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Multi-valued maps of subsets of Euclidean spaces
by
J. Bryszewski and L. Gérniewicz (Gdar’lsk)‘

Abstract, Let X and ¥ be two metric spaces and let p: ¥ — X be a proper, surjec
tive map. Define, for each 4> 0, the set

My = {y « ¥; B(pw) = 0},
where H* denotes the Cech, cohomology functor with integer coefficients. Call p an

n-Vietoris map if ldpr< n—2—1, for each ¢ 0, where 1dXMD is the maximum

covering dimension for finite covers of subsets of Mp which are closed in ¥. In what
follows a 1-Vietoris map is called simply a Vietoris map.

A multi-valued map ¢: X — Z is called an n-admissible map if there exist a space ¥
and a pair of single-valued (continuous) maps of the form X ¥5Z such that the
following two conditions are satisfied:

(i) p is an n-Vietoris map,

(i) g(p™ =) Ce(x) for each z ¢ X.

In this case the pair of maps (p, q) is called a selected pair of @ (written (p, q) C p).
A 1-admissible map is called simple an adméssible map. An admissible map p: X~ 2
is called atrongl y admissible (s-admissible) if there exists a selected pair (p, ¢) C ¢ such
that g(p~(#)) = @(x) for each » ¢ X.

In the pmsen{, p{upm we prove some fixed point theorems and a themem on the
antipodes for n-admissible maps of subsets of Euclidean spaces. The proofs of these
results depend on the concept of degree of m-admissible maps. Moreover, we prove
a generalized version of the theorem on the antipodes for admissible maps and a theorem
on the invariance of domain for s-admissible maps of subsets of Euclidean spaces.

The class of admissible multi-valued maps was first studied in [4].
A multi-valued map ¢: X —»Z iy called admissible provided there exist
a space ¥ and a pair of single-valued (continuous) maps of the form
X2 ¥ 27 such that the following two conditions are satisfied:

(i) p is a Vietoris map,

(ii) g(p~"(@)) C ¢ () for each »eX.

‘We note that every acyelic map is admissible and that the compom-
tion of admigsible maps is also admissible map.

Using the generalized version of the Vietoris Mapping Theorem [8],
we generalize the notion of admissible maps to n-admissible maps
(comp. [3]).
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In the present paper we prove some fixed point theorems and & theorem
on the antipodes for n-admissible maps of subsets of Kuelidean spaces.
The proofs of these results depend on the concept of degree of n-admissible
maps.

Moreover, we prove a generalized version of the theorcm on the anti-
podes for admissible maps and a theorem on the invariance of domain for
some admissible maps of subsets of Buelidean spaces:

We note that for acyclic maps and n-acyelic maps these facts were
studied in [1, 3, 5, 6, 7].

ATl spaces are assumed to be metric.

1. Preliminaries. Let H denote the Cech cohomology functor with
integer coefficients Z from the category of metric spaces and continuous
maps to the category of graded abelian groups and homomorphisms of
degree zero.

Thus, for a space X

H(X) = {HHX)} 150

is a graded abelian group and, for a continuous map f: X -V, H(f) is
the induced homomorphism

H(f)=f*= {f*}: H(Y)-H(X),
where f*¢: HYY)-HX).

A mnon-empty space is called 0-acyclic if HYX) = Z; let us call X
k-acyclic, k> 1, it HYX)=0; let us call X acyclic if X is k-acyclic for
each k> 0.

Let A be a subset of a space X. Denote by rdy 4 the relative dimension
of 4 in X. From the definition, given in [8], we have

Tdxd = supdim
oc4
where € is a closed subset of X and by dim ¢ we denote the topological
dimension of (. We assume that ¥dxd < 0 if and only if the set A is
empty and in this case we put ¥dxAd = — co. We observe that:
(L1) If ACX and BCY, where X, Y are two compact spaces, then

rdxxy AXBLrdx A+rdy B .
(1.2) Let X, be a closed subset of X. Assume furiher that A is a subsel
of Xy, B is subset of X and A C B. Then we have
I‘dXO.A. < I‘d_,YB .

A continuous map f: ¥ —»X is proper if for each compact subset
A CX the counter image f~(4) of 4 under f is compact; f is closed if
for each closed subset BC Y the image of B under S is closed in X
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The following fact is evident:

(1.3) If f: X »X is a proper map, then f is closed.

The Vietoris-Begle Theorem (see [8] and (1.3)) gives

(1.4) TrmorEM. Let f: Y X be a proper and surjective map, and
let M be the set of all w € X such that =) fails to be i - acyelic. Let n — 1+
+111%},x (vdx M3--4). Then for each k >n the induced homomorphism f**:
H"’(K’%a}l KXY is an isomorphism.

Rem zu]j]{. We observe that, if M} is the empty set for each i > 0,
then rdy Mj= -—co and hence Theorem (1.4) implies that

- f*t H(X)-»H(Y) is an isomorphism.

(1.5) DEFINITION. A map p: ¥ - X is called an n-Vietoris map if the
following two conditions are satisfied:

(i) p is a proper and surjective map,

(i) rdx M} < n—2—1, for each = 0. -

Definition (1.5) implies that if p is a 1-Vietoris map, then rdx Mi<o,
and from the above remark we deduce that p*: H (X)->H(Y) is an
isomorphism. In what follows a 1-Vietoris map is called simply a Viefo-
7is map.

Pinally, we note that if p is an n-Vietoris map, then we have:

L4max (rdx M) +4) < L+max{(n—2—i)+i] = n—1
10 i=0

and (1.4) implies that p**: HYX)-H¥Y) is an isomorphism for each
Iz n.

(1.6) If p: ¥ > X dis a Vietoris map, then for each A C X, the map
P p~NA) > A ds @ Vietoris map, where p is given by P (y) = p(y) for all
yepTH(A).

From. (1.6) we deduce

(L.7) If pi: ¥ =X and p,: X —Z are Vietoris maps, then the compo-
sition py o pyr Y = Z of py and py is also a Vietoris map.

2. Multi-valued maps. Let X and Y be two spaces and assume that
for every point @ ¢ X a non-empty subset g(®) of Y is given; in this case
we say that ¢ is a mulli-valued map from X to ¥ and we write g: X —»Y.
In what follows the symbols g, v will be reserved for multi-valued maps;
single-valued maps will be denoted by f, g, &, ete.

Let ¢ X =Y be a multi-valued map. We agsociate with ¢ the follow-
ing diagram of continuous maps:

P Ap
XTI T
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111 which I',= {(z,y) e XX ¥;¥ cp(x)} is the graph of ¢ and natural
projections p, and g, are given by P2, y) =2 and g, y) =Y.
The point-to-set map ¢ is extended to a set-to-set map by putting
@(4) = | p(a)C Y for A CX; p(A) is said to be the image of A under p.
A

It QD(A)aCS B C Y, then the contraction of ¢ to the pair (4, B) is the multi-
valued map ¢': A — B defined by ¢'(a) = ¢(a) for cach a ¢ A. A contraction
of @ to the pair (4, Y) is simply the restriction pla of ¢ to 4.

Let p: X - Y and y: ¥ -2 be two maps; then the comyposition of ¢
and p is a map p o g: X »Z given by (v o ¢)(@) = v(p()).

(2.1) DEFINITION. A multi-valued map ¢: X - is said 6o be continu-
ous if the grap I', of ¢ is closed in the product X x V; in other words,
the conditions #n =, Yn =Y, Yn € (@) imply ¥ € @(x).

(2.2) DEFINITION. A continuous multi-valued map ¢: X — Y iy called
compact if the image ¢(X) of X under ¢ is contained in a compact sub-
set of Y.

(2.3) DEFINITION. A continuous multi-valued map ¢: X - is said
to be acyclic if the set ¢ () is acyclic for every point a « X.

(2.4) DEFINITION. Let ¢: X »>Y be a multi-valued map. A point x is
called a fized point for ¢ if x e @(x).

We observe that, if : XY is a compact acyeclic map, then, for
every point « ¢ X, p,*(«) is homeomorphic to ¢(z) and hence p,: 17, X
is a Vietoris map.

(2.5) DerFmNiTION. Let ¢, 9: X »Y be two multi-valued maps such
that ¢(2) C y(x) for each » ¢ X; in this case we say that ¢ is a selector of y
and indicate this by writing ¢ Cy.

3. Admissible, s-admissible and n-admissible maps. In this section we
introduce the classes of multi-valued maps which are of importance in
our considerations.

(3.1) DerFINITION. A map ¢: X —Z is called o-cdmissible, n 31,
if there exist a space ¥ and a pair of single-valued (continuous) maps
of the form

X&v 4Ly
such that the following two conditions are satigfied:

(i) p is an n-Vietoris map,

(i) ¢(p~(2)) Cp(2) for each » e X.

In this case the pair of maps (p, q) is called a selected pair of ¢ (written
(2, ) Ceo).

The class of n-admissible maps from X to Z will be denoted by
oNX, 7).
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A map ¢ e 0 X, Z) is called simply an admissible map.
(3.2) DErFINITION. An admissible map ¢: X —Z is called strongly
admissible (s-admissible) if there exists a selected pair (p, q) C ¢ such that

g(p7(®) = p(z) for each we X .

If a selected pair (p, ¢) of <p satisfies the above condition, then we write

(1,9 = ¢
The class of s-admissible maps from X to Z we denote by OXX, Z).

Remarks. 1. We observe that, if p: X —»Z is a compact acyeclic map,
then. for cxample the pair (p,,q,) is a selected pair of ¢ and hence
(Dgr 4) = -

2. Denote by C(X, Z) the class of compact acyclic maps from X
to Z; then we have the following inclusions::

]
0(X,%)C 04X, Z)C (X, Z)C (%X, Z) ...

(3.3) ProvosrtoN. If ¢ e OXy, X,), @ye C1(X,, Xy), then gop
e ONX,, X;) and for every selected pair (P, q1) C @1, (D2, ) C @ there ewists
a selected pair (p, q) C @y o @, Such that

(P*)7'¢" = (p7) 7 qi(p2) e -
Troof. Let (p;, ¢.) C g and (ps, gs) C @, be selected pairs of the form

1 @ DL, @
XY, —>Y,, X, <Y,—X,.

Consider the diagram

in which ¥ == {(#;, ¥2) € Ya X Xy () = Da(ya)}, DalYrs Y) = ¥, @Y1, Ye)
=1y, D Wy Ya) = Py o Po¥uy Yo)y W1y ¥2) = G © G(Y, Ya)-

The map p as the composition of the Vietorig maps p, and p, is also
a Vietoris map (see (1.7)).

Tet A be a subset of ¥y. It is casy to see that p;lg(4) = gs05 H(A).
This implies that for every point z ¢ X; we have

alp (@) = 66w P @) = 6p{a(p @) Cre o pilo)

and hence we obtain (9, q) C@e o ¢1-
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Applying to the above diagram thé functor H; we simply deduce
(p9)7'¢" = (2D 7' (p2) 7'
and the proof of (3;3) is completed.
(8.4) ProroSITION. If ¢ € OX( Xy, X,) and @, e O4X,, Xy), then ¢y oq
e 0N Xy, Xy) and for every (p1, ¢1) = @1y (Do) @) = qo there ewists o pair
(p,.9) =@, 0 @, such that

(07" = (1) 76 (03) "' -
The proof of (3.4) is analogous to the proof of (3.3).
(3.8) ProPOSITION. If ¢ € C(X, Z), then for every selected pair (p, q) C ¢
we have (p*)'¢" = (p,)7'g, -
Proof. Let (p,q) b;é a selected pair of ¢ of the form

xX&vty
Consider the commutative diagram

v a9

Y\ 1;,,, /z
\\yf //‘

in whieh f: ¥ -1, is given by f(y) = (p(¥), q()). Applying to the above
diagram the functor H, we obtain (p*)7'¢"= (p})~"¢}, and the proof
is completed.

(3.6) Exampres. 1. Observe that if ¢e OYX,Z) then for every
point # e X the image ¢(2) of » under ¢ must be a connected set. Hence
we simply deduce that the class of admissible maps is larger than the
class of s-admissible maps. .

2. Now, we give an example of an s-admissible map ¢ such thatb
there are selected pairs (p, ¢) = ¢ and (5, J) = ¢ and (p*)"Yg* £ %) 'F*

Let @,: §*— 8% where 82 denotes the unit sphere in the Huclidea.
space K% be the map given by ¢z)= {y 82, lly—ul < 4} and lot
@i 82— 8% be the map given by @,(x) = p(—u) for cach @ e 82 Dofine
the map ¢: 82— 8% by putting ¢ = @, o p,. Observe that @y, and @, are
acyclic maps. From (3.4) we deduce that ¢ is an s-admissible mayp. Using
(3.5) and (3.4), we infer that there exists a selected pair (p, ¢) = ¢ such
that (p*)~'¢" = (—idg)". Moreover, we conclude that ¢ = @, op, and
hence, in view (3.5) and (3.4), we deduce that there is a sclected pair
- (P, 7) = ¢ such that (p*)7g" = (idg)*.
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(3.7) DErFINITION. T'wo maps ¢,y ¢ X, Z), n > 1, (pyveCyX, 7))
are called homolopic (written g ~y) if there exists a map x e OYX x I, Z),
(€ O(X X I, 7)), where I =[0,1] is the unit interval, such that x(z, 0)
Co(x) and »(z,1) Cy(z) for each z e X.

(3.8) PROPUSITION. If two maps ¢,y eC"X,Z) (p,ye X, 2)),
are homolopic, then there ewist selected pairs (Do, %) C @ and (py, ) Cy
such that for each k= n

(PG = (p3H g,
(for each k= 0, (p3*) gk = (p¥H) gy,

Proof. Let x e ("X x I, Z) (x e CYX x I, Z)) be a homotopy joining
o and v, and (p, q) C» a selected pair of the form

XIxIE&YS47.

For the proof we consider the commutative diagram

X x {0} 22

PHE X (O]

lio L:"o \\q{A
Xxl «-2— Y : Z
Y
1 i1 /

4

X x {12 p (X x (13)

in which pg, p, are contractions of p, ¢,, ¢, ave vestrictions of ¢ and 4, 4,
Joy Jp are ineclusions, respectively. :

Since p is an n-Vietoris map, » > 1, and X x {0}, X x {1} are closed
subsets of X x I, from (1.2) we deduce that p,, p, are n-Vietoris maps.
From x(x,0)Co(z) and x(x,1)Cy(x) for each wxeX, we infer that
(Do, o)y (D1, qu) ave selected pairs of @ and v respectively. It is well known
that i = 4¥ and hence applying to the above diagram the functor H,
in view (1.4), we obtain: :

(i) (piy=ighh == (p¥)=igfk  for each k= n,

(for each k3= 0). Pinally, since we may identify X x {0} with X and
A {L} with X, from (i) we deduce (3.8) and the proof is completed.

4. Degree of n-admissible maps. Let 8" be the unit sphere in the
Tuelidean (n--1)-space B K™ the unib closed ball in B*** and P™+
the space R"* without the point 0.

Tn this section we define the degree of an n-admissible map ¢: 87 — 83
where 8% (4= 1,2) are two spaces which have the cohomology of an
n-sphere §% We orient 8% by choosing the generators f; « H*(87) (¢ = 1, 2).


Artur


240 J. Bryszewski and L. Gérnicwicz

Oongider the diagram
SpE Y58y,

in which p is an n-Vietoris map and ¢ is a continuous map. In this case
we define the degree deg(p, ) of the pair (p, q) as follows: deg(p, ¢) is
the unique integer which satisfies - :

(0 7g"(B) = deg(p, By -

(4.1) DeFiNTioN. Let ¢: 8y—=08% be an n-admissible map. We
define Deg(¢) of ¢ as follows:.

Deg(p) = {deg(p, 9); (»,9) C o} .

(4.2) Let @,y e 8%, 8%). Then

(i) @~ implies that Deg(p) ~ Deg(y) # O,

(ii) @ Cy smplies that Deg(p) C Deg(yp).

Assertion (i) simply follows from (3.8). For the proof of (ii) we observe
that if (p, ) Cg, then (p,q)Cy.

If p: St~ 8% is an acyclic compact map, then from (3.5) we deduce
that Deg(p) is a set consisting of exactly one clement, and in this case
we have:

(4.3) Let o,y e C(8Y, S3). Then
(i) @~y implies that Deg(p) = Deg (),
(ii) @ Cy implies that Deg(p) = Deg (y).

Let ¢: K™™' E"" be an n-admissible map and assume that ¢(S")
CR"N\{@}. By ¢lg: 8">R""\{w,} we denote the contraction of ¢ to
the pair (8%, R"*\{x,}).

From (1.2) we infer that ¢|g e O"(S7, B""\{2,}). In this case with
every selected pair (p, g) C ¢ we associate the pair (p,, ¢,) C @|gn a5 follows:
let p: Y>E"", ¢: YR be two maps such that (p,q)Cg; then
Pz PTHSY) = 8", gz pTH(S™) = BMIN{m,} ave given as contractions of p
and ¢, respectively (evidently (p,, ¢,) C p|g).

We define the degree Deg(p, #,) of ¢ by putiting

Deg (g, @) = {deg(ps, ¢:); (2, ) C g} -
Clearly, we have Deg(p, 2,) C Deg(p|

)

Exavrre. Let g: K" —»R™ be a map given by ¢()== & for
each » e K", Tt iy easy to see that ¢ is an admissible map. We assert
that Deg(p, 0) = {0}.

iom®
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Indeed, let p: ¥ - K™+, g: ¥ » R"* be two maps such that (p, ¢) C g
Then ¢(¥)C P Consider the commutative

Kt _<_.__gi_____1;r \
e

i i >Pn+1
G 1 -1 /(1/1
e

where 4, j are, respeetively, inclusions.

Applying to the above diagram the functor H”, we deduce that
(pr") g™ = 0 and henece deg( P1, @) = 0. Since (p, g) C ¢ were avbitrary,
we obtain Deg(p, 0) = {0}.

It is easy o see (compare Txample (3.6), 2) that for ¢|g.: S*— R
the set Deg(p|gn) # {0}

Finally, we note that for s, e B*, [irj| > 1, Deg(p, 2,) = Deg(p|gn)
= {0}, where ¢|g is regarded as the map from 8™ to R \{r,}.

(4.4) Limmma. Let g: K" —R" be an n-admissible map such that
@(8") C P If Deg(p, 0) 5= {0}, then there exists a point & e K" such
that 0 e ().

Proof. By assumption there exists a selected pair of ¢ of the form

]{n—}-lﬁ_ Y an+1

such that deg(py, ¢;) # 0 where py;: p~ (8" =8, ¢: p (8" —»P*** and
P:(y) = 2(¥), e(y)= ¢(y) for each y ¢ p~'(8"). Suppose that 0 ¢ ¢(z) for
each ¢ L™ Then we have ¢(Y)C P and therefore the map ¢ may
be regarded as the map from ¥ to P"™, We have the commutative
diagram ‘

Eritel oy N

0 W
p i \ Z)n-l-l
qy
- L p“l(ﬁm)/

in whieh 4,7 are inclusions.
Applying the functor H" to the above diagram, we obtain

(pIm)ign= i p*)

*n

but i** iy the zero homomorphism and hence (pI™)~*¢i™ = 0. This gives
deg(py, i) = 0 and we obtain a contradiction.
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(4.5) TarorEM. Let g K™ > B™* be an n- admissible map such that
@ (8™ C K™, Then ¢ has a fized point.
Proof. For the proof we may assume, without loss of Ocnemhty,

that @ ¢ p(») for each x < 8™
Let (p, q)C o be a selected pair of ¢ of the form

Kn—%—ljj b 9, g1

Define a continuous single- valued map f: Y-R*"' by putting f(y)
= p(y)—q(y) for each y e Y.

From the above assumption we infer that f(y)e P"** for cach
y e p~H8").

Let p: K™ =R be a map given by

y(@) = flp~(x)) for each weK"™*.

The map yp is n-admissible, since the pair (p,f) is a selected pair of .
It is easy to see that w(S™ C P"*'. We -assert that

(i) Deg(w, 0) # {0}.

To prove (i) we define the following maps:

g: pTHSM P, gy)=p(y) for each yepT'(8"),
he p S X I->PY, Ry, t) = p(y)—1tq(y) .

Observe that k is well defined. For t = 0 or ¢ = 1 we know that (p (y)—tq())

e P*** for each y e p~(S™). ,
Assume that there exist a number 0 < t< 1 and a point y € p~*(§")

such that p(y)—1tq(y) = 0. Then we have ‘

1= lpl=tlem<t<1

and we obtain a contradiction (since g(y) e K™+ for each y e p~*(S").
Let (py, f1) be the associate pair for the selected pair (p, f) Cy (com-
pare the definition of degree for maps from K™* to R"*1),
Since 7 is a homotopy joining f, and ¢ and py™ is an isomorphisun,
we have

(pz‘"rlfr" = (s,

but (pi™)~g*™ 7 0 and therefore deg(p,, i) # 0.
Fmally, we infer that p satisfies all the assumptions of Liemma (4.4).
This implies that there exists a point # ¢ K™ such that 0 ewp(r).
Then & e @(x) and the proof of (4.5) is completed.
As an immediate consequence of (4.5) we obtain the following
(4.6) CorOLLARY (Brouwer’s Theorem). Hvery n-admissible map, i
particular every admissible map, of the ball K™ into itself has o fived point.
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5. Theorem on antipodes for 7-admissible maps. In this section we
generalize the classical Borsuk-Ulam Theorem from the case of single-
valued maps to n-admissible maps.

(5.1) THE'()REM. Let g2 8% P be an n-admissible map. If for every
% € 8" there exisls an n-subspace of B strictly separating o (x) and @(— z)
then 0 ¢ Deg(q). ’

Proof. Let (p, q) be a selected pair of ¢ of the form
Sy prtt
Define the map p: 8%— P given by
)= ¢(p~"(x)) for each zeS".

It is easy to sce that » is a compact multi-valued map satistying the.
agsumptions of (5.1). This implies that for every y « 8" the following set
is open:

Uy ={xel"; (y,2) >0 for each zep(x) and (y,2)< 0
for each z ep(—a)},

where (y,#) denote the inner product in R™™, From the assumption we
deduce that for every z e 8™ there is y ¢ 8" such that (y,2) >0 for all
zey(w) and (y, )< 0 for all 2 e p(—x). Therefore the family {Uy}, s is
an open covering of 8™ Since §* is compact, there exists a finite subcover
{UY:}smr,.m- L€t {g:}ies, . m be @ subordinated partition of unity.

Consider g: 8" — P+ defined by g(x) = > (g:(#)— gi(— #))y:. Observe

%
that if 2 ew(x) then:
(i) (yi,2) >0 for some ¢=1,..,m,

(i) (y1,2) < 0 implies gi(z) = 0,

(i) (¢, ) > 0 implies gi(—ax)= 0.

Conditions (i)-(ili) imply that g is a well-defined map (i.e., g(8")
C lmwlll)‘ .
Tho map ¢ is odd, and thus deg(g) # 0. (Compare the theorem. on
antipodes for single- vm]uml maps.)

Define the map §: ¥ —P* given as the composition of p and
¢(§ = g-p), and the map h: 'Y><I—>P’”"L given by h{y,t) = tg(y)+
4 (1—1t)q(y) for cach y e ¥ and tel.

We know that, for t==0 or t=1 and for each y e ¥, h(y,d) # 0.
Assume that h(y,?) = 0 for some y ¥ and 0 <7< 1. Then we have

—(1—1)g(y) = 1§ ().
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Taking the inner product of both sides of the above equality with. ¢ (y),
we obtain ‘

—(1—t)(g(®), a) = t{g®), ¢(¥)) -

We have — (1— t)(q(y), q(y)) < 0, but (i)-(ili), for &= q(y), and the
definition of § implies that t{g(y), ¢(y)) > 0, and thus we obtain & contia-
diction. Since & is a homotopy joining ¢ and § and p** is an isomorphigm,
we obtain

(p*’l')'flq*“ — (p*u,)—la’*n ,
and hence we have

(p*n)—lq*n — (p*n)—lp*ng*n — g*n £ 0.

This implies that deg(p, ¢) # 0 and the proof of (5.1) is completed.
Theorems (5.1) and (4.4) give
(5.2) COROLLARY. Suppose that ¢: K" ->R"* is an n-admissible map
and for each x e 8" there is an n-subspace of B st;g‘"fictly separating @ (x)
and p(—x). Then 0 eqp(x) for some v e K"

6. Theorem on antipodes for admissible maps. In this section we denote
by M a compact space which has the cohomology of the unit »-sphere S
'in Rn+1_

A continuous multi-valued map @: M- M is ealled an dnvolution
if the condition (x, y) € I'y, for every (z, y) ¢ M X M, implies that (v, ) e I'.

In our subsequent consideration an essential use will be made of
the following:

(6.1) Let g: M —M be a single-valued involution and let f: M —S8" be
a single-valued continuous map such that f(x) # fg(x) for each © e M. Then
the induced homomorphism f: HM8™) — H™( M) is a non-zero homomorphism.

Theorem (6.1) clearly follows from Corollary 4, p. 299 in [1].

‘We prove, for admissible maps, the following general version, of the
Theorem on antipodes.

(6.2) THEOREM. Let @: MM be an acyclic involution and let
@: M P be an admissible map such that following condilion is satisfied:

every radius with ovigin at the zero point of B has an emply inler-
section with the set o(x) or (p((b(m)) for each wx e M.

Then 0 ¢ Dege.
Proof. Let (p,q) be a selected pair of ¢ of the form

HE YL prit,
‘We prove that deg(p, q) # 0.
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Define the set X by putting

X={(z,ay,y); ve M, & «D(x),y ep~ ),y epTHz')}
CUXMXYXY.

Since p as a Vietoris map is proper, M is compact and @ is continuous,
we infer that X is a compact set.
Jonsider the diagram

X .-M.M_T_-m > Qn x

U N
8 \n rq ) >’P7"+1

\\ q
2Ny /S

in which

o a1 u — c oo 4()

‘5("—"’7‘1"7?/7?/)=9L': f(w’x7y7?/)=m’

m(@, o', y,y" )=y for each (z,2,y,y)eX
and

&

"=

It is casy to sce that the above diagram commutes. The.-map s has the
following decomposition:

for each ze P"*1,

(2, 8, 4, 9) = (@, 8, y) = (3, @) >

Sinee the maps given in the decomposition of s are determined by the Vietoris
maps p and p,,, respeetively, we infer that s is a Vietoris map (comp. 1.7).
This implies that X has the eohomology of n-gphere 8% Define the single-
valued involution g: X=X by putting ¢(z, o, v,y') = @, 2,9, y). We

prove thab [, oy ¥, 0°) # flg(e, 2, y,9"). Indeed, we have

fanat g = U Aot oy, ) = L)
Tty ) =gy 4 S0 =gy

Sinee q(p~"(x)) Cp(x) for cach x e M, from the assumption we deduce that

), 4W)

e ™ Tl
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Therefore from (6.1) we find that f*%: H™S")-H"(X) is a non-zero
homomorphism. Since p*, s¥, #* are isomorphisms, from the commutativity
of the above diagram we have

(],‘*n)—lq*n — (s*n)——lf*n(,r*n)»l # 0 ,

and deg(p, ¢) # 0. The proof of (6.2) is completed.

We now draw a few consequences from the main theorem.

(6.3) ComrorLARY. Let @: M M be an acyelic involution and let
@: M—=8" be an admassible map which satisfies the following condition:

@)~ o) =0, for cach x e Mt and for each y e P(x).

Then 0 ¢ Dege.

(6.4) ComorLARY. Let @: M-I and o: M —8" are as in (6.3). Then
@ (M) = 8"

Proof. Let (p,q) be a selected pair of ¢. From (6.3) we have
deg(p, q) # 0. Assume that there exists a point u, ¢ S™\gp~*(M). Consider
the commutative diagram

P

M2y
lio J/J'o\z\k
M 12y Sgn

o I v
y/

iy —

in which f(y) = —wu, for all y¢ Y,

_ taly)+(—1)u

lltq () -+ (t—1) ]’
We have q(y) s u, for each y ¢ Y. This implies that the map A is well
defined. Since f is a constant map, we have f* = 0. The commubativity
of the above diagram implies that

(™) = (p™ 7" =0,

and deg(p, q) = 0. This contradicts the fact that deg(p, q) # 0, and the
proof of (6.4) is completed.

(6.3) COROLLARY. Let ®: M—M be an acyclic involution and let

iy, 1) for each ye ¥ and te1.

p: M ->E" be an admissible map. Then there ewists a point (x,y) e I'y such

that o(x) ~ @(y) #O.
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Proof. We may regard the map g as the map from M to §* Then (6.5)
simply follows from (6.4). ‘
Assume that M= S* and & = —idg; then from (6.5) we obtain
(6.6) COROLLARY. For every admissible map p: 8" —R" there is @ point
@ e 8* such that ¢(@) ~g(—r) = 0. :
~ Note that Corollary (6.6) is a generalization, to multi-valued maps,
of the classical Borsuk—Ulam Theorem. :

7. Theorem on the invariance of domain. Tn this section we show that
the Brouwer Invariance of Domain Theorem may be generalized to
s-admigsible maps.

For a gubset 4 of R* we denote by IntA the union of all open
sets in R"** which are contained in 4. For a point a, ¢ B and a positive
real number » we denote by B(ay, r) the open ball in R**! with centre a,
and radius 7.

Tet 4 be a compact subset of R*?, g, ¢ A and U an open neigh-
bourhood of g, in R™*; then by j: ANU -4 we denote the inclusion map.
We note the following fact: )

(7.1) Let A be a compact subset of R and a, ¢ A. The point a, e Int A,
if and only if there exists o positive number vy such that for every 0 < ¢ < 7o
the homomorphism §*": H'(A) ~H"(ANB (a,, 7)) induced by j: ANB(a,, 7) A
8 not an epimorphism. :

The above fact is well known; for example see ([2] p. 394). Next, we
prove the following two lemmas: '

(7.2) LmsmmA. Let A be a compact subset of R*™* and let a, be a point
of A. The point ay e Int A if and only if there exisis an s-admissible map
o K™ A such that

(i) (8" C AN{ay},

(i) 0 ¢ Deg(p, ap).

Proof. We observe that if a, ¢ Int.A, then there exists a single-valued,
continuous map f: K" >4 such that f(8%) C AN\{a,} and deg(f|g) # O..
Conversely, assume that there exists an s-admissible map ¢: K™ A
such that ¢(8") C AN\{a,} and 0 ¢ Deg(p, a)). We prove that a, e IntA.

Let (p, ¢) == ¢ be o selected pair of ¢ of the form

1{1L+1£ ’Y‘_ﬂ,A .

Define a map py: p~Y8 —8" and ¢ p7Y8") »AN{a,} by putting
P(Y) = p(y), ¢(y) = q(y) for each y ep~*(8"). The set g;p~(S") is compact.

Lot 7, == (iliﬁﬁ(a(,, ql(p”"(ﬁ")}). Then #, is a positive real number. Con-
sider the open ball B(a,r) for 0<r<7, and the inclusion map

Ji ANB(ay, ) —>A; we assert that 5 is not an epimorphism. "

4 — Fundamenta Mathematicae, T. XC
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Indeed, we have the commutative diagram

I{n—)-l r Y e _A_

Tﬁ Tin _ Ti
s”j\ P ANB (4, 7)
o

id is

p—l(sn) o .>Rn+1\{ao}

in which 4, 45, i, ave inclusions, g, g are given §(y) = §,(¥) = q(y) for
each g « p~1(8"). From the assumption we have (py™)'@/™ # 0.

This implies that (pi)~'g"™ + 0 and hence 7" % 0. Assume that j**
is an epimorphism. Then we obtain

BT = (P TR A 0,

which is a contradiction. Sinee j** is not an epimorphism, from (7.1) we
obtain a, e Int4, and the proof of (7.2) is completed.

An s-admissible map ¢: X —»Z is called an e-map if the condition
@(®) N p(@') # @ implies d(x, 2') < ¢ for each z, s ¢ X.

(7.3) LEMyMA. Let g2 K*™* R be a L-map. Then

(1) @(8™) C R"™\{z,} for each z,e @(0).

(ii) 0 ¢ Deg(p, 2).

Proof. Let 2 e p(0); we prove that 2, ¢ ¢(8"). Assume that z, € p(z)
for some z e 8™ Then we have ¢(0) ~ ¢(x) # @ and from the assumption
we deduce that ||z < 1, which is a contradiction.

Now we prove (ii). Let (p, ¢) = ¢ be a selected pair of ¢ of the form

{n-{—l Y — Rn+1

Let 9,ep~(0) be a point such that ¢(y,) = 2. Define the maps
Dz pTHE™) =8 gz pTHS") > B Ng} by putting pi(y) = p(y), @)
= q(y) for each y ep~'(S"). For the proof it is sufficient to show that
deg(p,, q1) # 0.

Define the following sets:

M
I

{(®, &) e K" X K" lo—a'| = 1},
={,2,9,¥): (&,9) <X,y e"p"l(w), y' Gp—l(m’)} ’
{9:‘ Y,y (@, 0y, y') e My 0" =0},

It is easy to see that X, M, Z are compact sets.
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Consider the diagram

S7L<i____p—1(sn)ﬂ_>_Rn+l\{zQ} ! > pntl

£ : 1

] ~M

in which

W) = (29),0,9,9), hiz,0,9,y)=u,
@, 0,9, 9) = (2,0,9,9), i@, 2,y,y)= (2,2,
s(m,O,y,y'):(m,‘O), (z) =2—2,, -
T, 2, y,9") = q¢(y)—qly") .

Since @ ix an 1-map, we have f(z, o', y,9’) # 0. It is evident, that the
above diagram commutes.

As in the proof of Theorem (6.2), we deduce that h*, s* t* are
.sommplnsms Hence the commutativity of the above dla,gram implies
that §* and 4* are isomorphisms. This implies that M has the cohomology
of §~.

Define the involution g: M — M by putting ¢(z, 2, ¥,y ) (s 2,9, 9).
Then flg(@, ', y, y)) # flz,a',y,y'). Applying Theorem (6.2) to the
maps f, g, we obtain f** 7é O From the commutativity of the above
diagram we have ¢i"* # 0. Finally, we obtain ¢! # 0, and this implies
that deg(py, ¢) # 0. The proof of (7.3) is completed.

' (7.4) Remark. It is evident that Lemma (7.2) remaing true for any
losed ball in B with radius ¢ and for any ¢-map, where ¢ is a positive
real number.

Now we prove two theovems of the type of the Brouwer Invariance

of Domain Theorem for s-admissible maps.

(7.5) TumornM. Let ¢ > 0 be a positive real number. If p: RV —R*H
s an e-map, then ¢(R") is an open subset of R™.

Proof. Let y e p(R*). We prove that y ¢ Intip(R™*). Assume that
Y e p(w) for some @ ¢ B, Let K2 be a closed ball in R™** with the centre
at ¢ and radius e.

4%
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<
<

Sinee p is an s-admissible map, we deduce that o (IC*1) is compact set.
We have 4/ € o (E"+?). Let y be the restriction of ¢ to the ball K+ Then y is
an s-map and hence we have p(S7) C R**"\{y}, where 8} denotoes the
boundary of K**'. Therefore Lemma (7.3) (comp. Remark (7.4)) implies
that 0 ¢ Deg(y, %) and from (7.2) we obtain y e Intp(R™). The proot
of (7.5) is completed.

(7.6) TurorEM. Let U be an open subset of K" and ¢: U — R
an s-admissible map. Asswime further that for every point ®y, @y e U the
condition @, # 2, tmplies @(x,) N (L) =@. Then p(U) is an open subset
Of Rt

Proof. From the assumption we infer that ¢ is an e-map for each
£>0. Let y ep(U). We prove that 4 ¢ Intp(U). Asstume that y e p(n)
for some « ¢ U. Since U is open, there exists an ¢ > 0 that the set K21 iy
contained in U, where K»** is a closed ball with centre at « and radius e
Let o be the restriction of ¢ to the set K™t Since y is an e-map, we have
y ¢ p(87), where S™is the boundary of K. Applying Lemma (7.3) and (7.2)
as in the proof of (7.5), we obtain ¥ e Intp(U). The proof of (7.6) is com-
pleted.

Remark. Theorem (7.6) is not true for admissible maps. For example,
let ¢: (—1,1)—>E be the map given by

t for 10,

PO=)10,2 for t=0.
Then ¢ is an admissible map and the following condition is satisfied:
if 3 #1,, then o) ne(t) = but p(—1,1) is not an open set in E.
Observe (comp. (3.6)) that for every selected pair (p,¢)Ce woe have
2 ¢qp~1(__1’ 1)- ‘ :

It is easy to see that Theorem (7.5) is not true for admissible maps,
either.
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