moore space of cardinality o°.

Proof. Suppose a is a cardinal > Kg. Let X denote a discrete space of cardin-
ality o. Denote by F the set of all countably infinite subsets of X. Now, denote by F’
a maximal subcollection of F such that each two members of F” have at most finitely
many elements in common. Note that since there exist first countable T,-spaces
of cardinality o« which have dense subspaces of cardinality « (for example X™0),
F’ can be so chosen as to have cardinality «™°. Thus, let ¥ = X U F’ and define
a base for the topology on Y as follows:

(D) if pe X, let {p} e B; and

@it p={x,x,,..}eF and ieN, let gyp) = {p}u {x| x;ep and
Jj=i}eB.
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1t is easily seen that Y is a regular, locally separable, first countable T',-space

£ cardinality of*. Also, X is a dense subset of ¥ such that each infinite subset of X
T4 k. . : - A - -

ﬁ'ls a limit point in Y. Hence, there does not exist an infinite discrete collectmp of

n;utu'tlly exclusive open sets in Y. Finally, the author has described a technique
© P

in [30], [31], and [32] which associates to each regular, locally separable DCCC,

ﬁrst colmtable T,-space such a space thatis,in addition, a Moore spfce. Pjurther—

more, the Moore space so associated to ¥ will also have cardinality o™°. This com-

A £l "

pletes the proof. i
DerINITION. The statement that an open cover H of the space S is a separating

open cover of S means that if p and ¢ are two points of S then there is an element

of H which contains p but not g.

In [22], J. Nagata introduced the concept of point-countable §epar'f1ting open
covers, i.e a separating open cover in which each point is contained in at molst
s, 1.e., & § ‘ :
counta’bly many elements of the cover. This concept has proved to be extremle )y
useful in the theory of metrization ([12], [13], [14], [15], and [161 for examp. et.
Tt follows from this work that if each Moore space could be shown_ to .havet Z po:;ﬂ :
countable separating open cover, then several well knowa};mzltr;zagwg eosrm m
i a unified st -e. Toward this goal, R. E. Hodel, during a
could be given a unified structure. ; ' . .
topology conference held at the University of Pittsburgh in December, 19173, rals:f
the question to the author as to whether each Moore space does he;)vle s;:{cn jﬁc;vacé
fing that es ¢ space which can be embedded in a separable Moo
Noting that each Moore space w : o Moore space
ivi eparati cover, the author, being aware of th
trivially has a countable separating open 8 - © resule
i i ] [ this pape as led to suspect that each Moore sp
in Sections 1 and 2 of this paper, was pe ' o o
cardinality <¢ might have such a cover. IndeedZ this is tllxe case and ttll.us St(l):;lt het
surprising result is used by the author and Phil Zenor 1n.[35] t;zsa bc;zv fhat cach
t ¢ (e ‘mal Moore space is metri ) ,
locally compact, locally connected, nor e, Honeren
the question still remains as to whether each Moore space of cardinality
a point-countable separating open cover. .
. Since the usual analogy to a countable structure for Moore spg{:es is z;ating
crete, the fact that cach Moore space of cardinality <c. las a countable S:p;iscrete
open’ cover suggests that each Moore space might, 1p factgh‘ha;;e Ii) [ dserete
separating open cover. However, Theorem 3.2 shows that this )

h cardinal o> c, there exists a DCCC, loc.ally separ::}l;lre
Mo wohich does not have a o-discrete separating opern Cover.

cardinal >¢. Consider the DCCC, locally separabéz
Mo provided by Theorem 3.1. Since 1" has the ]?f(i Y
3 Lna
a o-discrete separating open cover of ¥ would be counlat;le. }Eilsce, isllllp];)/os?et o
has a countable separating open cover H. Fc?r each po P fThus}is T
{ ne VY. If p and g are two points of ¥, then 1) # Q-

e o ¥ int f a countable set. But ¥ has
to-one function from ¥ into the set of all subsets of

fiction fr i rem follows.
cardinality >c¢ and this is a contradiction from which the theo

Tugorem 3.2. For eac
Moore space of cardinality o
Proof. Suppose o is
Moore space Y of cardinality o
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Remark, The author conjectures that the Moore space provided by Theorem

3.1 where o = sup{2’, 2%, ...} will not have a point countable separating open
Ccover.

4. Questions.

(1) Can each first countable T,-space of cardinality <c¢ be embedded in
a separable first countable T),-space?

(2) Can each Moore space of cardinality <c¢ be embedded in a separable
Moore space?

(3) If a Moore space can be embedded in a separable developable T,-space,
can it also be embedded in a separable Moore space?

(4) If local compactness is added to the hypothesis of (1) and (2), can positive
answers be obtained without the assumption of the continuum hypothesis?

(5) Does there exist a universal separable Moore space?

(6) Is it consistent that each normal Moore space of cardinality <, can be
embedded in a separable, normal Moore space?-

(7) Can each locally compact, separable Moore space of cardinality <¢ be
densely embedded in a pseudo-compact Moore space?

(8) Can each completable, separable Moore space of cardinality <¢ be em~
bedded in a More-closed space?

(9) Can each metric space of cardinality <c¢ be embedded in a Moore-closed
(pseudo-compact) Moore space?

(10) Does each Moore space have a point-countable separating open cover?

Acknowledgment. The author would like to thank Teodor Przymusitiski for
several helpful remarks during the final revision of this paper. This paper was
written while the author was visiting the Institute of Mathematics of the Polish

Academy of Sciences in Warsaw under exchange program between the U. S.
and Polish Academies.

Added in proof. The author now has a submetrizable counterexample to the question
raised in the remarks on Example 1.3. In addition: the answer to Question (2) is independent
of the usual axioms of set theory (E. van (ADouwen and T. Przymusifiski); the answer to
Question (9) is in the affirmative (E. van Douwen and G. M. Reed); and the answer to
Question (10) in the negative (D. K. Burke). -
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Metrization of Moore spaces and generalized manifolds
by

G. M. Reed (Athens, O.) and P. L. Zenor (Auburn, Ala.)

o

Abstract. Through the investigation of new mapping conditions, the authors are able to estab-
lish metrization theorems for certain locally compact, locally connected spaces. In particular, it
is shown that: () each normal locally compact, locally connected Moore space is metrizable;
and (2) each perfectly normal, subparacompact generalized manifold is metrizable.

The authors would like to dedicate these results to their teachers, Ben Fitz-
patrick and D. R. Traylor.

1. Introduction. In this paper, the authors introduce new mapping conditions
and investigate spaces which are the preimages of metric spaces undér maps satisfy-
ing these conditions. As a consequence of this investigation, significant progress
is made on two long outstanding questions in general topology concerning the
metrization of locally compact, locally connected spaces.

Tn 1937, F. B. Jones showed in [13] that under the assumption of the continuum
hypothesis each normal, separable Moore space (*) is metrizable. Since that time,
Jones’ “normal Moore $pace conjecture”, i.e., the conjecture that each normal
Moore space is metrizable, has been one of the most tantalizing open questions
in general topology. Furthermore, other than R. H. Bing’s result of 1951 in [6]
that each collectionwise normal Moore space is metrizable, the only positive results
on this particular problem have depended on various set theoretic assumptions.
In fact, the work of Bing in [6] and [7], R. W. Heath in [12], J. H. Silver, and
F. D. Tall in [24] and [25] has shown that the metrizability of normal, separable
Moore spaces, as well as several related conjectures, are actually independent of
set theory.

In Seclion 3, a positive resull concerning the metrization of normal, locally
compact Moore spaces is given which requires no set theoretic assumptions. B. Fitz-
patrick and D. R. Traylor showed in [10] that if there exists a normal, separable,
nonmetrizable Moore space, then there exists one that is also locally compact.
Also, W. G. Fleissner has recently shown in [11] that it is consistent that each
normal, locally compact Moore space be metrizable. Thus, it is now known that

(*) A Moore space is a developable Ty-space. .
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