Association and fixed points
by

Roman Maika (Wroctaw)

Abstract. Let ab be a continuum irreducible between zand b and let 4b denote the set of irreduc-
ibility related to the point a4, i.e., the set of all points x such that ab is irreducible between x and b.
The continuum ab is said to be associated with ac at the point , in symbols ab-Cac, if Ab is equal
to Ac¢ and the intersection ab N ac is a continuum different from this common set of irreducibility.
The notion of association, introduced and investigated in part I of this paper, serves to prove in
part I that if X is a hereditarily unicoherent and hereditarily decomposable metric continuum,
then for every upper semi-continuous continuum-valued function F which maps X into itself there
exists a fixed point, i.e., a point x such that x € F(x).

The present paper consists of two parts.

‘In part I we investigate a binary relation due to Lelek [4], p. 134, between
irreducible continua in a A-dendroid. This relation, called by me association and
denoted by —<, is a generalization of the relation holding between segments ab
and ac.in a Euclidean space when they are collinear and the point a does not lie
between b and c. )

The properties of the association described in part I may perhaps be of some
interest in themselves, but they are used to prove in part IT that if X is a A-dendroid,
then for every upper semi-continuous continuum-valued function F which maps X
into ‘itself there exists a fixed point x, i.e., such a point x that x e F(x).

This theorem (see Corollary, § 6) generalizes an analogous result of Ward
(see [5]) and simultaneously answers a question of Charatonik (see [1]). In the
particular case where F is single-valued it gives, moreover, a solution to a problem
raised by Professor B. Knaster in the New Scottish Book (problem 526 dated
November 22, 1960).

I. Association

§ 1. Preliminaries on irreducible continua. In this paper a continuum means
a metric, connected and compact space.

A continuum X is said to be irreducible between the points a and b provided
that ¥ contains ¢ and b and no other subcontinuum of X contains both these points;
then a (and also b) is called a point of irreducibility of X. This definition is equi-
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valent to saying that X contains a and is not a union of two proper subcontinua
which both contain a (see [3], § 48, I, Theorem 4 and [2], p. 270).

A continuum is said to be unicoherent if the intersection of every two of its
subcontinua whose union gives the whole continuum is a continuum. A continuum
is said to be decomposable if it is a union of two continua not contained in one
another. A property of a continuum X is said to be hereditary if every subcontinuum
of X that is non-trivial (i.e., contains more than one point) has this property. Follow-
ing Charatonik (see e.g. [1]), a hereditarily unicoherent and hereditarily decompos-
able continuum is called a A-dendroid. In what follows X will always denote an arbi-
trary J-dendroid.

According to the well-known Brouwer reduction theorem (see e.g. [3], § 42,1V)
for every two points of any continuum there exists an irreducible subcontinuum
between them (see e.g. [3], § 48, I, Theorem 1). It follows from the hereditary
unicoherence of X that for every two points a, b€ X such an irreducible subcon-
tinuum is unique; we denote it by ab.

Therefore we have for every continuum K <X

@ aeKand be K imply abcKk,

and consequently for every continuum ac=X

(ii) agbcac implies abubc=ac.

DerNTioN 1. The set of all points x € X such that xb = ab is called the set
or irreducibility related to the point a in ab; we denote this set by 4b.

From this definition it follows that ae dbcab. Also b¢ Ab and Ab 5 ab
whenever ab is non-trivial. Moreover, by the assumed hereditary decomposability
of X, the set Ab is a continuum (see [2], § 1, p. 239). In view of (i), for every con-
tinnum K< X

(iii) a¢Kand beK imply AbnK=0.

In the sequel we do not use the results of the structural theory of irreducible
continua by Kuratowski (see e.g. [2]). Tn particular we do not use the main concept
of that theory, namely the concept of a layer. Instead we express relations between
irreducible subcontinua of X by the corresponding relations between sets of
irreducibility.

§ 2. Basic properties of association. Given a point ae X, consider non-trivial
subcontinua of X which contain @ as a common point of irreducibility, i.e., non-
trivial continua of the form ab for some b.

DERNITION 2. We say that ab and ac are associated at a if
Ab = Ac and Ab # abnac.

Then we write ab—ac, setting a as first in the denotation of these irreducible
continua, instead of using a as an index in —<.
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EXAMP-LE I. Let X be the union of a non-trivial segment ab and segments
be and bd in the Euclidean plane such that the intersection of every two of them
equals 5. Then ab—<ac and also ac—<ad (Fig. 1).

o
o

Fig. 1
ExXAMPLE 2. Let X be the union of two curves of the Euclidean plane, namely
¥ = sin(n/x) where 0<|x|<1, and of the segment with end-points & = (0, —1)
and d=(0,2). Put a =(—~1,0) and ¢ = (1,0). Then ab-<ac and ac—ad,
whereas neither be—bd nor be—<ba (Fig. 2). :

¢

b
Fig. 2

We have the following propositions, related to the notion of association.

PROPOSITION 1. In order that ab-<ac, it is necessary and sufficient that
a¢be.

Proof. Necessity. By Definition 2, there exists an x € ab n ac such that
x¢ Ab and x ¢ Ac. Then xbZab and xc3ac according to Definition 1 and (i)-

Hence a ¢ xb U xc by the irreducibility of ab and ac. Since bccxb U xc by (i),
it follows that a ¢ bc.
3*
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Sufficiency. We have Adbcab and abcac L be by (i). Moreover, the as-
sumption a ¢ be implies by (iii) that

6 Abnbe=@.

Therefore if x € Ab, then x € ac, and so xc<ac by (i). Then also ab = xb by
Definition 1. Since xbcxc U be according to (i), it follows from the assumption
that @ € x¢, so that ac=xc by (i). Hence x¢ = ac, i.e., x € A¢ by Definition 1. Thus
a ¢ be implies Ab=Ac. By symmetry, it also implies Ac Ab; therefore 4b = Ac.

Now, by (i), bccabvw ac. Hence be = ab nbcw ac nbe, and therefore
ab nacn be # . Tt follows from (1) that Ab # ab n ac.

PROPOSITION 2, The association ~< is symmetric, reflexive and transitive (see
Lelek [4], p. 134).

Proof. The symmetry follows directly from Definition 2.

Reflexivity. If ab = ac, then bc<Ba according to Definition 1 and to (i).
Since @ ¢ Ba for any mnon-trivial ab, it follows that a¢ bc, and hence ab—{ac by
Proposition 1.

Transitivity. If ab —<ac and ac-<{ad, then, by Proposition 1, a ¢ beu cd.
But bd<bc U ed in view of (i). It follows that a ¢ bd, and hence ab —ad by Prop-
osition 1.

PROPOSITION 3. For ab<ac, in order that ab < ac, it is necessary and sufficient
that b ¢ Ac.

Proof. Since bec ac by (ii), it follows from the irreducibility of ac that a ¢ be
means bc # ac, i.e., b ¢ Ac by Definition 1. Applying Proposition 1, we complete
the proof.

DEFINITION 3. We say that ab is a segment (with an initial point a) of ac if
abzac and ab -{ac, ie., by Proposition 3 and (i), beac—Ac.

Directly from Definitions 3 and 2, taking Proposition 2 into account, we
obtain two propositions.

PROPOSITION 4. The relation ab being a segment of ac is reflexive and transitive.

ProrosiTioN 5. In order that ac—{ad, it is necessary and sufficient that
there exist a common segment ab of ac and ad.

Not losing sight of the point 4, consider association also at another point b.
ProrosiTioN 6. If abcad and be —<bd, then abcac.

Proof. We have b € ad and b ¢ cd according to Proposition 1. Since ad=ae U
v cd by (i), it follows that b e ac. Therefore, by (i), abcac.

ProrosiTiON 7. If ab is a segment of ad and if bc—<bd, then ab is a seg-
ment of ac.

Proof. In view of Proposition 6, it suffices to show that b ¢ Ac.
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We have b ¢ Ad according to Definition 3. Hence a ¢ Bd by Definition 1. By
Definition 2, the assumed association implies Bd = Be. Therefore a¢ Be, and
consequently, by Definition 1, b ¢ Ac.

Proposition 7 immediately implies
PRrROPOSITION 8. If ab is a segment of ad and if be is a segment of bd, then ab
is a segment of ac.

PROPOSITION 9. If ab is a segment of ad and if be is a segment of bd, then ac
is a segment of ad.

Proof. We have to prove that ac—ad and accad.

Applying Proposition 8, we see 1hat ab is a common segment of ac and of ad.
Hence ac-<{ad by Proposition 3. By Definition 3 and (ii), also @b U bc = ac

and ab U bd = ad. Since be<bd, be being a segment of bd by assumption, it follows
that accad.

PropositioN 10. If ab = ) ab,, where © runs over an arbitrary set, then for
each point p € ab-- Ba there exists an index © such that pb, is a segment of pb and that

(2) peab.—B.a.
Proof. In view of (i) and Definition 1 we have ap 2 ab. Hence by (i),
3) ap v pb = ab,

and b ¢ ap by the irreducibility of ab; also pb is non-trivial, so that b ¢ Pb. It fol-

lows that ap U Pb is a proper subcontinuum of ab = [J ab,. Then, taking (i) into
account, we infer that there exists a point

(4) b.e ab—(ap U Pb),

and hence b e pb—Pb by (3). Therefore by Definition 3, pb, is a segment of pb,
whence in particular pb, —pb. Since apcab by (3), it follows by Proposition 6
that ap<ab,. But b, ¢ ap by (4); thus ap ; ab,, and therefore (2) by Definition 1.

Remark 1. One can see that in the above proof of Proposition 10 it is essential
to assume that Pb is a continuum, namely, that the continuum ab is hereditarily
decomposable.

Remark 2. It is worth noticing that the following statement is true:

If a sequence of irreducible subcontinua ab; of any hereditarily unicoherent
continuum is increasing, then \J ab; = ab for some point b.

In fact, for every proper subcontinuum of the continuum U—abj which con-
tains @ there exists, by (i), a point b; not belonging to this subcontinuum. Since the
sequence of ab; is increasing by assumption, it follows that the continuum W
is not a union of two proper subcontinua which both contain a. Thus a is a point

of irreducibility of - U ab ie.,, U ab; = ab for some point b.
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§ 3. Prolongable segments. Given a non-trivial continuum abc X, consider the
set ab—Ba. Obviously a € ab~—Ba, and ab— Ba is the union of all proper subcon-
tinua of ab which contain & (in fact, this is simply the composant of a in ab; for
this concept see [3], § 48, VI). It is known (see ibidem [3], Theorem 2) that

Q) ab—Ba = ab .
Now observe that, in view of (i) and Definition 1,

) peab—Ba means apZab;

thus the set ab— Ba is also the union of all proper subcontinua of ab which contain a
as a point of irreducibility. .
If p runs over ab—Ba, then the sets Bp are constant, namely

3 Bp = Ba

according to Proposition 3 and Definition 2, while the opposite sets Pb give a de-
composition of @b—Ba into disjoint continua, which follows from Definition 1.
Defining Pb as earlier than P'b if pp’ is a segment of pb, we obtain an order
between members of this decomposition which directs them from 4b to Ba. Indeed,
transitivity follows directly from Proposition 9. The same argument as in the proof
of Proposition 10 can be used to show directivity, i.e., that

ProrosITION 10%, If p,p’ € ab—Ba, then there exists a p'' eab—Ba such
that pp"’ is a segment of pb and p'p’’ is a segment of p'b.

Indeed, properties (1) and (2) of the set ab—Ba imply the assumptions of
Proposition 10; namely ab = ab—Ba by (1) and ab—Ba = ) ap, where p runs
over ab— Ba in view of (2) and (iii). Therefore, in the same way as the point b,
is found in the proof of Proposition 10 (see (4)), we may find a point p’* which
satisfies the conditions required.

Now for non-trivial continua abcad=X we are interested not only in the
sets 4b and Ad but also in the orders: in the order over ab— Ba and in the restriction
to ab—Ba of the order over ad— Da. These two orders may be different.

ExaMPLE 3. Let X be the union of the curve x = sin(rn/y), where 0<y<I,

and of the segment with end-points a = (—2,0) and & = (1, 0) in the Euclidean

plane. Put d = (0, 1), p = (—1,0) and p’ = (0, 0). Then ab is a segment of ad,
whereas pp’, being a segment of pb, is not a segment of pd. Moreover, no segment
of pb is a segment of pd, i.e., in view of Proposition 5, the association pb ~pd
does not hold (Fig. 3).

DepiNITION 4. We say that a non-trivial continuum ab is a prolongable seg-
ment (with an initial point @) of ad if for each p € ab—Ba the association pb —<pd
holds.

Then clearly ab-<ad. Since for each peab—Ba we have apcab by (2),
whence pb-{pd implies ap=ad by Proposition 6, it follows that also abcad
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by (1). Thus ab is a segment of ad, which justifies the term prolongable segment
proposed. We omit the easy proof of the above-mentioned identity of these orders.

d.

Fig. 3

PrOPOSITION 11. A non-trivial continuum ab is a prolongable segment of ad if
and only if for each p € ab— Ba there exist segments pq and pr of pb such that pgcpr
and qr - qd.

Proof. Necessity. Let p e ab—Ba. Putting in Proposition 10* p’ = p and
P’ = g, we infer that there exists a segment pg of pb such that g e ab— Ba. It fol-
lows according to Definition 4 that gb—<gd. Since pb is a segment of pb, the
condition holds. .

Sufficiency. For each peab—Ba there exist, by assumption, segments
pgcprof pb such that gr -<gd. By Proposition 2 and Definition 3, pgis a segment
of pr; therefore pg is a segment of pd by Proposition 7. By Proposition 5, the as-
sociation pb — pd holds.

PROPOSITION 12. A non-trivial continuum ab is a prolongable segment of ad
if and only if for each p € ab— Ba there exist segments pp’ of pb and p'q and p'r of
p'b such that p'qcp'r and gr - qd. )

The necessity follows from Propositions 10* and 11. To show the sufficiency
it is enough, by Proposition 11, to prove the following

PROPOSITION 12%. If pp’ is a segment of pb and if p'q=p'r are segments of p'bs
then pq and pr are segments of pb such that pg<pr.

Indeed, pg and pr are segments of pb by Proposition 9. By Proposition 8, also
pp’ is a segment of pg and of pr, whence pp’ U p'q = pg and pp’ U p'r = pr ac-
cording to Definition 3 and (ii). Therefore the assumed inclusion p’'g<p'r implies
that pgcpr.

Observe now that Proposition 1 implies, directly by Definition 4, the following
criterion for prolongable segments.

PROPOSITION 13. 4 non-trivial continuum ab is a prolongable segment of ad
if and only if ab n bd< Ba.

The above criterion enables us to prove the following

PROPOSITION 14. Let subcontinua ab and bd of X be given. If BdZ Ba, then ab
is a prolongable segment of ad.
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Proof. If, on the contrary, there exists a point p € (ab— Ba) n bd, then Bp
= Ba by (3). Also p € bd— Bd by the assumed inclusion, whence similarly Bp = Bd.
Thus Bd = Ba, which contradicts the assumption.

ProPoSITION 15. Let K= X be a continuum, a¢ K and de K. Then ad—K n K
# & and, for each point b of this set, wd—K = ab and the continuum ab is a prolong-
able segment of ad.

Proof. We have @ # ad n KZad by assumption. Hence V_V_e«llé_lve for the
boundary of ad N K in ad the inequality ad—Knadn K =ad—Kn K+ @.
The intersection ad N K is a continuum by the hereditary unicoherence of X, and
it contains d by assumption. Hence, for each point b of this boundary, the closure

ad—K = ad—ad ~ K is an irreducible continuum between a and b (see e.g. [3],
§ 48, I, Theorem 7), ie., ad—K = ab. Consequently ab n K< Ba by Definition 1.
Since bd< K by (i), it follows that ab n bd=Ba. Thus, by Proposition 13, ab is
a prolongable segment of ad.

PROPOSITION 16. For a non-trivial continuum ad the set Ad is the intersection
of ‘a decreasing sequence of prolongable segments of ad.

Proof. There exists (see e.g. [3], § 48, VI, Theorem 1) a sequence of continua
K;c=X where j= 1,2, ... such that

@ a¢K;, and dek;,
® ad—Ad = | K;,
© KiK.y

By Proposition 15, considering (4) and (6), it suffices to prove that Ad
= ad—K;. o

From (5) it follows that Adc ;1;1:_]21 Now let be () ad~K;. Suppose
on the contrary that b ¢ Ad. Then b € ad— Ad, and thus, by (5) and (6), there exists
a j; such that be K, for all j>j,. Hence by Proposition 15,

0] ab = ad—K; for all j>j,

and simultaneously ab is a segment of ad, whence 4b = Ad by Definitions 2 and 3.
Also ab.is non-trivial, whence A4b 3 ab— Ba according to (iii). Consequently Lhere
exists a point p ¢ Ad such that : ‘

®) peab—Ba.
Then p € ad— Ad by (7) and (8), and therefore by (5) and (6) there exists an
index j,>j; such that p € X; for all j>j,. Since p e ad—K; by (7) and (8), it follows

from Proposition 15.that ad—K; = ap. Then by (7), ab = ap. Therefore pe Ba
by Definition 1, which contradicts (8).
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L. Fixed points

§ 4. Preliminaries on multi-valued functions. Let F be a multi-valued function
which maps X into itself, i.e., a function assigning to each point xe X a non-
empty closed set F(x)= X. A fixed point of Fis defined by x € F(x). We call a multi-
valued function F contimuum-valued provided that F(x) is a continuum for each
xe X. If the equality limx; = x implies the inclusion LsF(x;)c F(x), then F is
called upper semi-continuous (see e.g. [3], § 43, I and II). In the single-valued case
upper semi-continuity simply becomes continuity.

In the reasoning which follows we use a considerable abbreviation: instead
of an arbitrary upper semi-continious continuum-valued function F which maps X into
itself we write simply F.

Setting for any K< X

FK) = | {F(x): xek) R

we next prove that the assumptions about F imply the following two properties:

(1) The set F(K) is a continuum whenever K is a continuum, by virtue e.g. of
[5], p. 161.

(1) If a sequence of continua K;=X is decreasing, then the inequality K; N
N F(K) +# @ for all j implies \K;n F(\ K;) # @.

In order to deduce (IL), it suffices to verify that

NFE)=F(NK) .

If ye () F(K;), then for each j we have y € F(K ), whence there exists an x; & K j
such that y € F(x;). By the compactness of X, we may assume that the sequence
of x; converges to some point x, so that x € (1 X; and LsF(x;)c F(x) by the upper
semi-continuity of F. Since yeLsF(x;), then ye F( K)).

Note also that for every continuum K< X

(111) a¢ F(K) and d,d'e F(K) imply ad—<ad'

which follows from Proposition 1, considering (1) and (I).
§ 5. Basic properties of families 22,. The sets belonging to these families will
play an important part in the establishing the fixed point required.

Given an arbitrary point a € X, we define 2, as the family of all non-trivial
continua abc X satisfying

(V) ab~<ad for all de F(a)

and such that for each p e ab— Ba there exist segments pg and pr of pb satisfying
pgcpr and

V) gr-<qt for all te F(g).


Artur


114 ’ R. Marka

We verify first that the family 2, is correctly defined, i.e.,

if abe?, and ab’ = ab, then ab'e?,.
By Proposition 2, ab’ satisfies condition (IV).
In view of Definition 1,
)] ab' =ab means B'a= Ba,

whence if p € ab’ — B’a, then p € ab— Ba. Since ab € 2,, there exist segments pgcpr
of pb such that (V) holds. It remains to show that pg and pr are segments of pb'.
For this purpose it suffices to verify, in view of Proposition 4, that pb = pb'.

By Proposition 3 and Definition 2,

{(2) peab—Ba implies Bp = Ba;
therefore Bp = Ba and B'p = B’a. Thus Bp = B’p whence by (1) pb = pb’.
We now prove four lemmas.
LeMMA 1. Let d e F(a). If Ad n F(4d) =
such that abe P,.
Proof. By Proposition 16, the set Ad is an intersection of a decreasing se-
quence of prolongable segments of ad. It follows from the assumed equality and
from (II) that there exists a segment ab of ad with the property that

D, then there exists a segment ab of ad

3) ab n F(ab) =

Then ab - ad by Definition 3. Since de F(a) by assumption, also ad —ad’
for all d’' e F(a) by (III). It follows by the transitivity of association that ab -{ad’
for all d' € F(a). Thus condition (IV) holds.

For each p € ab— Ba there exist, by Proposition 11, segments pgepr of pb
such that ¢gr —gd. It remains to show, in view of the transitivity of association,
that gd — gt for all t & F(q). But g&pb by Definition 3, and pb=ab by (i), whence
t e F(ab) and q ¢ F(ab) by (3). Since de F(ab) by assumption, applying (III) we
complete the proof.

It can now be seen that the condition of Lemma | not only suffices for
the existence of an clement of £,, but also ensures the existence of a maximal
element of #,. That is, the following is true

Lemma 2. If de F(a) and Ad n F(4d) = @, then there exists an ab maximal
in 2,. ;

Proof. Given any increasing sequence of continua ab;= X, observe that by
the proposition in Remark 2, § 2, we have ) ab; = ab for some point b.

If, moreover, ab;e 2, for all j, then abe 2

Indeed, taking p = a in Proposition 10, we sce that there exists an ab; which
is a segment of ab, whence ab; is associated at @ with ab by Definition 3. Since ab;
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satisfies condition (1V), it follows by Proposition 2 that b satisfies condition (V).
By the same Proposition 10, for each p € ab—Ba there exists an index J such that
pb; is a segment of pb and that p € ab;— B;a. Since ab; € #,, there exist segments
pgepr of pb; such that (V) holds. By Proposmon 4, both pq and pr are segments
of pb.

Thus, the family 2, is closed with respect to the operation of closure of a union
of increasing sequences. In view of Lemma 1, to finish the proof it is enough to apply
the following theorem, which is dual to the Brouwer reduction theorem:

For any non-empty family 2 of closed subsets of X which is closed with respect
1o the operation of closure of a union of increasing sequences, there exists an element
maximal in 2.

We prove the above statement.
There exists a countable base B, B,,.. of X, because of compactness.
Taking Pye P, we define a sequence P,,P,, ... as follows:
Let P, be any element of # which contains P, and meets B, if such exists;
in the opposite case, set P, = P,. Assuming, by an inductive step, PP,
..&P;_; to be defined, let P; be any element of 2 which contains P;_; and meets B;

11’ such exists; in the opposite case, set P =P,

The sequence of P; e # defined in such a manner has the property that for
every Qe ?

)] B;inQ#@ and P;_;=Q  imply

Simultaneously it is increasing, so that P = O‘ITJ belongs to £ by assumption
on #. We show that P is maximal in 2.

If, on the contrary, there exists a Q € # such that P ZQ, then there exists
an clement B; of the base such that P n B; =@ and that B;n Q # &. Since
P;_,=Q, it follows from (4) that B;n P; # @, which contradicts the equality
PnB; =@

LEMMA 3. Let abe P,. If Ba n F(Ba) =
tinuum ab is a prolongable segment of ad.

Proof. We verify that the condition of Proposition 12 holds. Given p € ab— Ba,
we have to show that there exist segment pp’* of pb and segments p”’g<p’’r of p"'b
such that ¢r -<qd.

Adapting Proposition 16 to the set Ba, we get, by the assumed equality and
by (I1), a segment p’d of ab with the initial point » such that

(5) P'bF(p'b) =

BinPi#@.

9, then for each de F(Ba) the con-

Then p’eab—Ba according to Deﬁnition 3, and thus by Proposition 10*
there exists a p’’ € ab— Ba such that pp’’ is a segment of pb and p'p’’ is a segment

" of p'b, whence

(6) plbep'h
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according to Definition 3 and (ii). Since ab € 2, by assumption, there exist segments
p'qep’r of p’’b such that (V) holds. It remains to show that gr-<{gd. For this
purpose it suffices to verify, in view of (V) and of the transitivity of association,
that gt —(qd for any point te F(g).

We have g e p’’b, p''q being a segment of p’'b; hence t e F(p'b) and g ¢ F(p'b)
by (5) and (6). Since p’ € ab— Ba, whence Ba = Bp' by (2), it follows by assumption
that de F(Bp'); thus naturally de F(p'b). Therefore by (I}, gd ~{qt.

LemMA 4. Let a continuum ab € P, be a segment of ac. If bc € Py, then ace 2.
In fact we prove the following more general

LEMMA 4*. Let a continuum ab satisfy condition (IV) and be a segment of ac.
If bce 2, then ace 2,.

Proof. By Definition 3 we have ab—<{ac; therefore, applying Proposition 2,
we see that ac satisfies condition (IV).
Also abcac by Definition 3, and for a point

(7) peac—Ca

consider two cases: b e Ca and b e ac—Ca.

In the first case we get, applying (i),
(8) becCa.

Since bc € &, by assumption, we infer that (putting @ = b and p = b in the
definition of £,) there exist segments bg and br of be such that (V) holds. Then
¢, r € bc by Definition 3, and thus by (8) ¢, re Ca. But Ca = Cp by (7) and (2),
and therefore ¢, r € Cp, i.e., pg = pr = pc by Definition 1. By Proposition 4, pg and
pr are segments of pe.

In the second case we have b € ac— Ca, whence

) Ch = Ca

according to (2). By Proposition 10*, considering (7), there exists a segmeut pp’
of pc such that p’ ¢ Ca and bp’ is a segment of bc, so that p’ € be—Ch by Defini-
tion 3 and (9). Since bce 2, by assumption, there exist segments p’'g=p’r of p'c
such that (V) holds. By Proposition 12*, pg and pr are segments of pc satisfying
pqcp)‘.

§ 6. The fixed-point theorem. First the following three auxiliary theorems
would be proved.

Let 2" be the family of all continua K< X with the property that K n F(K)
# @. By (I), & is inductive, i.e., closed with respect to the operation of the inter-
section of decreasing sequences. Since X € A, it follows by the Brouwer reduction
theorem that there exists a minimal element of 7.

icm®
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THEOREM 1. Let K be minimal in . If K is non-trivial, then there exist a point a
and an ab maximal in P, such that Ab S K.

Proof. We have K n F(K) # O, whence there exists a point a € X such that
K n F(a) # . Then a¢ F(a) by assumption on K, and therefore for a point

4] de F(a)

such that d e K, the continuum ad is non-trivial, i.e., Ad Zad, and simultaneously
adc K by (i). Consequently

2) AdeK

and therefore by the minimality of K, we have 4d n F(Ad) = @. Thus by Lemma 2,
considering (1), there exists an ab maximal in #,. Then abe 2, so that (IV) is
fulfilled. Thus it follows from (1) that ab-<{ad, and further Ab = Ad by Defi-
nition 2. Therefore by (2), AbZ K.

The following lemma is stronger than Lemma 3 and serves only to prove the
next theorem.

 LemMA S. If abe P, and Ba N F(Ba) = O, then there exists an ab' = ab such
that ab’ nb'd" = B'an B'd’ for all d’'e F(B'a).
Proof. In view of Proposition 13 it has been shown in Lemma 3 that ab

N bdcBa, i.e., (ab—Ba) N bd = @, for all d e F(Ba). Hence (ab— Ba) n F(Ba) = O;
therefore the assumed equality Ban F(Ba) = @ implies

3) abn F(Ba) =9 .
Simultaneously, for a given point

C)] . d e F(Ba)

we have

5) ‘ ab N bd<Ba,

and we prove first that there exists an ab’ = ab such that the equality ab’ n b'd
= Blan B'd holds.

..The intersection Ba N bd is a continuum by the hereditary unicoherence, and
d ¢ Ba n bd by (3) and (4). Clearly b e Ba n bd. Thus, applying to this continuum
the same argument as in the proof of Proposition 15 to K, we get a point b’ € Ba n
 bd such that

6y - BanbdnbdceBd.

Since b’ € Ba, then by Definition 1 we have the equalities
O] ab’ = ab,,
®) . B'a=Ba.
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Since b’ € bd, whence b'dc=bd by (i), it follows from:(5)-(8) that ab" n b'd
cB'a and B'anbdcB'd. Consequently ab’ 0 b'd=B'an B'd. The converse
inclusion is trivial.

Now for an arbitrary point

©) d' e F(B'a)

it suffices to verify two equalities: B'd = B'd’ and ab’' nb'd = ab' n b'd’.
We have b’ ¢ F(Ba) by (3) and (7), and d, d’ € F(Ba) by (4), (8) and (9). There-
fore b'd—b'd’ by (III), and thus, by Definition 2, the equality B'd = B'd’" holds.
Since d, d’ € F(Ba), we have dd’ = F(Ba) by (i) and (I), and hence ab’ n dd’ = @
by (3) and (7). But b'd'<b’d U d'd by (i), and thus ab’ N b'd’' <ab’ n b'd. By sym-
metry, the converse inclusion is also satisfied.
TueoreM I1. If ab is maximal in P, and if Ba ¢ A, then there exilts a fixed point.
Proof. We have, by assumption,

(10) abe 2, ,
@an Ban F(Ba) = O ;

thus, by Lemma 5, there exists an ab’ = ab such that ab’ N b'd' = B'an B'd’
for all d’' e F(B'a). Then ab’ € 2, by (10), because 2, is correctly defined, and also
ab’ is maximal in &,. Then also B’a = Ba by Definition 1. Thus, ab’ satisfies all
the assumptions which we make with respect to ab. Therefore it is not necessary
to consider ab’ in the sequel. We may assume, without change of notation, it is ab
that satisfies

(12) ab " bd = Ba n Bd
for any d e F(Ba), and therefore also for
13) de F(b) .
Then we have
(14) Bd n F(Bd) + @ .

Suppose the contrary. By (13) and Lemma I, then there exists a continuum
bc € P, which is a segment of bd. Since ab is a segment of ad by (12) and by Propo-
sition 13, it follows by Proposition 8 that ab is a segment of ac. Thus by Lemma 4,
considering (10), ace #,. However, according to Definition 3, abcac and also
cebd—Bd, whence c¢ab by (12). Consequently ab3ac, which contradicts the
maximality of ab in 2,. : :

We prove now that there exists a continuum bs satisfying the following three
conditions

(15) bscBd,
a6) ' Bd<F(bs)
a7 Bd  F(bs—Sb) = @.
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For this purpose, note that the set G = {xeX: Bdn F(x) = O} has proper-
ties: a) G N Fr(G) =, b) BacG, ¢) Bd F(G) =@, d) Bin GZ Bd.

Indeed, property a) means that G is open, and therefore it follows from the
upper semi-continuity of F. By (11), we have b ¢ F (Ba) and simultaneously d e F(bs).
by (13), whence Bd n F(Ba) = @ according to (iii), and consequently, by the de-
finition of G, we get b). Further, c) follows directly from this definition. Hence:
Bdn F(Bdn G) =@ and therefore B G % Bd by (14), ie., d).

By b), there exists a component of Bd A G which contains 5. Let X denote
the closure of this component. Then we have b e K, and by virtue of d) and of
a theorem of Janiszewski (see [3], § 47, III, Theorems 1 and 2), the continuum K
meets the boundary of Bd n G in Bd, and thus of course K meets the set Bd Fr(G).
Consider a continuum L< K which is minimal with respect to the property: be L
and L n Bd 0 Fr(G) # & (such a minimal continuum I exists by the Brouwer
reduction theorem). Clearly L = bs for any point s€ L ~ Bd n Fr(G). Since s € Bd,
it follows by (i) that (15) is satisfied. )

Since s € Fr(G), we have s ¢ G by a), and consequently we have Bd n F(s) # &
by the definition of G, hence naturally Bd ~ F(bs) . Since de F (bs) by (13),
we have b e F(bs) by (I) and (iii). Therefore bd=F(bs) by (i), whence (16) holds.

To prove (17), recall that bs = LcK and K=Bd GeBd A (G L Fr(G)),
whence bs=Bd n G U Bd n Fr(G). Moreover, by the minimality of L = bs, we
have for every bpZbs the equality bp n Bd n Fr(G) = @, and consequently bp
<Bd n G. Therefore bs—Sbc Bd ~ G, and thus by ¢) we get (17).

From (15)~(17) it follows that Sh< F(Sb); hence naturally Sb F(Sb) # @,

i.e.,, She #'. By the Brouwer reduction theorem there exists a continuum K
minimal in 2 such that

(18) K, cSb.

Suppose, to get a contradiction, that K, is non-trivial.
By Theorem I, there exists a continuum

(19 bee?,
such that B'c Ky, so that by (I8)
(20) BeSSh.

Consider the continuum as, We have @b n bs< Ba by (12) and (15); therefore,
by Proposition 13, ab is a segment of as. By Definition 3,

@n ab - as

and abeas. For ab = as we get bs< Ba according to (ij and Definition 1, which
involves a contradiction of (11), (15) and (16); it follows that

(22) abjas.
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Therefore b € as— Sa by Definition 1, and thus Sh = Sa in view of Proposi-
tion 3 and Definition 2. It follows from (20) that B’cZSa, whence b’ € Sa and
further
(23) as = ab’,

and also Sa = B’a by Definition 1. Therefore
(24) BeSBa.

In view of Proposition 2, from (10), (21) and (23) it follows that ab’ satisfies
condition (IV) from the definition of #,. By Proposition 14, considering (24),
ab’ is a segment of ac. Thus, by (19) and Lemma 4%, we get ac € #,. However,
ab’ =ac by Definition 3 and therefore by (22) and (23) we have ab Zac, which
contradicts the maximality of ab in 2,.

This contradiction shows that K is trivial. Since K; n F(K,) # &, the unique
point of K, is a fixed point. : '

Remark. This fixed point belongs to Bd for d as in (13), because we have
K= Bd by (15), (18) and obvious inclusion Sbcbs. ’ ‘

Denote by .# the family of all continua M =X with the property that for every
bee,

B'czM implies b'ccM .

Clearly .# is inductive, and so & n .4 is inductive.

Tueorem 1IL. If ab is maximal in P,, then Bae M.
Proof. Let b'ce 2, and

(25) B'c;Ba.

Then &' € Ba, and thus in view of (i) it suffices to show that ¢ € Ba.

Since b’ € Ba, we have ab = ab’ and Ba = B’a by Definition 1. Then B'c3 B'a
by (25), and hence, by Proposition 14, ab’ is a segment of ac. Then also ab’ € 2,,
,.87’,, being correctly defined, and consequently we have ac € 2, by Lemma 4. How-
ever, ab’'cac by Definition 3, whence the equality ab = ab’ gives ab=ac. The
maximality of ab in &2, implies ab = ac, and therefore, by Definition 1, ¢e Ba.

Theorems I-III imply the existence of a fixed point, i.e.

COROLLARY. If X is a A-dendroid, then for every upper semi-continuous con-
tinuum-valued fiunction F which maps X into itself there exists a fixed point.

Proof. There exists by virtue of the Brouwer reduction theorem, a continuum K
which is minimal in 2, i.e., minimal with respect to the property that X n F(K)
# . Then, for trivial K, the unique point of X is a fixed point.

If K is non-trivial, then by Theorem I there exists an ab maximal in 2,, and
in the case where Ba ¢ i there exists a fixed point by Theorem II. In the opposite
case we have Bae A" N 4 in view of Theorem III. Therefore, by the Brouwer
reduction theorem, there exists a continuvum M which is minimal in # n %, and
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simultaneously there exists a continuum L= M which is minimal in
trivial L, the unique point of L is a fixed point. .

If L is non-trivial, then according to Theorem I there exists a b’

o ) e 1o ¢ maximal
in #y such that B'c3 L, and so that B¢ =M. It follows by virtue of the definition

of the element M of .# that b'cc M. Since b'c is non-trivial as an element of &,

we then hav? Cb' 3 M. Consequently Cb' ¢ " ~ . by the minimality of M, and
therefore Cb’ ¢ A" by Theorem III. Then, by Theorem II, there exists a fixed ;;oint
All the assumptions in the above Corollary are essential (see [11, p. 336)

Then, for
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