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Evidently, an arcwise continuum Y consisting of a compact subarc of 4 and
finitely many 4, is a retract of X (i.e. ¥ consists of finitely many “sin(1/x) circles”
each intersecting a common subarc of 4 in an arc which contains their respective

Jimit intervals). The sin(1/x) circle has the fixed point property [1, p. 123] and

a tedious but elementary argument can be used to show that ¥ has the fixed point
property. If D is a dendrite in X such that Dn ¥ consists of a single point, then
D U ¥ must have the fixed point property [1, p. 121]. Hence retracts of X which
are obtained from Y in this manner also have the fixed point property and this
completes (iii).

ProbLEM 1. The following question posed in [4] still remains open. Namely,
can a planar example be found?

ProsLEM 2. In [3] J. M. Eysko gives an example of a contractible continuum
of dimension 3 which does not have the fixed point property for homeomorphisms.
Does there exist a simply connected l-dimensional continuum which does not
have the fixed point property with respect to homeomorphisms?
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Rings in which every proper right ideal is maximal
by

Jiang Luh (Raleigh, N.C.)

Abstract. We study the structure of rings in which every proper right ideal is maximal. We
gencralize some results of Perticani for non-commutative rings.

Recently, Perticani [2] has studied the structure of commutative rings with
a unit element in which every proper ideal is maximal. In this paper we shall follow
his line to discuss some generalizations for non-commutative rings.

A right ideal (or an ideal) of a ring R is said to be proper if it is different from (0)
and R. Throughout this paper R will denote a ring (not necessarily commutative)
with R? = R s (0) in which every proper right ideal is maximal. We shall prove
that R must be one and only one of the following types:

(1) R is a division ring;

(2) R is isomorphic to a 2x2 matrix ring over a division ring;

(3) R is isomorphic to the direct sum of two division rings;

(4) R is a left pseudo field over a division ring in the sense of Thierrin [3];

(5) Ris a right pseudo field over a Galois field GF(p) in the sense of Thierrin;

(6) R is a local ring (i.e., with unit and unique maximal ideal I) such that R/T
is a division ring and I* = (0). :

« Finally we shall show that in a ring 4 with A% = A4 # (0), every proper right
ideal is almost maximal if and only if every proper right ideal is maximal. Thus,
this paper also provides a further classification for rings in which every proper
right ideal is almost maximal given by Koh [, Prop. 5.28].

‘We begin with

. LemMA 1. R has at most two proper ideals.

Proof. Suppose that I, J, K are distinct proper ideals in R. Then I, J, K are
maximal right ideals and I+J = R. 1t K~ I # (0), then K n I would be a maximal
right ideal contained properly in K, a contradiction. Hence K n I = (0) and KI
= (0). Similarly, KJ = (0). It follows that KR = K(I+J)SKI+KJ = (0) and
K< R, the left annihilator of R. Since R' # R is an ideal containing K, R* = K.
Using a 'similar argument, we can show that R'= I This contradicts the fact
that I # K.
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THEOREM 1. If R has no proper ideals, then either R is a division ring or R is
isomorphic to-a 2x2 matrix ring over a division ring.

- Proof. Clearly, R is right artinian. By the Wedderburn—Artin Theorem, R is
isomorphic to an nxn matrix ring D, over a division ring D. For n=3, D, does
have proper right ideals which are not maximal. Hence # must be 1 or 2.

THEOREM 2. If R has exactly two proper ideals, then R is isomorphic to a direct
sum of two division rings.

Proof. Let I and J be the two proper ideals in R. Clearly, I+J = R and I A J
= (0), so IJ = JI = (0). Consequently, R = R* = ([+J)* = I*+J2. Since I* # (0)
is an ideal contained in I, I? = 1. We claim now that I is a division ring. To see
this, it suffices to show that I considered as a ring has no proper right ideals. In
fact, if I, is a non-zero right ideal in I, then since /,R = L+Jy = L], I, is
a right:ideal in R and hence I, = I.. Thus 7 is a division ring. Similarly, J'isa di-
vision .ring. R

LeMMA 2. If R has exactly one proper ideal, namely I, then I

= (0) and R/ is
a division ring. . ‘

Proof. Consider the left annihilator 7* of I. Suppose I' = (0). Then, for any
non-zero element ael, al # (0) is a right ideal contained in 7 and hence af = 1.
This shows that the ring I has no proper right ideals and 7 is a division ring. Let e be
the unit of / and let ¢: R—I be the mapping defined by ¢(r) = re for every r e R.
It is easy to see that ¢ is a ring homomorphism of R onto I. Since ¢(e) = e # 0
and e e [, the kernel X of ¢ does not contain . But J is the only proper ideal in R
and K # R, s0 K = (0). That is, ¢ is an isomorphism and R & I is a division ring,
a contradiction. Therefore, I' # (0). Since I' is an ideal in R and every non-zero
ideal contains I, I'2I Thus I? = (0). Since R/I has no proper right ideals and
(RI1)* = R/I, R/I is a division ring. This completes the proof.

Following Thierrin [3], a ring 4 is said to be right bipotent if ad = a*A for
every ae.4. Let D be a division ring and 4 = Dx D, the Cartesian product of D
and itself. Define addition and multiplication in A by the following way:

“ (@, D)+ (e, d) = (@+c, b+d),
(a,0)(c, d) = (ac, ad) .

Then A4 forms a right bipotent ring. A ring which is isomorphic to such a ring A
is called a right pseudo-field over D. We note that

= {5 3]

a subring of the 2x2 matrix ring over D.
We can define left bipotent rings and left pseudo-fields over a division ring
by a similar manner and also we can see that a ring is a left pseudo-field over

a, beD},

icm

=
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a- division ring D if and only if it is isomorphic to the matrix ring

& 0]

Thierrin has shown that a subdirect irreducible ring is right (left) bipotent
if and only if it is a zero ring (i.e., its square is zero), a division ring, or isomorphic
t'p a right (left) pseudo-field over a division ring.

THEOREM 3. If R has exactly one proper ideal, namely I, and if RI = (0), then
R is isomorphic to a left pseudo-field over a division ring.

- Proof. We note first that R is subdirectly irreducible. In view of the Thierrin’s
result, we need only to show that R is a left bipotent ring. Let a € R. If a € ], then
Ra = Ra® = (0). Now assume a ¢ I. By Lemma 2, ¢° ¢ I and there is be R such
that a—ba* € I. Thus for any reR, ra—rba® = r(a—ba*) € RI = (0) and hence
ra = rba* € Ra*. This shows that Rz = Ra® and R is left bipotent.

THEOREM 4. If R has exactly one proper ideal, namely I, and if IR = (0), then
R is isomorphic to a right pseudo-field over a Galois field GF(p).

Proof. Using a similar argument in the proof of Theorem 3, we can show
that R is isomorphic to a right pseudo-field over a division ring D. We may as-

S
-8 e}

is a proper ideal in R. For every additive subgroup Dy of D,

Iy = {[g g}‘ beDo}SI

is a right ideal contained in I. Since R has no non-zero right ideals prgperl.y con-
tained in J, the additive group D must be simple. Thus D must be a Galois field
GF(p), where p is a prime number.

a,beD}.

a, be D} .
Then

o 0 .
Remark. By considering the matrix ring l a, be D}, where D is

a
56
a division ring, we can see easily that every left pseudo-field over a division ring
satisfies the hypothesis in Theorem 3. Likewise every right pseudo-field over
a Galois field GF(p) satisfies the hypothesis of Theorem 4.

THEOREM 5. If R has exactly one proper ideal, namely I, and if IR # (0), RI # (0),
then R has a unit element, I is the only proper right ideal in R, and I = R{I as additive
groups. Moreover, for ae I, ¥ = r+Ie R/I if we define aoF = ar, then I is a one-
dimensional right vector space over the division ring R/I.
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Proof. Let re R\I. Since R/I is a division ring, rRg 1. We claim first that
(rR)? # (0). For if (rR)* = (0) then (rR)", the right annihilator of rR, is an ideal
containing rR. This would imply that (rR)" = R and rR = rR* = (0), a contra-
diction. Therefore, (rR)* is a non-zero right ideal contained in rR.

Next we shall show that ¥R = R. Suppose rR # R. Let J = rR. Then J* = J
and there exists b € J such that bJ = J. Thus there is e € J with be = b. It follows
that b(e—e*) =0 and e—e” e {b}" nJ. Since {b}" nJ is a right ideal contained
in J, {b}" N J = (0). Therefore, e—e* = 0, eR = J, and R = eR+1. Now, consider
the set S = {ex—x| xeI}. S is a right ideal contained in L. If S # (0), then S = I
and el = eS = (0). It would follow that ee I' = I and J = eR<], a contradiction.
Hence S = (0) and ex = x for every x e I Since R = eR+1, e is a left unit of R.
It implies that J = eR = R, again a contradiction. Therefore rR = R for every
re R\J, and I is the only proper right ideal in R.

Now we let re R\I Since rR = R, there exists g € R such that rg = r, so
r(g—g*) = 0 and g—g* e {r}". We claim that {r}" = 0. Suppose {r}" # 0. If {r}'cr
then {r}" = I and reI' = I, a contradiction. Hence {r}"¢1 and R = {r}"+1. This
implies that R = rR = r({r}"+I) = rI<l, again a contradiction. Therefore {r}"
=(0) and g = ¢*.

Let U= (gx—x| xeR}. Since rU = (0), U<{r}" and hence U = (0). Thus
gx = x for every xeR, i.e., g is a left unit in R. :

Let S = {xg—x| x € R}. Since g is a left unit, SR = (0) and S is an ideal in R.
Note that g+17 is the unit of the division ring R/I, so xg—x eI for every x e R.
Hence ScI If S # (0), then § =1 and IR = SR = (0), a contradiction. Thus,
S = (0), i.e., xg = x for every x € R. Therefore g is a unit element of R.

For ael and ¥ = r+Ie R/I, we define aoF = ar. We can see readily that
I is a right vector space over the division ring R/I. That I is one dimensional is
obvious since every subspace of I is a right ideal contained in /. Since I and R/I
both are one dimensional vector spaces over R/I, I =~ R/I as additive groups.

From Lemma 2 and Theorem 5, we can see that if R has exactly one proper
ideal I, and if IR % (0), RI # (0), then R has a unit element and the sequence

0515 RERII>0

is exact, where j is the injection mapping, = is the canonical mapping, I* = (0),
R/Ijs a division ring and I is one dimensional right vector space over R/J (described
as in Theorem 5).

By considering the converse of this result we have

THEOREM 6. Let 0—I->A->D—0 be an exact sequence of rings such that
M I* =),

(2) D is a division ring,

(3) j(D) is a one-dimensional right vector space over D by defining j(a) o d = j(a)r
Jor every ael and de D, where r is an element in A with n(r) = d.
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Then A has only one proper right ideal, namely J(D), and j(I)A # (0). Moréover,
if Aj(I) # (0), then A has a unit element.

Proof. For convenience, we identify I and j(I). By (2), I is a maximal left
ideal in 4 and by (3) 14 # (0). Let e 4 with w(e) = 1, the unit element in D.
Then, for every x€l, x = xol = xomn(e) = xee de, so I<Ae. Moreover, since
n(e?) = m(e)* =1 = 1, e*¢ I and hence Ae # I. By the maximality of I, we
have Ae = A. Now suppose there were a proper ideal J in 4 other than I. Then
I'nJ would be a subspace of the right vector space I over D and I n J s I Since
I is one-dimensional, I nJ = (0) and 4 = I®J as right 4-modules. Let e = f+g¢
where fel, gel. Since fg, gfelnJ, fgy = gf =0 and €* = (f+g)* = f*+g°
= g% Thus

f=fel=fon(e)=fe=f(f+g)=0.

Hence ¢ = g. Since ¢*—e = g*—gelnJ =(0), ¢ =e. It would follow that
I =lJe = Ig<J, a contradiction. Thus, I is the only proper ideal in 4.
The last part of the theorem is an immediate consequence of Theorem 5.

Koh recently classified the rings A in which every proper right ideal is almost
maximal. He proved that if 4% = 4 # (0) then 4 must be one of the following
types:

(i) 4 is a division ring.

(if) The Jacobson radical J(4) is the only proper right ideal of 4 and A/J(4)
is a division ring.

(iii) 4 has unity element and A4 is a direct sum of two minimal right ideals
(see {1, Prop. 5.28]). o

We should note that, for an arbitrary ring, a maximal right ideal need not
be almost maximal and vice versa. Now by examining all rings of type (i), (i),
or (iii), we can readily see that in each of these rings A every proper right ideal
is maximal, and hence, particularly, each non-zero almost maximal right ideal
is maximal. Moreover, if (0) is an almost maximal right ideal in A4, then A4 is a di-
vision ring (see [1, Prop. 5.26]) and (0) is again a maximal right ideal in 4. Hence,
we have

TueoreM 7. Let 4 be a ring with A* = A # (0) such thar every proper right
ideal is almost maximal. Then a right ideal in A is almost maximal if and only if it
is maximal.

In conclusion, we shall prove the following.
TugoreM 8. Let A be a ring with A* = A # (0). Then the following two con-
ditions are equivalent:
(1) Every proper right ideal in A is almost maximal;
(1) Every proper right ideal in A is maximal.
Proof. That (I) implies (IT) follows from Theorem 7.
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- To show that (IT) implies (I), it suffices to show that any ring satisfying ‘(IT) is

one of the types (i), (i), and (jii). According to Lemm’m 1, 4 has at most"two
proper ideals. -

Case 1. If 4 has no proper ideals, then, by Theorem 1, R is either a division
ring or is isomorphic to a 2 x 2 matrix ring over a division ring. Thus A is of: type
@) or (iii).

Case 2. If 4 has exactly one proper ideal, namiely /, then by Lemma 2, I (())
and R/I is a division ring. Thus I is the Jacobson radical of R. From Theorems 3, 4,
and 5, we can see easily that Iis the only proper right ideal in 4, so 4 is of type (11)

Case 3. If 4 has two proper ideals, then, by Theorem 2, A is isomor phlc to
a direct sum of two division rings, so 4 is of type (iii).
This completes the proof.

As we pointed out earlier, in view of Theorem 8 our results provide a furthel

classification for the rings studied by Koh.
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On subspaces of separable first countable 7,-spaces
by

G. M. Reed (Athens, Ohio)

Abstract, Tt is the purpose of this paper to provide conditions under which certain first count-
able Ti-spaces (in particular, Moore spaces) of cardinality < ¢ can be embedded in spaces of the
same type which are also separable. Related results deal with pseudo-compactness and pomt—
countable separating open covers.

In this paper the author considers the following questions: (1) Can each first
countable T,-space (Moore space) of cardinality <c be embedded in a separable
first countable T -space (Moore space)? (2) Can each locally compact Moore space
of cardinality <c¢ be embedded in a separable Moore space? (3) Can each locally
compact, separable Moore space be embedded in a pseudo-compact Moore space?
(4) Does each Moore space with the DCCC have cardinality <c¢? (5) Does each
Moore space have a point-countable separating open cover?

In Section 1, significant partial answers of a positive nature are given to Ques-
tion (1) from which it follows that the most obvious candidates for counter ex-
amples (i.e., certain CCC, nonseparable spaces, in particular Souslin spaces) will
not suffice. In Section 2, Questions (2) and (3) are given positive answers. The
answer to Question (2) is, however, obtained under the assumption of the con-
tinuum hypothesis, In Section 3, Question (4) is answered in the negative and signifi-
cant progress is made on Question (5).

.

(1) Motivation. Duung Professor Steve Armentrout’s talk at the 1967 Arizona
State University Topology Conference, the question was raised as to whether there
exists a separable, noncompletable Moore space. In 1970, J. Ott in [23] under the
assumpton of the continuum hypothesis, embedded a non-completable Moore
space due to M. E. Rudin in a separable Moore space. Furthermore, Ott obtained
the rather remarkable result that there exists a complete separable Moore space
which contains a copy of every metric space of cardinality <c. And, in 1972, the
author in [29] constructed a noncompletable Moore space which could be em-
bedded in a separable Moore space without any set-theoretic assumptions other
than the axiom of choice. Thus, the original question was answered completely.
However, in attempting to answer this question, Ott raised the seemingly more
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