Mappings covered by products and pinched products
by

Louis F. McAuley * (Binghamton, N. Y.)

Abstract. We say that a mapping f: X=>Y is covered by a product or (4, C) covered iff there
is a space 4 and a mapping ce C (a class of mappings) such that ¢: 4 x V=X and ¢(4, y) = f(y).
The fibers of f are (4, C) covered iff there is a (non-empty) space Ky of mappings m: A=f"1(y)
with m e C. We say that f'is fiber (4, C) covered and completely regular iff (1) the fibers of fare
covered by (4, C), (2) if X denotes the collection of all such spaces Ky, then K* is a complete metric
space; and (3) for y € ¥ and ¢>-0, there exists 60 such that for z& N5(y) and g € Ky, there is h € K,
and a mapping szy:f~1(z)=="1(y) which is a homeomorphism on a dense set 0,C. f~(z) open relative
to f~I(z) such that (a) Szy MOVes No point as much as &, (b) Szyh = g, and (c) for any meKy, szym
(where sty is defined on s,,(0;) and Szym is defined on m™(523(0))) extends to a mapping we k.
We say that f: X==¥ is fiber (4, C) covered and LC" completely regular iff in addition to the above,
each K is LC". A typical theorem follows:

THEOREM. All spaces are metric. Suppose that f: X==Y is fiber (A, C) covered and LC" completely
regular and that dim 'Y = n+1. Then fis locally (4, C) covered by A Y. If Yis contractible, sepa-
rable, and loeally compact, then f is (A4, C) covered by AX Y. Theorems of this kind are used to study

" mappings fi X={0, 1] such that (a) f“l(é) is an n-sphere S" with a k-sphere shrunk to a point,
B) fHx) = S, 0 x< 35 and () f~X(x) is a spherical modification of 8" of type k1. Under certain
conditions, X e an (n--1)-manifold and f is (4, C) covered by Ax I where A = §?~(k+1)y fet1

1. Introduction. There are a number of quite interesting (and, obviously,
important) theorems in differential topology. Some of these characterize spheres,
but their proofs use “smoothness” of both the manifold and the mapping. For
example, the theorem of Reeb [16] (1952) and Milnor [11] (1956) later generalized
by Milnor [12] (1959) and Rosen [17] (1960) is such a characterization.

TurorEM | (Reeb-Milnor—Rosen). Suppose that M is smooth (C*) compact
manifold and that f is a smooth real valued fumction on M with exactly two critical
points (degenerate or not). Then M is homeomorphic to a sphere.

This theorem has a topological version which we have in [9]. It is as follows.

THEOREM 2 (McAuley). Suppose that M is a contimum (compact connected
metric space) and that f: M=-I = [0,1] is a (continuous) mapping. Furthermore,
STHO) = a (point), F1(1) = b (point), fI(M—{a,b}) is completely regular, and
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S is homeomorphic to an n-sphere 8" for each xe(0,1). Then M is homeo-
morphic to S**1.

The condition that £~*(x) be an n-sphere S" is quite natural in view of the
following theorem from differential topology. C

TaroreM 3. If f: M—N is a smooth mapping between smooth manifolds of di-
mensions m and n, respectively, where mzn and if y e N is a regular value, then the
set f71()S M is a smooth manifold of dimension m—n.

One wonders just what are the topological properties of differential mappings?
Also, under what reasonable (topological) conditions is a mapping differential?
In the case of non-constant analytic mappings from the complex plane fo the
complex plane, the properties of openness and lightness actually characterize them.
Whyburn [24] and Stoilow [19] have shown that if f: M2=>N? is a light open map-
ping between 2-manifolds, then f is topologically equivalent to an analytic mapping.
Several researchers, Church, in particular, have made considerable progress in
obtaining topological properties of differentiable mappings. For references and
results, see [2].

At the topology conference held at the University of Oklahoma, March, 1972,
I gave a talk containing outlines of proofs of theorems for which Theorems 2 and 4
(below) are special cases. The manuscript for that talk has appeared in the Pro-
ceedings, Topology Conference, University of Oklahoma, 1972.

THEOREM 4 (McAuley). Suppose that M is a contimuum and that 1 M=[0,1]
is a mapping such that (1) f~1(0) = a(point), (2) £~1(1) = b (point), (3) Jae))
=@ =a figure eight (two circles with exactly one common point), (4) for
O<x<f or F<x<l, f71x) & a circle, (5) for T<x<}, f7Ux) = a pair of disjoint
circles, and (6) for O<x<l, there is a “triangulation” of f~Yx) which contains
exactly four 1-simplexes (simple arcs) and [ is completely regular with respect to
the collection of all 1-simplexes (defined below). Then M = Torus or Klein bottle.

Tt is useful to define the concept of a mapping covered by a product. Tn fact;
this concept and others given here seem to provide an approach to the study of
certain kinds of mappings which will be given elsewhere.

2. Mappings covered by products. We say that a mapping f: X=Y is covered

by a product iff there exists a space 4 and a mapping ¢: A x Y= X such that ¢(4, y)
“=f"1(y) for each ye Y. We also say that f'is covered by (A, ¢).

If the closed (or quasi-compact) mapping f: X=>Y is covered by (4, ¢), then
let G denote the collection of all ¢ !(x) for each x e X. Thus, G is an upper semi-
continuous (usc) decomposition of 4 x ¥ and the decomposition space Ax Y/G is
a pinched product (§ 7) homeomorphic to X,

QuesTioN. What mappings are covered by products or locally covered by
products? Clearly, mappings from products and certain fiber spaces are in this
category.
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3. Mappings whose fibers are covered by a fiber 4 with respect to 2 class C o~
mappings. Suppose that f: X = Yisa mapping. We say that f~1(y), ye ¥, is a fiber
even though (f, X, ¥) may not be a fiber space. It may be true that any two fibers
are homeomorphic or homotopically equivalent. We say that the fibers of f are
covered by (4, C) iff 4 is a space (fiber) and C is a class of mappings such that for:
each y e Y, there is a non-empty space K, of mappings of 4 onto £ “4(») each be-
longing to the class C. (The class ¢ may be, for example, the class of all homeo-
morphisms, all continuous mappings, all mappings which are homeomorphisms.
on a dense open subset of 4, all finite-to-one mappings, etc.)

We also say that the fibers of f are locally covered by (A, C) iff for each yet
there is an open set U, in Y, ye U,, such that f|f U, is covered by 4,cy

4. Mappings which are fiber (4, C) covered and LC" completely regular. Sup-
pose that /i X=>Y. We say that f is fiber (4, C) covered and completely regular iff

(1) the fibers of f are covered by (4, C) (or fis fiber (4, C) covered), i.e., for
each y e ¥, there is a non-empty space K, of mappings (in the class C) of (4, )
onto f~1(p),

(2) if K denotes the collection of all such spaces K (specified by f being fiber
(4, C) covered), then X* (the union of the elements of K) is a complete metric
space (for details, see [7]), and

(3) for each ye Y and &3>0, there exists 6>0 such that for .z e Ny(y) and
g € Ky, lhere is /1 € K, and a mapping S22 S " X2)=f "1(3) which is a homeomorphism
on a dense set 0,(f~*(2)) and open relative to £~ !(z) such that (a) s,, moves no
point as much as g, (b) 5,4 = g, and (c) for any m & K,, s3,'m (where s3," is defined
on s,,(0,) and s;'m is defined on m™(s,,(0,))) extends (uniquely) to a mapping
which belongs to X,, and (d) for each eek,, syee K,

We say that f: X=>Y is fiber (4, C) covered and LC" completely regular iff (1)
Sis fiber (4, C) covered and completely regular (as above) and (2) each K, is LC"
(locally connected in dimension 7 in the homotopy sense).

5. Certain fiber (4, C) covered and LC" completely regular mappings are
(4, ¢) covered. The theorem below gives conditions under which certain fiber 4,C)
covered maps are locally and globally covered by a product.

TukorEM 5. Suppose that f: X==Y is fiber (4, C) covered and LC" completely
regular and that ¥ has dimension n+1. Then f is locally (A, C) covered by the product
AX Y. Il Y is contractible, locally compact, and separable, then fis (A, C) covered
by the product Ax Y.

Proof. Since f'is fiber (4, C) covered and LC" completely regular, there exist
space K, of mappings satisfying the definitions above. The union X* of the col-
lection K of the various spaces K, ye ¥, is a complete metric space (hypothesis).

Now, K is lower semi-continuous (Isc) in the sense that if y,e ¥ and {y:}
—)y € Y, then each element g € K, is the limit of a sequence {g;} where g, K.
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For ¢>0, there exists 6>0 such that if y;e N(y), then there exists he K, and
a mapping g,,: f " (y)=f"1(y) (with certain properties including that no point
is moved more than &) such that g,,,i = g. Thus, g(k, g)<e where g is a complete
metric for K* Using the above and the fact that {3;}—y, it should be apparent
that X is Isc.

Next; we show that K is equi-LC". Suppose that £>0 and g € K,. We must
exhibit 6>0 such that for each 7, 0<¢<n and any mapping r: S*—=N;(g) N K,
then » can be extended to R: I'**—Ny(g) n K, where I'"* is a (1+1)-cell whose
boundary is S°.

Since K, is LC", there is a &,>0 such that each mapping r of ', 0<z¢<n, into
K, n N;(g9) can be extended to a mapping R of I'*1into K, n Nj,,(g). From the
fact that f is fiber (4, C) covered and LC" completely regular, there is o>0 such
that if o(z, ¥)<a (¢ also denoting a metric for Y), there is /1 € K, and a mapping
S50 £7H(@)=>f"(3) which is a homeomorphism on a dense set O,cf !(z) open
relative to £ 7!(z) such that (a) s5,, moves no point as much as 43;, (b) Syl =g,
and (c) for any m e K, s;ylm (where s;yl is defined on s,,(0,) and s;ylm is defined
on m~*(s,,(0,))) can be extended (uniquely) to a mapping belonging to K.

Choose 6, 0<d<min(4d,, %), such that if K, 0 Ny(z) # O, then o(z, y)<o.
Now, let ¢: S'= K, n Ny(g). We can define a mapping H,, of K, into K, as follows:
For e in K, H.,(e) = s,ye. Clearly, H,|(K, n Nx(g)) maps K, n Ny(g) into K, n
N Ny, (g). Furthermore, r = [H,,|@(S)]¢ maps S' into K, n N; (g) and can be
extended to a mapping R of I'*! into K, n N,,(g).

There is a mapping H,, of K, into K, defined as follows: For m € K, let H,.(m)
be defined as the extension of s;,'m since s;"'m is defined on m™~(s,,(0,)) and s5,'m
extends to an element of K. Thus, H,,(m) e K,. Now, ¢ = [H_|K, 0 N,2(9)]1R
maps I'** into K, n N,(g) and agrees with ¢ on S' the boundary of I‘**. Con-
sequently, X is equi-LC".

Now, let F: K*=Y be the function defined by F(g) = x iff g€ K,. The col-
lection of point inverses under F is the collection X which is lsc and equi-LC".
Also, K* is a complete metric space. Given x € ¥, let m(x) be an element of K.
By Michael’s Selection Theorem [10], there is an open set Uc Y, x e U, such that
there is an extension of m to U (denote it by M) with the property that M (i) & K (i)
for we U. It is easy to see that there is a continuous mapping c: 4 x U=f"1(U)
such that ¢(4,u) = f~'(u) and ¢/(4, v) = M) e K,. Hence, f is locally (4, C)
covered by the product Ax Y. If Y is contractible, then it follows by using a standard
‘Theorem ([22], p. 53) that f'is (4, C) covered by the product 4x Y provided Y is
locally compact and separable.

6. Spherical modifications via upper semi-continuous decompositions. We shall
-describe an usc spherical modification of type k. Although the term spherical modifi-
cation of type k is used in the literature (cf. A. H. Wallace, Differential Topology,
First Steps, Benjamin, 1968), our method involves upper semi-continuous decom-
positions instead of surgery.
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In some of the following theorems
n-manifold 4 = "~ k+1) y ght1
cell. Let £ = §"~%+2) po

(proofs, in particular), we shall use a special
> @ product of an (n— (k+- 1))-sphere with a (k+ 1)-
an equator of S"" %+ Notice that

Su*(/i"‘[) xlk-l-l = ((Slx—(k+1)__E)X]k+l) v (Ex1k+1)

Now, ("~ "+ By [k i e union of two disjoint n-cells with a part of their
boundaries missing, namely, that identified in ExJ**', Now, extend this identifi-
cation to the whole boundary of each n-cell in a canonical manner. The result is
an n-sphere S". Note that this is obtained by a mapping g: 4=S5". Note that this
is obtained by a mapping g: A=S" which is at most 2—1.

For fixed ae £ = N =R Ll G VR (@, I**") and g(a oIkt 1y
where 0/*"! is denoted by S*, a k-sphere. Consider the decomposition opaée S'IG,
where the only non-degenerate element of the usc decomposition G, of " is'g(a S")ﬂ
that is, G, identifies a k-sphere of $"to a point. We shall say that /G, is a /C-])fl’;C/TGC}
n-sphere. ‘

Return to 4 = ((S""“"“’—-E)x]"“) W (ExI*?). As before, 4 consists of
two n-cells, Z, and Z,, disjoint except for that part of their boundaries identified
in ExI**!, Consider the point ae F and a small e-neighborhood N,(a) of a in
SPTERD) Now, Ny(@)x 17 s n-cell with part of its boundary missi;g, namely,
ANYa)y < ¥ Next, consider g}(A—NJa)xI"“). That is, extend the identification
of the boundaries of Z, and Z, as described earlier except for that part of the
boundaries of Z, and Z, in Ny(a)x I**1, Let Gy, denote the usc decomposition
of' 4 such that the only non-degenerate elements of G,, are (i) those sets g7 g (x)
which are non-degenerate for xeA—NExI"“, (D) the sets (x, aI**1) for x
€ Nda), and (iii) for x € IN,(a), those sets 97'g(x)x 8I** 1. Thus, 4/G,, is what
we call an usc spherical modification (of S") of type k. It is, of course, an n’—manifold
without boundary. If k = 0 and n = 2, then 4/G,, is a torus or 2-sphere with
a 2-handle attached.

Usually, a spherical modification (of §") of type k is obtained by taking
a (regular) neighborhood N of a (canonical) k-sphere S* in S", Thus, N o Skx Jn—*
and N = S x$""* L Note that S*x§"~*~1 is the boundary of I¥*1x gr-k-t;
Consequently, $"—N and %" x$"%=1 have homeomorphic boundaries and
therefore can be “joined” by identifying their boundaries. The result is an 7-mani-
fold M without boundary. Hence, we have changed §" to M by a spherical modifi-
cation of type k. The same result can be achieved by using the upper semi-continu-
ous decomposition described above. We shall give a more detailed description below
and describe what we call a continuous spherical modification of type k.

7. Pinched products. Cartesian products and other fiberings are especially nice
and useful, Spaces which are almost products are more abundant than the product
spaces,

Suppose that each of X and Yis a topological space. Let Xx ¥ denote the
usual cartesian product with its topology. Also, suppose that G is an upper semi-
5 — Fundamenta Mathematicae, T. XCI '
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continuous (usc) decomposition of X'x ¥ such that each non-degenerate element
g of G lies in (X, y) for some y e Y. That is, G decomposes Xx ¥ on the “levels”
over Y. We call the decomposition space a pinched product. Thus, a space S is
a pinched product iff there is a quasi-compact mapping [24] @ of X'x ¥ onto S such
that for each se S, (X,y)=2¢~'(s) for some yeY. Thus, if G = {p™'(s)] se S},
then G is an usc decomposition of X'x ¥ and the decomposition space X x Y/G is
homeomorphic to §. We say that a pinched product is sinple iff for each ye Y,
(X, y) contains at most one non-degenerate element of G. In many interesting cases,
the collection H of non-degenerate elements is finite,

In this paper, we make use of (I) X xJ where X is a compact n-manifold,
I=10,1], and (2) simple pinched products X xJ/G. Furthermore, in our appli-
cations, X x I/G is a compact (n+1)-manifold. Non-irivial answers to the following
questions would be of interest:

QuestioN. Under what conditions is the simple pinched product of compact
manifolds a manifold?

8. A special case. Pinched products of certain manifolds with the interval
I'=10,1] and continuous. spherical modifications of type k. In applications, we
encountered the following kind of pinched product of spheres and cells such that the
pinched product is also a manifold.

Consider 4 = §"**0x **1 —the product of an n—(k+1) sphere with
a k+1 cell. Now, consider the product 4 x J and the following usc decomposition G
of Ax1.

Consider an equator (fixed for all that follows) E = S"~*+2) of gn=Gk+D),
Notice (as before) that 4 consists of two n-cells Z, and Z, which are disjoint except
for that part of their boundaries identified in Ex I**L, For 0 x <%, consider (4, x)
and extend this identification of (9Z; n (ExI**?), x) with (9Z, n (ExI*™Y), x)
in a canonical manner to all of (8Z, L 0Z,, x). We use the “same” identification e
for each x. The various pairs of points identified are non-degenerate elements of
the usc decomposition G.

For x4, consider a fixed a-e E. Now, identify (3Z,, 1) with (8Z,, {) as above.
Next, identify ((a,0I**"),%) to a point p. All pairs of points identified in
(0Z, v 8Z,—(a, 8I**1), 1) are non-degenerate elements of G as well as the set
((a, o1**1y, 1.

For $<x<1, let a be as above. Let &, = L(x—1{) and N, (a) denote an &,-
neighborhood of a. Now, N, (a) x I**' is an n-cell with part of its boundary missing,
namely, N, (a)xI**1, On (8Z, U 0Z,)—N, (@)xI*"!, use the identification e of
0Zy with 8Z, described above. Finally, (i) identify ((r, a1** 1), x) to a point for
each te (N, (4) U 0N, (a)). Pairs of points of 8N, (@) x 8I** ' have been identified
‘ by e. Thus, N, (a) under the identification e of points on dN,, becomesan (n-— (k+1))-
sphere. Next, identify (7, dI**%) to a point for each tem) Call this identifi-

L, } s : Lo .
cation e’. Now, under e and ¢', N, (@) x I*** becomes N, say, which is homeomorphic
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to I""* D SE+ U with certain points of 91"~ ** D x §**1 identified corresponding
to the points of N, (a)x I*** identified by e. Thus, ON is homeomorphic to §"~1
with a tame or flat k-sphere shrunk to a point. Let the non-degenerate elements
of G at the x level be denoted by H,. All of the point sets above which are identified
with points constitute the non-degenerate elements A of an usc decomposition G
of Ax I The remaining elements of G are those singletons not identified with any
other point. It should be observed (as it will be used soon) that the non-degenerate
elements of G which intersect Nﬂx@g constitute an (n—(k+1))-spheré in the de-
composition space 4 x I/G.

THEOREM 6. The pinched product Ax I|G is homeomorphic to a differentiable
(n+1)-manifold N. In fact, AxI|G is what we call a continuous spherical modifi-
cation of type k. : '

Proof. Let P denote the usual projection mapping of 4 xI onto A4 x I/G, the
decomposition space (or quotient space). Let G, 0<x< 1, denote the “restriction”
of G to (4, x), i.e., G, is the usc decomposition of A x I at level x. Clearly, (4, 0)/G,
= M, and M, = (4, 1)/G, are compact connected n-manifolds. Furthermore,
M, is a spherical modification of M, of type k. Now, let M, and M, be differenti-
able manifolds homeomorphic to M, and M, respectively. There is a differentiable
manifold M whose boundary is the disjoint union of M, and M, and a differentiable
function f on M equal to 0 on M, equal to 1 on M, and otherwise having values
between 0 and 1 and having exactly one non-degenerate critical point p (with critical
value 4, say) with type number k+1 [21].

Now, for O<x<i, f7'(x) = §" = My = M,, f~'(4) = S" with a k-sphere
shrunk to a point, and for $<x<1, f~'(x) = M, = M,. Furthermore, there is
a “smooth” closed and connected set C such that (1) for 0<x<%, C. = Cn f~H(x)
= S5 (2 f7'3) n C = p, the critical point of £, (3) for L<x<1, C, = CAf~L(x)
o S"7%*+D and (4) C is “canonical” in the sense of Wallace [21; p. 88]. Consider
the trajectories to the level sets of f. The trajectories starting at points of Cy = S*
all end at p. As we move through the levels of f from M, to M, the C, = S* shrink
to p along the orthogonal trajectories. As we continue above the critical level, £ ~*(3),
C, = §""%*+1) grows along the orthogonal trajectories from p to C; =M,. Thus,
in this, sense, C is “canonical.”

Observe that there is a continuum Z in 4 x I/G which is homeomorphic to C
such that (letting Z, = (4, ) n 2),(1) Z, & C,, (2) for 0<x<4}, Z, = ((a, 8+, x)
where @ is the same point for the various x (note that for x = ¥, Z, is a non-de-
generate element of G), and (3) for $<x<1, <Z, consists of exactly those non-
degenerate elements of G, which intersect N, (a)x I*** (Z, is homeomorphic to
§""1*1 a5 a subspace of A xJ/G). Let h denote a homeomorphism of Z onto C
such that #(Z,) = C,.

A mapping g: (4, x) onto a space Y “generates” the usc decomposition G, iff
{97'(y)] ye Y} is the collection G, corresponding to (4, x). The kernel of g is
{be(d, x| g 'g() = b}. ‘

5
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Ia order to prove Theorem 6, it is convenient to consider certain mappings
of A4 onto the various f~1(x), x € [0, 1]. We could use Theorem 5 to prove Theo-
rem 6 by showing the existence of certain spaces of mappings which satisfy the
hypotheses of Theorem 5. In fact, Theorem 5 is set up for such an application.
However, we will give a more direct proof which hopefully will provide insight
to the somewhat complicated nature of this and other similar theorems.

For x # {, let K, denote the space of all mappings g: (4, x)=f"(x) such
that (1) g generates G, and (2) g (P~*(Zy)) = C,. (Recall that P: Ax[=A4xI/G is
the usual projection or quotient mapping.) We further require that 4| Z,, = g|P~ NZ.).
The metric for K is the usual sup. metric.

For x = 4, let K?,z denote the space of all mappings g of (4, }) onto f~ L)
such that (1) g generates Gy, (2) g(p™"(Zy2)) = p, and (3) g can be factored by
first mapping A onto £ ~!(x) by s€K,, 0<x<} and then mapping f ™' (x) onto /'(})
by a ﬁlapping m such that m is a homeomorphism on f~'(x)—m™'(p) where
m~}(p) = s(a, 8I**) —a k-sphere. In fact, for each fixed m and any g € K5,
g = ms for some se K,.

Let K{,z denote the space of al/l mappings g: (4, P=f"*3) such that g = mz
where ze K, $<x<1, and m is a mapping of £~1(x) onto f~'(4) such that (1)
m(C) = p, (2) m|(f~*(x)—C,) is a homeomorphism, and (3) g is the limit of
a sequence {z;}, z; € K,, where {x;}—% with $<x;<1. In order that g be the limit
of a sequence {z;}, it is usually the case that z; and ¢ have the same domain. For
this purpose, we could (a) identify (4, x) with A for all x or (b) we could, however,
define {z,})—g to mean that for (a,}) € (4, 1), {z(a, 2)}~g(a,$) where {x;} =1
We shall use whichever is convenient without reference either (a) or (b). This should
be apparent in the arguments below.

We shall consider two collections: (1) The collection Ly of all K,, 0<x<%
with Ky, = K%, and (2) the collection L, of all K,,}<x<1with Ky, = Ki,,. Now,
L* will denote the union of the elements of L;. Next, we define a metric for Lf
(like the one suggested for the collection of spaces in Theorem 3). If m e L¥, let
denote the graph of m in (4 xI)x M. Thus, for each pair m, ne L} where m e K,
and neK,, let D(m, n) = H(#, #) where H denotes the Hausdorfl metric on the
space of all closed subsets of (4 xI)x M. Now, (L¥, D) is a topologically complete
metric space (which should be apparent, later). For a proof, see an argument in
([8], Theorem 1) for an analogous result. We let ¢ denote a complete metric
for L}.

LemMA 6.1. Each K, is LC° (in the homotopy sense). Indeed, K, is locally con~
tractible. '

Proof. For x # %, g € K, is a certain mapping of 4=f~*(x) which generates G,,
and g(P~Y(Z,)) = C,, indeed, h|Z, = g|PT1(Z,). Note that g is a homeomorphism
on IntA4 (meaning 4—04 since 4 is an n-manifold with boundary). Now, g gener-
ates G, and the decomposition space A/G,, is homeomorphic to £~ '(x). Thus, ¢ cor-
responds naturally to a homeomorphism g of f~*(x) onto itself which leaves C
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fixed (poiniwise). In fact, K, is homeomorphic to the space H, of all homeomorphisms
of /~!(x) onto itself which leave C; fixed. It follows from results of Edwards and
Kirby [4] that H, (and consequently K.) is locally contractible.

If x = 1, then we have two cases: (1) Ky, = K?,z and (2) Ky, = sz. Although
f7Y($) is not a manifold, it is homeomorphic to an n-sphere with a certain k-sphere
identified to a point. In case (1), it follows from using results of [25] that K?/z is
locally contractible. Similarly, it follows that Kll/z is locally contractible.

Lemma 6.2. The collections L;, i =0, 1, are equi-L.C"

Proof. Each L} is a complete metric space with metric ¢. Note that f][0, 1) is
completely regular (in the sense of Dyer and Hamstrom [3]). It follows by an argu-
ment analogous to that given in [3] that the collection of all K, 0<x<1, is equi-
LC" (for all n). To show that Ly, is LC" we need only consider >0 and
ge Ky, = KIO/Z .

Since Ky, is LC", thereisa &,>0 such that each mapping r: S*—Kij5 0 Ny, (9),
for 0<k<n, can be extended to a mapping R: I**'> K15 1 Nys(g). By observing
that f|(M—C) is completely regular, it is not difficult to show that there is «>0
such that if 1—b<a, b0, 1], there is a mapping m: £~ (B)=f"1(%) such that
m(Cy) = Cypp, m|(f7'(6)~C,) is a homeomorphism, and m moves no point as
much as 4d,. )

Choose d, 0<d<min(36,,%) such that if K, n Ny(g) # @, then y—b<a.
Now, let ¢: S¥>K, A Ny(g). We wish to show that ¢ can be extended to ¢: I**?
=Ky, " NJ(g). Let ¢ =% We can define 1-1 mapping H,,: Ky—K, as follows:
By choice of o, $—b<a and consequently there is a mapping m: £~ (B)=f (%)
as described above. Now, m is fixed for the remainder of the argument. For e € K,
let Hy.(e) = mee K,. Clearly, H,|(K, n Ny(g)) maps K, 0 Ny(g) into K, n N;,(9)
since 7m moves no point as much as 45, and §<44,. In fact, H,, maps K, onto K,
since K, = K?/z and from part (3) of the definition of K. Recall that for fixed m
and any ue K,, there is e € K, such that u = me. Furthermore, r = [H,,[¢(5%)]¢
maps S* into K, N N;,(g) and can be extended to a mapping R: [** 'K, n N,;,(g)
such that for each pe I**, R(p)e H,(K,) =K, since H,.(K;) = K, is LC". Now,
define H,,: H,(K,)=K, as H(me) = e. Clearly, H,, is the inverse of H,, and Hy.
is a homeomorphism. Now, & = [H,| Hp(K;) 0 Nya(g)] R maps I*** into K, N
M Ny(g) and agrees with ¢ on S* the boundary of I***. Thus, L, is equi-LC". Simi-
larly, it follows that L, is equi-LC".

LeMMA 6.3. The collections L; are lower semi-continuous (Isc) in the sense that
if {xi}=x in [0, %] or [4. 11, then K, is in the closure of U K,

A proof follows easily from the facts that (1) f|f [0, ) and f(%, 1) are com-
pletely regular and (2) the definitions of Kflz and K},z.

Next, let F: L¥=>[0, 1] be the function defined by F(k) = x iff ke K. Thus,
the collection of point inverses under F is the collection Ly which is Isc and equi-LC".
Also, L§ is a complete metric space. Given x e [0, ], let ¢(x) € K. By Michael’s
Selection Theorem [10], there is an open set U of [0, 4] with x € U on a continuous
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extension of ¢ to U (denote it by @) with the property that & (u)e K foreach ue U.
Clearly, [0,4] is covered by a finite number of closed intervals [a;, b;] where
4y = 0<by = a;<b, = ay<b, ... <b, = % with homeomorphisms i P(AX [a;, b))
=f"1[a;, b;]. Next, we sew the picces together in the obvious way. Identify &,(a, a;)
with A; . 1(a, a) fori = 0,1, ..., t—1. We obtain a homeomorphism Hy: P(A4 %[0, £])
=f71[0,%]. In a similar way, we obtain a homeomorphism Hy: P(Ax [}, 1]
=f71[4,1]. We sew these together to obtain a homeomorphism H: A xI/G
=f"10, 1] = M. Theorem 6 is proved.

References

[11 A.V. Cernavskii, Local contractibility of the homeomorphism group of a manifold, Sovit
Math. Dokl. 9 (1968), pp. 1171-1174.

[21 P.T. Church, Differentiable monotone mappings and open mappings, Proceedings Conference
‘on Monotone Mappings and Open Mappings, 1970, SUNY at Binghamton, pp. 145-183.

[3] E. Dyer and M. E. Hamstrom, Completely regular mappings, Fund. Math. 45 (1957),
pp. 103-118.

[4] R.C.Edwardsand R. C. Kirby, Deformations and spaces of imbeddings, pp. 63-88, Annals
of Math. 93 (1971).

151 R. H. Fox, Covering spaces with singularities, Algebraic Geometry and Topology, A Sym-
posium in Honor of S. Lefschetz, Princeton, 1957, pp. 243-257.

[6] W.C.Huebsch, On the Covering Homotopy Theorem, Annals of Math. 61 (1955), pp. 555-563.

[7] L.F. McAuley, Upper semi-continuous decompositions of E® info E*, Annals of Math, 73
(1961), pp. 437-357.

(8] — The existence of a complete metric for a special mapping space and some consequences,
Annals of Math. Studies 60 (1966), pp. 135-141.

[91 — A Topological Reeb-Milnor-Rosen Theorem, Bull. Amer. Math. Soc. 78 (1972), pp. 82-84.

{10] E. A.Michael, Continuous selections 1, 11, ITI, Annals of Math. (2) 63 (1956), pp. 361-382;
(2) 64 (1956), pp. 562-580; (2) 65 (1957), pp. 357-390.

[111 J. W. Milnor, On manifolds homeomorphic to the T-sphere, Annals of Math. 64 (1956),
pp. 399-405.

[12] — Sommes de variéié différentiables et structures différentiables des spheres, Bull. Soc. de
France 87 (1959), pp. 439-444,

[13] — Morse Theory, Annals of Math. Studies 51, Princeton, 1963.

[14] D.Montgomeryand H. Samelson, Fibrings with singularities, Duke Math. Jour, 13 (1948),
pp. 51-56.

[151 W. L. Reddy, Montgomery-Samelson coverings on manifolds, Proc. Conf. on monotone map-
pings and open mappings, 1970, SUNY at Binghamton, pp. 192-198. (Note errors.)

[16] G. Reeb, Sur certaines propriétés topologiques des variétés fenilletdes, Actualités Sci, Ind. 1183
(1952), pp.. 91-154.

[17] R. Rosen, 4 weak form of the star conjecture for manifolds, Abstract, Notices AMS 7 (1960),
p. 380.

[18] L. C. Siebenmann, Deformations of homeomorphisms on stratified sets, Comm. Math,
Helv. 47 (1972), pp. 123-163.

[19]1 S. Stoilow, Legons sur les Principes Topologiques de la Théorie Fonctions Analytiques, Paris
1938.

Mappings covered by products and pinched products 143

[20] ‘M.. C. Thornton, Singularly fibered manifolds, 111. Math. J., 11 (1967), pp. 189-291.
[21]1 A.H. Wallace, Differential Topology, First Steps, Benjamin 1968.

[22] J. H.C. Whitehead, On simply connected 4-dimensional polydera, Commentarii Math.
Helvetici 22 (1949).

[23] — Combinatorial Homotopy 1, Bull. Amer. Math. Soc. 55 (1949), pp. 213—24‘5.

[24] G.T. Whyburn, Analytic Topology, AMS Colloquium Publications 28 (1942).
[25] — Topological Analysis, Revised Ed., Princeton 1964.

STATE UNIVERSITY OF NEW YORK AT BINGHAMTON

Binghamton, New York

Accepté par la Réduction le 17, 6. 1974


Artur




