The kernel operation on subsets of a T,-space*

by
John C. Oxtoby (Bryn Mawr, Pa.)

Abstract. Fvery finitoly generated kernel algebra of subsets of a Ty-space is finite.
The strueture of such algebras ig fully deseribed. Kernel and complement alone generate
ten distinet set functions; kernel, complement, and union generate 64. The kernel opera-
tion is shown to bo characterized by a set of six postulates.

1. Introduction. The kernel of a set A contained in a T,-space C is
the largest subset of A that is dense in itself. Given 4, how many different
sets can he obtained by applying the operations of kermel and comple-
ment successively? This question was raised in 1930 by Zarycki [9], who
concluded, incorrectly, that at most eight different sets can be so obtained.
‘We shall show that in general the correct answer is ten. Surprisingly,
even when unions ave added only a finite number of different sets are
obtained (at most 64). More generally, any finitely gencrated kernel
algebra is finite. (A kernel algebra is an algebra of subsets of O that in-
cludes the kernel of each of its elements.)

These results contrast with the corresponding facts concerning the
clogure operation. Kuratowski [3] (see also [10]) showed that successive
application of closure and complement to a given subset of a T-space
gives rise to at most 14 different sets, but that there exists a subset of
the line that generates an infinite closure algebra.

In § 2 we determine the structure of all finitely generated kernel
algebras. Tn § 3 wo answer Zarycki’s question. In § 4 we study the extent
to which a topology iy determined by its kernel operation, and obtain
a eomplete postulational eharacterization of these set functions.

2. Kernel algebras. Wo denote the kermel, complement, and closure
of o set A C ¢ by A", A¢ (or (—A), and 4™, respectively, and the inter-
section of A and B by AB. Bvidently 4" C 4 and A™ = A" for all 4.
A= 4 it and only if A4 is dense in itself; A" = @ if and only if A is
geattored. The following six propositions are known to hold in any T;-space
([41, pp. T7-79, or [8], pp. 163-165):

(2.1) A% = AA" (A" is o relatively closed subset of A).
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(2.2) The wunion of any family of sets dense in themselves is dense
in dtself.

(2.3) The union of any two scattered sets is seattered.

(2.4) A—A" is scattered.

(2.5) If A is dense in ilself and @ i3 apen, then AG is dense in ilself.

(2.6) p" =0 for each p (.

The following formula gencralizes (2.1):

% It I
(2.7) (L) A== (U AL JL A1)
del Fenl e
Proof. Sinee A%C Ay for cach 4, (2.2) implies thatb
k 4
U APC(U A"
=1 sl

Taking closures and using (2.1) it follows that

k k k k k
(44 ({U A7) C (}J le)(L,JI Ag)' == (L‘JL Aqf.
i=1 =1 gl LES) o]
On the other hand,
I k k I I ke
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The first of these sets is dense in itself, by (2.5). The last one iy seattored,
by (2.4) and (2.3). Hence the first set is empty. Therefore

* ke ki
areaid s

and the conclusion follows.

(2.8) Let U be the union of a finite family F of subsels of ¢ such that

(i) each member of F is either scablered or dense in ilself, wnd

(i) if A in F is dense in iself and B in F ds scaliered, then either
BCA™ or BC A

Then U™ is the union of those members of F that are contained i the
closure of at least one member of F that is dense in dlself.

Prcof. This follows from (2.7). Under hypotheses (i) wnd (i), the
intersection of a set 4, in & with the union. of the sety A}~ is equal to 4y
in case A;C A7 for some A;= A}, and otherwise it ix cmply.

In the case k=2, (2.7) reduces to the useful formala:

(2.9) (Ao B)re= A" O B" v AB™ « BAM .
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The following three propositions are corollaries of (2.9).
(2.10) If A is perfect (A = A" = A7), then

(AU By =A"CB"  for all BCC.

(2.11) If B is scaltered, then

(2.12) If A*CBC A", then B = B"; in particular, A" is perfect.
(2.13) AP = {pr p e (A" v p)'}.

Proof. Tn (2.11), take B = p and replace A by 4™

(2.14) A 4s perfect if and only if (A v pf*= A for all peC.

Proof. Tf A is perfect, then (4w p)"= A by (2.10) and (2.6). If
(A v p)t= A forallp, then A = A" = (4™ U p)" for all p. Hence 4 = A",
by (2.13), and therefore A is perfect.

The following proposition generalizes (2.10).

(2.15) In order that (A v BY*= A" B" for all BC (' it is necessary
and sufficient that AC™ w A" C A™

Proof, Tf AC" v A" i not contained in A", let p e (AC" v A7) A™,
There are two cases: (i) If p ¢ AC"A™, take B-= ("—p. Then ¢*=p v B
C A v B and therefore p e (4 w B)'— (A" v B*). (ii) If p e A" A", take
B=gp. Then A"CA"wpCA™ and therefore, by (2.12),

Uropr=A"opCAUB and pe(4d v B)'—(4" 0 BY).

" In cither case, (4 v B)* # A" B"

If AQ"w A" C A", then for any set BC C we have
AB"™ CACMC A"  and BAT C A",

henee (A o B)* == A% B by (2.9). .

Tt follows from (2.15) that the converse of (2.10) is valid when and
only when ¢/ is dense in itself.

(2.16) Toworirm, Let §, be o partition of C into finitely many sels
Agy ey Ag. Lot & be the refinement of S obtained by pariitioning each of the
sets Ay into AT and the at most 9k=1 gets of the form B = By By -+ By, where
Bys= Ag— AY and for cach @ # i, either By== A}~ or Bi= A}7. Then the
kernel algebra generated by $, is the algebra generated by .

Proof. Sinee every subset of A;— A7 is scattered, repeated -appli-
cation of (2.11) shows that the kernel algebra generated by F, must include
each seb of the form B. Tt also includes each set of the form A7, and therefore
every member of 9. To show that the algebra generated by ¢ is the kernel
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algebra generated by &, it therefore suffices to prove that the kernel of
any union of members of § is a union of members of §. But this follows
from (2.8), since (i) the non-ecmpty members of ¢ are cither scattered
and of the form B for some j, or else dense in themselves and of the form A7
for some 4, and (ii) for any ¢ and j, either BC A}~ or BC A}, by the
definition of B; in case ¢ 5% j, and by (2.1) in case ¢ == j.

The atoms of the gencrated kernel algebra are the non-empty members
of . The possible combinations may be deseribed ag follows,

(2.17) If Ay, ..., Ax are non-emply, then the class 9, of non-emply
members of & satisfies the following conditions:

(1) 9, includes at least one subset of each Aq, and

(2) of 9, includes an element of the form B with By== A?™, then ¢,
includes A},

Amny subfamely of T (regarded as  set of formal expressions) that satisfies
these two conditions is o possible candidate for .

Proof. The necessity of (1) and (2) is clear. To show that they are
sufficient we first construct an example in which all members of 9 ave
non-empty. Let @y, ..., Q% be & disjoint irrational translates of the set
of rational numbers. Let J be the set of integers from 1 to k- 2%~ Define yp
on J so that for each 1 <3<k, v maps the intogery from ({~1)2%~t. 11
to ¢-25* bijectively onto the 2~ subsets of {Qr, .o, @iy, Qupry -y Qi) Pub

Di=Qi—J{(j—§,5+1: jeT, Quép(i)}
and

Ai=Dio {jed: (i—1)251 < j < 281 .

Then the -sets 4y, ..., 4x constitute a partition &, of their union ¢. The
corresponding partition & consists of the sets Dy, ..., Dy and the singleton
subsets of J.

Now let 9, be an arbitrary subfamily of this partition § that satisties
conditions (1) and (2). Let ¢y be the union of 4. Then the sets Ay ~ ()
(t=1,..., k) constitute a partition of ¢, into non-empty sots, and tho
atoms of the generated kernel algebra ave the moembers of ;.

In particular, €, may consist of Dy, ..., Dy and the singlotons con-
tained. in any subset of J, Hence the generated kernel algobra may have
any number of atoms from k to J(1--2%~1),

Let & be any set of atoms of a finite kernel algebra 4. HWach member
of & is either seattered or dense in itself. Tf A e & i denso in itself and
B ¢ 7 is scattered, then BA~ ¢, by (2.11), and thereforo BA~ = B or g,
sinee B is an atom. It follows from (2.8) that the kernel of each member
of # is determined as soon as we know (i) the set D of atoms that arve
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dense in theraselves, (ii) the set § of seattered atoms, and (iii) the map-
ping p that assigng to ecach seS the set

p(8)={deD: sCd}={deD: (sUd)y=sud}.

Let us define two kernel algebras to be isomorphie if there exists a Boolean
isomorphism of one onto the other that commutes with the kernel oper-
ation. Then two finite kernel algebras are isomorphie if and only if there
existy a one-to-one correspondence between their atoms that makes
the p-function of one corregpond to that of the other.

The p-function can be specified arbitrarily. Indeed, let {D, §} be
any partition of {1, 2, ..., k}, and let ¢ be any map of § into the power
set of .D. ' When ¢ e D, define f(i)=D,. When 4 ¢ 8, define f(i) to be the
unique element j e Ay ~J such that w(j) = {Q,: » e p(4)}. Then the range
of fis a family ¥, that satisfies the conditions of (2.17); it i3 the set of
atoms of a kernel algebra having the prescribed ¢-funection.

Wo may regard the set D w 8 of atoms of a finite kernel algebra as
the vertices of a bipartite graph [5] in which an element s ¢ 8 is joined
to an clement d e D if and only if (s v d)" = s v d. The problem of clas-
sifying finite kernel algebras up to isomorphism is seen to be equivalent
to that of classifying all finite bipartite graphs (without multiple edges)
regarded as basod opn an ordered partition of the vertex set into two sets.

For & somewhat analogous study of finite algebras that include the
closure and the coherence of each member, see [7].

3. Kernel and complement. Let 4 be an arbitrary subset of a T,-space C.
Note that A4 -— A" = A4™° Dby (2.1). By (2.16), the kernel algebra gen-
erated by A consists of the 64 unions that can be formed from the following
six sets (each of which, by (2.11), can be expressed in terms of kernel,
complement, and union):

s AN , b= A" , )
0= A APC 400 , d == ASdov—cqr— ,
€ vz A'A?b“«uA.tmwo ) f s A.cAmwoA_n-c .

It follows from (2.8) that

Aw=quowe, Al=Dbouduvf,
Arema, A=,
A =boouwdwevf, A =gucvwduevf,
A= hoe, A =g w d
A g dueuf, At —pucuevf,

6 — Fundamenta Mathematicae, T, XC
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and that Aenen and  Aeener = AWM Also "=auvbucud.
Part of the information contained in these formulas is summarized in the
following theorem.

(3.1) THEOREM. Any succession of the operations of Teernel and comple-
ment applied to a set A.C O leads to one of the len sels appearing in the follow-
ing diagrams:

ATLCTLG’H»

ACTHML Ancnc A’ILC% - AC‘YLCnL‘
A’n/ \AG))G Aﬂﬂ//{ \Ane .
AN e AN /!
N/ h /
A A°

The arrows indicate inclusion relaiions of the form C. Unless a, b, ¢, d, or e u f
is empty, no other inclusions velate any two of these sels. The lwo uppermost
sets in either diagram are equal to each other if and only if O is dense in itself.

In [9], as alveady noted by Vaidyanathaswamy ([8], p. 166), it was
erroneously supposed that (4 v B)"= A" v B" for all A and B. This
and the relations A"C A and A" C A™"" (which holds if and only
if 0= (") were treated as axioms. These three propositions ave actually
equivalent to the single proposition A" = 4. (The last two, with 4 = @,
imply O™ = (™" Then the first two imply that

C = Q" w one — " o (R0 = (CI w OnC)n = ("

and

A____-A(AUA&)?L:AA1vaAﬂ%=—A7I‘)

Consequently, these “axioms” are never satisfied by tho kernel operation.
Nevertheless, the numbered propositions deduced from them in [9] are,
in fact, true of the kernel operation in case (= (0"

4. Postulates for the kernel operation. The closure .4~ is not uniquely
determined by the kernel operation A" In fact, nsing (2.9), it is casy to
verify that the set function A™ = 4 v A"~ alm satigties the mxunm ([4],
p. 38) for a closure in ¢, Since 4 C A~ CA™ for cach 4 C ¢, the new
topology T contains the given topology 6.

Let A% and A° denote the derived sets of A relative to B and T,
respectively. Sinee 8 C B, we have A°C A% for cach 4 C . 1 peAdC A“
then A= A" (A—p)*=A—p Dby (2.5), and pe(d—p)”. Hence
P e (A—p)" C(A—p)~, and therefore p € 4% Thus 4 C A% implies A C A°.
The converse follows from the fact that 4% C A% Hence A" is the kernel
function for § as well as for 6.

Any topology in € that has A" for its kernel function will have the
same scattered sets, the same dense in themselves sets, and also the same
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perfect sets as G, by (2.14). Since every closed set is the union of a perfect
get and a sct LMMO sot ([4], p. 79), T is the maximal topology that has A™ for
its kernel funetion; it is distingunished among these by the property that
relative to it every seattered set is closed. § is an example of a *topology
in the sense of Haghimoto [2]; it is the *topology corresponding to B and
the ideal of seatterod sets (cf. [8], p. 183, or [1]). (A *topology is the
“«p-topology” corresponding to an adherence ideal P in the sense of
Vaidyanathaswanyy ([8], pp. 174-177).)
According to (2.13), A* determines ¥ Dy means of the formula

(4.1) AT s A {pr poe (A" o p)'}.
Under what eonditiony on the set fonction A" does this formula define
a clogsure in € that has 4" for its kernel funetion? This question is answered
by the following theorem.

(4.2) Turorem. Let € be o non- wnpm/ set and let A — A" be a mapping
of the power set of O inlo itself. In order that there exist a T'-topology in .C hav-
ing A" for its kernel function it is necessary and sufficient that the following

postulates be satisfied:

I ArC A,
I ACRB implies A™CB",
III1. A“,
Iv. ])“
V. = (} implies (4 v B)* =@,
VI If A == {p: pe(X*0p)y for some XCC, then (4w B)"

= A" B" for all BCC.

Proof. The necessity of I, IT, and IIT is clear, IV follows from (2.6),
V from (2.3), and VI from (2.13) and (2.10). Their sufficiency is established
by the following sequence of lemmas, in each of which it is assumed thab
Postulates T to VI ave satistied and that A~ is defined by (4.1).

(4.3) X e (Xm XM O {p2 p e (X0 p)}

Proof. X*C (X" w p)* by IL and IIT, hence
X CA—XM o X w{p: pe(X®u )}
o (Xme X U {p: p e (A" C X7

(:L.z],) (x 'n) e

Proof. (X— X9 C (X—X"X" by I and IL

(4.B) X CX implies X~ C X",

Proof. X CY implies (X*vp)"C(¥*uvp)* by II, and therefore
X Cy-,

[
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(4.6) If A={p: pe(X*u p) for some XCC, then (4 o Zy
= A v Z" for all ZC C.

Proof. Using I, T, and III, we have X"C A4 and X" C (X" p)
CX"uop. If pe A, then p e (X" v p)* and the last inclusion becomes an
equality; therefore

(Xrupr=X"upC4, X'oupCd® and ped”.
Thus A C A" Hence A4 = 4* The conclusion then follows from VI.

(4.7) X = X

Proof. Let A = {p: p e (X" v p)*}. Then X~ == (X'~ X" w A, by (4.3).
By (4.6), (4.4), and IV, we have X~ = A and (X" p)" = A C X~ for
every p e 0. Hence X™~ = X~ U {p: pe (XU p)t} = X",

(4.8) (XoX) = XYoo ¥,
Proof. Let A= {p: p ¢ (X" U p)"} and B = {p: p e (¥" v p)"}. Then
XoYCX u¥Y =A4A0Bu(X-X"u(Y-0",
by (4.3). Hence
(XoXPCAvB and [(Xo¥yupCAdwh,
by II, (4.6), (4.4), V, and IV. Therefore
(XOX)y =X ¥op:pelXo¥)opl
CXuY¥YuwAuB=X"uvXY"~.

The reverse inclusion follows from (4.5).

Since the relations X C X~, 0~ =@, and p~ = p are obvious, (1.7)
and (4.8) show that X~ satisties the axioms for a closure in (. Call thig
topology 8. Let X denote the derived set of X relative to B.

(£.9) If XC XY then X = X",

Proof. Suppose X CX® and p e X Then p e X and wo

Pe(X—p)” = (X—p)w {g: qe[(Xp) gl
Hence p e [(X—p)"u p]. Since peX, wo have
(X—p)"wp C(X=—p)up=X,
by I. Therefore
| [(X—p)* © pI*C X*,
by IL. Hence p e« X" Thus X C X", and g0 X = ) ™y by T

(4.10) If X = A" then X C X°.
Proof. Tor any X C ¢ and p e ¢ we have

Since (X—p)* C A, we have
X C (X p)  [(X=p)— (X—p)]© p
CA v [(Xoep)— (X—p)* o p.
Theretore, by IL, (4.6), (4.4), TV, and V,
AVCAC(X—p) .

Tenee if X == X" and p e X, then p ¢ X7,

Lemmas (4.9) and (4.L0) show that X is dense in itself relative to T if
and only if X == &A™ Tt then follows from I, IT, and III that for each 4 C O,
A™ is the largest subset of A that is dense in itself. Thus Postulates I to VI
completely chavactoerize those set functions on the power set of ¢ that
can be identiticd with the kernel operation of a Th-topology in C.

As an. Mustration, let ¢ be a Ty-space without isolated points. For
each 4 C ¢ let A" denote the set of pointy of A at which A is of second
category. A" iy not in general the kernel of 4, but it is easy to verify that
Postulates I to VI are satistied. The corresponding topology T ean be seen
to coincide with one of the *topologies considered by Hashimoto [2],
namely, the *topology induced by the ideal of sets of first category in C.
This topology has also been considered by Vaidyanathaswamy ([8], p. 178)
and by Treud [1]. The eategory measure spaces construeted from lower
densities in [6] can also be seen to be examples of topologies of this kind,
constructed in answer o a question arising in measure theory.

The anthor wishes to thank John €. Morgan IT and Jan Myecielski for
calling to his attention somo of the following references.
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Filter characterizations of z-, ¢*-, and ¢-embeddings

by
Robert L. Blair (Athens, Ohio)

To the memory of Lee W. Anderson

Abstract. The paper [6] by the author and A. W. Hager is supplemented here by
a number of filter-theorvetic characterizations of z-embedding, and of those conditions
which must be added to ¢-embedding to produce 0*- or O-embedding. Thesé lead to
filter characlerizations of *- and C-embedding which include results of J, W. Green [15].

1. Introduction. The subset § of the topological space X is z- embedded
in X if cach zero-seb of S is the restriction to 8 of a zero-set of X, (A zero-set;
is the set of zeros of a veal-valued continuous function.) The notion of
z-embedding oceurs (sometimes only implicitly) in some special contexts
in the early papers [12], [167], [17], and [18]. In 1963 the author initiated
the general theory of z-embedding, and at the same time introduced the
term “g-omboedding” itself. (See [2]; portions of [2] are incorporated
in [3], [4], [B], and [6].) Subsequently, the theory has been developed
by A. W. Hager and by the author (sometimes jointly), as well as by others ;
see [6] for a number of basic results and for a comprehensive bibliography
of relevant papors,

This paper may be regarded as a sequel to both [6] and [15]: [6] is
devoted to & study of 2-embedding and its relation to 0*- and ¢'-embedding,
but convergence (i.e., filter-theoretic) considerations are ignored. [15], on.
the other hand, is devoted to filter ¢chavacterizations of ¢*- and ¢ -embed-
dingy, but with no mention of z-embedding. In the present paper we
supplemont both [6] and [15] by providing Lilter characterizations of 2- em-
bedding (see 3.1) and of those conditions which must be added to 2-embed-
ding to produce ¢*- or ¢-embedding (see .1 and 4.2). The ¢* and C-em-
hedding characterizations of [157] (as well as improvements thereon) arc
then, deduced as consequences (see d.1 and 5.3).

Bxeept for 3.2(d), 3.5, 3.6, and 3.9, the results of this paper require
‘nQ‘ separation axioms.

2. Preliminaries. We assume familiarity with [11], whose notation
and terminclogy will be used throughout.
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