

Multi-valued maps of subsets of Euclidean spaces

by

J. Bryszewski and L. Górniewicz (Gdańsk)

Abstract. Let X and Y be two metric spaces and let $p: Y \to X$ be a proper, surjective map. Define, for each $i \ge 0$, the set

$$M_{p}^{i} = \{ y \in Y; H^{i}(p^{-1}(y)) \neq 0 \}.$$

where H^i denotes the Čech cohomology functor with integer coefficients. Call p an n-Vietoris map if $\operatorname{rd}_X M_p^i \leqslant n-2-i$, for each $i\geqslant 0$, where $\operatorname{rd}_X M_p^i$ is the maximum covering dimension for finite covers of subsets of M_p^i which are closed in Y. In what follows a 1-Vietoris map is called simply a Vietoris map.

A multi-valued map $\varphi \colon X \to Z$ is called an *n*-admissible map if there exist a space Y and a pair of single-valued (continuous) maps of the form $X \overset{\mathfrak{p}}{\leftarrow} Y \overset{\mathfrak{q}}{\to} Z$ such that the following two conditions are satisfied:

(i) p is an n-Vietoris map,

(ii) $q(p^{-1}(x)) \subseteq \varphi(x)$ for each $x \in X$.

In this case the pair of maps (p,q) is called a selected pair of φ (written $(p,q) \subset \varphi$). A 1-admissible map is called simple an admissible map. An admissible map $\varphi \colon X \to Z$ is called strongly admissible (s -admissible) if there exists a selected pair $(p,q) \subset \varphi$ such that $q(p^{-1}(x)) = \varphi(x)$ for each $x \in X$.

In the present paper we prove some fixed point theorems and a theorem on the antipodes for n-admissible maps of subsets of Euclidean spaces. The proofs of these results depend on the concept of degree of n-admissible maps. Moreover, we prove a generalized version of the theorem on the antipodes for admissible maps and a theorem on the invariance of domain for s-admissible maps of subsets of Euclidean spaces.

The class of admissible multi-valued maps was first studied in [4]. A multi-valued map $\varphi \colon X \to Z$ is called *admissible* provided there exist a space Y and a pair of single-valued (continuous) maps of the form $X \stackrel{\mathcal{P}}{\leftarrow} Y \stackrel{q}{\rightarrow} Z$ such that the following two conditions are satisfied:

(i) p is a Victoris map,

(ii) $q(p^{-1}(x)) \subset \varphi(x)$ for each $x \in X$.

We note that every acyclic map is admissible and that the composition of admissible maps is also admissible map.

Using the generalized version of the Vietoris Mapping Theorem [8], we generalize the notion of admissible maps to n-admissible maps (comp. [3]).

In the present paper we prove some fixed point theorems and a theorem on the antipodes for n-admissible maps of subsets of Euclidean spaces. The proofs of these results depend on the concept of degree of n-admissible maps.

Moreover, we prove a generalized version of the theorem on the antipodes for admissible maps and a theorem on the invariance of domain for some admissible maps of subsets of Euclidean spaces.

We note that for acyclic maps and n-acyclic maps these facts were studied in [1, 3, 5, 6, 7].

All spaces are assumed to be metric.

1. Preliminaries. Let H denote the Čech cohomology functor with integer coefficients Z from the category of metric spaces and continuous maps to the category of graded abelian groups and homomorphisms of degree zero.

Thus, for a space X

$$H(X) = \{H^k(X)\}_{k \geqslant 0}$$

is a graded abelian group and, for a continuous map $f \colon X \to Y, \ H(f)$ is the induced homomorphism

$$H(f) = f^* = \{f^{*k}\}: H(Y) \to H(X)$$

where f^{*k} : $H^k(Y) \to H^k(X)$.

A non-empty space is called 0-acyclic if $H^{o}(X) = Z$; let us call X k-acyclic, $k \ge 1$, if $H^{k}(X) = 0$; let us call X acyclic if X is k-acyclic for each $k \ge 0$.

Let A be a subset of a space X. Denote by $\operatorname{rd}_X A$ the relative dimension of A in X. From the definition, given in [8], we have

$$\mathrm{rd}_X A = \sup_{C \subset A} \dim C ,$$

where C is a closed subset of X and by dim C we denote the topological dimension of C. We assume that $\mathrm{rd}_X A < 0$ if and only if the set A is empty and in this case we put $\mathrm{rd}_X A = -\infty$. We observe that:

(1.1) If $A \subset X$ and $B \subset Y$, where X, Y are two compact spaces, then

$$\operatorname{rd}_{X\times Y}A\times B\leqslant \operatorname{rd}_XA+\operatorname{rd}_YB$$
.

(1.2) Let X_0 be a closed subset of X. Assume further that A is a subset of X_0 , B is subset of X and $A \subset B$. Then we have

$$\operatorname{rd}_{X_0} A \leqslant \operatorname{rd}_X B$$
.

A continuous map $f: Y \to X$ is *proper* if for each compact subset $A \subset X$ the counter image $f^{-1}(A)$ of A under f is compact; f is closed if for each closed subset $B \subset Y$ the image of B under f is closed in X.

The following fact is evident:

(1.3) If $f: Y \to X$ is a proper map, then f is closed.

The Victoris-Begle Theorem (see [8] and (1.3)) gives

(1.4) THEOREM. Let $f: Y \to X$ be a proper and surjective map, and let M_j^i be the set of all $x \in X$ such that $f^{-1}(x)$ fails to be i-acyclic. Let $n = 1 + \max_{i \ge 0} \operatorname{rd}_X M_j^i + i$). Then for each k > n the induced homomorphism f^{*k} : $H^k(X) \to H^k(Y)$ is an isomorphism.

Remark. We observe that, if M_f^i is the empty set for each $i \ge 0$, then $\mathrm{rd}_X M_f^i = -\infty$ and hence Theorem (1.4) implies that

 $f^*: H(X) \to H(Y)$ is an isomorphism.

- (1.5) DEFINITION. A map $p: Y \to X$ is called an *n-Vietoris map* if the following two conditions are satisfied:
 - (i) p is a proper and surjective map,
 - (ii) $\operatorname{rd}_X M_n^i \leqslant n-2-i$, for each $i \geqslant 0$.

Definition (1.5) implies that if p is a 1-Vietoris map, then $\operatorname{rd}_X M_p^i < 0$, and from the above remark we deduce that $p^* \colon H(X) \to H(Y)$ is an isomorphism. In what follows a 1-Vietoris map is called simply a *Vietoris map*.

Finally, we note that if p is an n-Vietoris map, then we have:

$$1 + \max_{i \geqslant 0} (\operatorname{rd}_X M_n^i + i) \leqslant 1 + \max_{i \geqslant 0} [(n - 2 - i) + i] = n - 1$$

and (1.4) implies that p^{*k} : $H^k(X) \to H^k(Y)$ is an isomorphism for each $k \ge n$.

(1.6) If $p: Y \to X$ is a Vietoris map, then for each $A \subset X$, the map $\widetilde{p}: p^{-1}(A) \to A$ is a Vietoris map, where \widetilde{p} is given by $\widetilde{p}(y) = p(y)$ for all $y \in p^{-1}(A)$.

From (1.6) we deduce

- (1.7) If $p_1: Y \to X$ and $p_2: X \to Z$ are Vietoris maps, then the composition $p_2 \circ p_1: Y \to Z$ of p_1 and p_2 is also a Vietoris map.
- **2.** Multi-valued maps. Let X and Y be two spaces and assume that for every point $x \in X$ a non-empty subset $\varphi(x)$ of Y is given; in this case we say that φ is a multi-valued map from X to Y and we write $\varphi \colon X \to Y$. In what follows the symbols φ , ψ will be reserved for multi-valued maps; single-valued maps will be denoted by f, g, h, etc.

Let $\varphi \colon X \to Y$ be a multi-valued map. We associate with φ the following diagram of continuous maps:

$$X \stackrel{p_q}{\longleftrightarrow} \Gamma_m \stackrel{q_{\varphi}}{\longrightarrow} Y$$

236

n which $\Gamma_{\varphi} = \{(x, y) \in X \times Y; y \in \varphi(x)\}$ is the graph of φ and natural projections p_{σ} and q_{σ} are given by $p_{\sigma}(x,y) = x$ and $q_{\sigma}(x,y) = y$.

The point-to-set map φ is extended to a set-to-set map by putting $\varphi(A) = \bigcup \varphi(a) \subset Y$ for $A \subset X$; $\varphi(A)$ is said to be the *image* of A under φ . If $\varphi(A) \subset B \subset Y$, then the contraction of φ to the pair (A, B) is the multivalued map $\varphi' \colon A \to B$ defined by $\varphi'(a) = \varphi(a)$ for each $a \in A$. A contraction of φ to the pair (A, Y) is simply the restriction $\varphi|_A$ of φ to A.

Let $\varphi: X \to Y$ and $\psi: Y \to Z$ be two mans: then the composition of ω and ψ is a map $\psi \circ \varphi \colon X \to Z$ given by $(\psi \circ \varphi)(x) = \psi(\varphi(x))$.

- (2.1) DEFINITION. A multi-valued map $\varphi: X \to Y$ is said to be continuous if the grap Γ_{m} of φ is closed in the product $X \times Y$; in other words. the conditions $x_n \to x$, $y_n \to y$, $y_n \in \varphi(x_n)$ imply $y \in \varphi(x)$.
- (2.2) Definition. A continuous multi-valued map $\varphi: X \to Y$ is called compact if the image $\varphi(X)$ of X under φ is contained in a compact subset of Y.
- (2.3) Definition. A continuous multi-valued map $\varphi: X \to Y$ is said to be acyclic if the set $\varphi(x)$ is acyclic for every point $x \in X$.
- (2.4) DEFINITION. Let $w: X \to Y$ be a multi-valued map. A point x is called a fixed point for φ if $x \in \varphi(x)$.

We observe that, if $\varphi: X \to Y$ is a compact acyclic map, then, for every point $x \in X$, $p_{\infty}^{-1}(x)$ is homeomorphic to $\varphi(x)$ and hence $p_{\infty}: \Gamma_{\infty} \to X$ is a Victoris map.

- (2.5) DEFINITION. Let $\varphi, \psi: X \to Y$ be two multi-valued maps such that $\varphi(x) \subset \psi(x)$ for each $x \in X$; in this case we say that φ is a selector of ψ and indicate this by writing $\varphi \subset \psi$.
- 3. Admissible, s-admissible and n-admissible maps. In this section we introduce the classes of multi-valued maps which are of importance in our considerations.
- (3.1) DEFINITION. A map $\varphi: X \to Z$ is called n-admissible, $n \ge 1$, if there exist a space Y and a pair of single-valued (continuous) maps of the form

$$X \stackrel{p}{\leftarrow} Y \stackrel{q}{\rightarrow} Z$$

such that the following two conditions are satisfied:

- (i) p is an n-Vietoris map.
- (ii) $q(p^{-1}(x)) \subset \varphi(x)$ for each $x \in X$.

In this case the pair of maps (p, q) is called a selected pair of φ (written $(p,q)\subseteq \varphi$).

The class of n-admissible maps from X to Z will be denoted by $C^n(X,Z)$.

A map $\varphi \in C^1(X, Z)$ is called simply an admissible man.

(3.2) DEFINITION. An admissible map $\varphi: X \to Z$ is called strongly admissible (s-admissible) if there exists a selected pair $(p,q) \subset \varphi$ such that

$$q(p^{-1}(x)) = \varphi(x)$$
 for each $x \in X$.

If a selected pair (p,q) of φ satisfies the above condition, then we write $(p,q)=\varphi.$

The class of s-admissible maps from X to Z we denote by $C_{\alpha}^{1}(X,Z)$

Remarks. 1. We observe that, if $\varphi: X \to Z$ is a compact acyclic map. then for example the pair (p_m, q_m) is a selected pair of φ and hence $(p_m, q_m) = \varphi.$

2. Denote by C(X,Z) the class of compact acyclic maps from X to Z; then we have the following inclusions:

$$C(X,Z) \subset C^1_s(X,Z) \subset C^1(X,Z) \subset C^2(X,Z) \dots$$

(3.3) Proposition. If $\varphi_1 \in C^1(X_1, X_2)$, $\varphi_2 \in C^1(X_2, X_3)$, then $\varphi_2 \circ \varphi_1$ $\in C^1(X_1, X_3)$ and for every selected pair $(p_1, q_1) \subset \varphi_1, (p_2, q_2) \subset \varphi_2$ there exists a selected pair $(p,q) \subset \varphi_2 \circ \varphi_1$ such that

$$(p^*)^{-1}q^* = (p_1^*)^{-1}q_1^*(p_2^*)^{-1}q_2^*$$
.

Proof. Let $(p_1, q_1) \subset \varphi_1$ and $(p_2, q_2) \subset \varphi_2$ be selected pairs of the form

$$X_1 \stackrel{p_1}{\longleftarrow} Y_1 \stackrel{q_1}{\longrightarrow} Y_2$$
, $X_2 \stackrel{p_2}{\longleftarrow} Y_2 \stackrel{q_2}{\longrightarrow} X_3$.

Consider the diagram

in which $Y = \{(y_1, y_2) \in Y_1 \times Y_2; q_1(y_1) = p_2(y_2)\}, p_3(y_1, y_2) = y_1, q_3(y_1, y_2)\}$ $= y_2, p(y_1, y_2) = p_1 \circ p_3(y_1, y_2), q(y_1, y_2) = q_2 \circ q_3(y_1, y_2).$

The map p as the composition of the Vietoris maps p_1 and p_2 is also a Vietoris map (see (1.7)).

Let A be a subset of Y_1 . It is easy to see that $p_2^{-1}q_1(A) = q_3p_3^{-1}(A)$. This implies that for every point $x \in X_1$ we have

$$q(p^{-1}(x)) = q_2 q_3 p_3^{-1}(p_1^{-1}(x)) = q_2 p_2^{-1}(q_1(p_1^{-1}(x))) \subset \varphi_2 \circ \varphi_1(x)$$
,

and hence we obtain $(p,q) \subseteq \varphi_2 \circ \varphi_1$.

Applying to the above diagram the functor H, we simply deduce

$$(p^*)^{-1}q^* = (p_1^*)^{-1}q_1^*(p_2^*)^{-1}q_2^*$$

and the proof of (3.3) is completed.

(3.4) Proposition. If $\varphi_1 \in C_s^1(X_1, X_2)$ and $\varphi_2 \in C_s^1(X_2, X_3)$, then $\varphi_2 \circ \varphi_1 \in C_s^1(X_1, X_3)$ and for every $(p_1, q_1) = \varphi_1$, $(p_2, q_2) = \varphi_2$ there exists a pair $(p_1, q_2) = \varphi_2 \circ \varphi_1$, such that

$$(p^*)^{-1}q^* = (p_1^*)^{-1}q_1^*(p_2^*)^{-1}q_2^*$$
.

The proof of (3.4) is analogous to the proof of (3.3).

(3.5) PROPOSITION. If $\varphi \in C(X, Z)$, then for every selected pair $(p, q) \subset \varphi$ we have $(p^*)^{-1}q^* = (p^*_{\varphi})^{-1}q^*_{\varphi}$.

Proof. Let (p,q) be a selected pair of φ of the form

$$X \stackrel{p}{\leftarrow} Y \stackrel{q}{\rightarrow} Z$$
.

Consider the commutative diagram

in which $f\colon Y\to \varGamma_\varphi$ is given by $f(y)=\left(p\left(y\right),q\left(y\right)\right)$. Applying to the above diagram the functor H, we obtain $(p^*)^{-1}q^*=(p_\varphi^*)^{-1}q_\varphi^*$, and the proof is completed.

- (3.6) Examples. 1. Observe that if $\varphi \in C^1_s(X, Z)$ then for every point $x \in X$ the image $\varphi(x)$ of x under φ must be a connected set. Hence we simply deduce that the class of admissible maps is larger than the class of s-admissible maps.
- 2. Now, we give an example of an s-admissible map φ such that there are selected pairs $(p,q) = \varphi$ and $(\overline{p},\overline{q}) = \varphi$ and $(p^*)^{-1}q^* \neq (p^*)^{-1}\overline{q}^*$.

Let $\varphi_1 \colon S^2 \to S^2$, where S^2 denotes the unit sphere in the Euclidean space R^3 , be the map given by $\varphi_1(x) = \{y \in S^2, ||y-x|| \leq \frac{3}{2}\}$ and let $\varphi_2 \colon S^2 \to S^2$ be the map given by $\varphi_2(x) = \varphi_1(-x)$ for each $x \in S^2$. Define the map $\varphi \colon S^2 \to S^2$ by putting $\varphi = \varphi_1 \circ \varphi_2$. Observe that φ_1 and φ_2 are acyclic maps. From (3.4) we deduce that φ is an s-admissible map. Using (3.5) and (3.4), we infer that there exists a selected pair $(p, q) = \varphi$ such that $(p^*)^{-1}q^* = (-\mathrm{id}_{S^2})^*$. Moreover, we conclude that $\varphi = \varphi_1 \circ \varphi_1$ and hence, in view (3.5) and (3.4), we deduce that there is a selected pair $(\overline{p}, \overline{q}) = \varphi$ such that $(\overline{p}^*)^{-1}\overline{q}^* = (\mathrm{id}_{S^2})^*$.

- (3.7) DEFINITION. Two maps $\varphi, \psi \in C^n(X, Z)$, $n \ge 1$, $\{\varphi, \psi \in C^1_s(X, Z)\}$ are called homotopic (written $\varphi \sim \psi$) if there exists a map $\varkappa \in C^n(X \times I, Z)$, $(\varkappa \in C^1_s(X \times I, Z))$, where I = [0, 1] is the unit interval, such that $\varkappa(x, 0) \subset \varphi(x)$ and $\varkappa(x, 1) \subset \psi(x)$ for each $x \in X$.
- (3.8) PROPOSITION. If two maps $\varphi, \psi \in C^n(X, Z)$ $(\varphi, \psi \in C^1_s(X, Z))$, are homotopic, then there exist selected pairs $(p_0, q_0) \subseteq \varphi$ and $(p_1, q_1) \subseteq \psi$ such that for each $k \geqslant n$

$$(p_0^{*k})^{-1}q_0^{*k} = (p_1^{*k})^{-1}q_1^{*k}$$

(for each $k \ge 0$, $(p_0^{*k})^{-1}q_0^{*k} = (p_1^{*k})^{-1}q_1^{*k}$).

Proof. Let $\varkappa \in C^n(X \times I, Z)$ ($\varkappa \in C^n(X \times I, Z)$) be a homotopy joining φ and ψ , and $(p, q) \subseteq \varkappa$ a selected pair of the form

$$X \times I \stackrel{p}{\leftarrow} Y \stackrel{q}{\rightarrow} Z$$
.

For the proof we consider the commutative diagram

in which p_0 , p_1 are contractions of p, q_0 , q_1 are restrictions of q and i_0 , i_1 , i_0 , i_1 are inclusions, respectively.

Since p is an n-Vietoris map, $n \ge 1$, and $X \times \{0\}$, $X \times \{1\}$ are closed subsets of $X \times I$, from (1.2) we deduce that p_0 , p_1 are n-Vietoris maps. From $\varkappa(x,0) \subset \varphi(x)$ and $\varkappa(x,1) \subset \psi(x)$ for each $x \in X$, we infer that (p_0, q_0) , (p_1, q_1) are selected pairs of φ and ψ respectively. It is well known that $i_0^* = i_1^*$ and hence applying to the above diagram the functor H, in view (1.4), we obtain:

(i)
$$(p_0^{*k})^{-1}q_0^{*k} = (p_1^{*k})^{-1}q_1^{*k}$$
 for each $k \ge n$,

(for each $k \ge 0$). Finally, since we may identify $X \times \{0\}$ with X and $X \times \{1\}$ with X, from (i) we deduce (3.8) and the proof is completed.

4. Degree of n-admissible maps. Let S^n be the unit sphere in the Euclidean (n+1)-space R^{n+1} , K^{n+1} the unit closed ball in R^{n+1} and P^{n+1} the space R^{n+1} without the point 0.

In this section we define the degree of an n-admissible map $\varphi \colon S_1^n \to S_2^n$ where S_i^n (i=1,2) are two spaces which have the cohomology of an n-sphere S^n . We orient S_i^n by choosing the generators $\beta_i \in H^n(S_i^n)$ (i=1,2).

Multi-valued maps of subsets of Euclidean spaces

241

Consider the diagram

$$S_1^n \stackrel{p}{\leftarrow} Y \stackrel{q}{\rightarrow} S_2^n$$
,

in which p is an n-Vietoris map and q is a continuous map. In this case we define the degree $\deg(p,q)$ of the pair (p,q) as follows: $\deg(p,q)$ is the unique integer which satisfies

$$(p^{*n})^{-1}q^{*n}(\beta_2) = \deg(p,q)\beta_1$$
.

(4.1) Definition. Let $\varphi \colon S_1^n \to S_2^n$ be an *n*-admissible map. We define $\text{Deg}(\varphi)$ of φ as follows:

$$\mathrm{Deg}(\varphi) = \{ \deg(p, q); (p, q) \subseteq \varphi \} .$$

- (4.2) Let $\varphi, \psi \in C^n(S_1^n, S_2^n)$. Then
- (i) $\varphi \sim \psi$ implies that $Deg(\varphi) \cap Deg(\psi) \neq \emptyset$,
- (ii) $\varphi \subset \psi$ implies that $Deg(\varphi) \subset Deg(\psi)$.

Assertion (i) simply follows from (3.8). For the proof of (ii) we observe that if $(p,q) \subset \varphi$, then $(p,q) \subset \varphi$.

If $\varphi: S_1^n \to S_2^n$ is an acyclic compact map, then from (3.5) we deduce that $\text{Deg}(\varphi)$ is a set consisting of exactly one element, and in this case we have:

- (4.3) Let $\varphi, \psi \in C(S_1^n, S_2^n)$. Then
- (i) $\varphi \sim \psi$ implies that $Deg(\varphi) = Deg(\psi)$,
- (ii) $\varphi \subset \psi$ implies that $\operatorname{Deg}(\varphi) = \operatorname{Deg}(\psi)$.

Let $\varphi: K^{n+1} \to R^{n+1}$ be an n-admissible map and assume that $\varphi(S^n) \subset R^{n+1} \setminus \{x_0\}$. By $\varphi|_{S^n}: S^n \to R^{n+1} \setminus \{x_0\}$ we denote the contraction of φ to the pair $(S^n, R^{n+1} \setminus \{x_0\})$.

From (1.2) we infer that $\varphi|_{S^n} \in C^n(S_1^n, R^{n+1} \setminus \{x_0\})$. In this case with every selected pair $(p, q) \subset \varphi$ we associate the pair $(p_1, q_1) \subset \varphi|_{S^n}$ as follows: let $p \colon Y \to K^{n+1}$, $q \colon Y \to K^{n+1}$ be two maps such that $(p, q) \subset \varphi$; then $p_1 \colon p^{-1}(S^n) \to S^n$, $q_1 \colon p^{-1}(S^n) \to R^{n+1} \setminus \{x_0\}$ are given as contractions of p and q, respectively (evidently $(p_1, q_1) \subset \varphi|_{S^n}$).

We define the degree $\operatorname{Deg}(\varphi, x_0)$ of φ by putting

$$Deg(\varphi, x_0) = \{ deg(p_1, q_1); (p, q) \subset \varphi \}.$$

Clearly, we have $\operatorname{Deg}(\varphi, x_0) \subset \operatorname{Deg}(\varphi|_{S^n})$.

EXAMPLE. Let $\varphi \colon K^{n+1} \to R^{n+1}$ be a map given by $\varphi(x) = S^n$ for each $x \in K^{n+1}$. It is easy to see that φ is an admissible map. We assert that $\text{Deg}(\varphi, 0) = \{0\}$.

Indeed, let $p: Y \to K^{n+1}$, $q: Y \to R^{n+1}$ be two maps such that $(p, q) \subset \varphi$. Then $q(Y) \subset P^{n+1}$. Consider the commutative

where i, j are, respectively, inclusions.

Applying to the above diagram the functor H^n , we deduce that $(p_1^{*n})^{-1}q_1^{*n}=0$ and hence $\deg(p_1,q_1)=0$. Since $(p,q)\subseteq\varphi$ were arbitrary, we obtain $\operatorname{Deg}(\varphi,0)=\{0\}$.

It is easy to see (compare Example (3.6), 2) that for $\varphi|_{S^n}: S^n \to R^{n+1}$ the set $\text{Deg}(\varphi|_{S^n}) \neq \{0\}$.

Finally, we note that for $x_0 \in \mathbb{R}^{n+1}$, $||x_0|| > 1$, $\operatorname{Deg}(\varphi, x_0) = \operatorname{Deg}(\varphi|_{S^n}) = \{0\}$, where $\varphi|_{S^n}$ is regarded as the map from S^n to $\mathbb{R}^{n+1} \setminus \{x_0\}$.

(4.4) LEMMA. Let $\varphi \colon K^{n+1} \to R^{n+1}$ be an n-admissible map such that $\varphi(S^n) \subset P^{n+1}$. If $\operatorname{Deg}(\varphi, 0) \neq \{0\}$, then there exists a point $x \in K^{n+1}$ such that $0 \in \varphi(x)$.

Proof. By assumption there exists a selected pair of φ of the form

$$R^{n+1} \stackrel{p}{\leftarrow} Y \stackrel{q}{\rightarrow} R^{n+1}$$

such that $\deg(p_1,q_1)\neq 0$ where $p_1\colon p^{-1}(S^n)\to S^n$, $q_1\colon p^{-1}(S^n)\to P^{n+1}$ and $p_1(y)=p(y),\ q_1(y)=q(y)$ for each $y\in p^{-1}(S^n)$. Suppose that $0\notin \varphi(x)$ for each $x\in K^{n+1}$. Then we have $q(Y)\subset P^{n+1}$ and therefore the map q may be regarded as the map from Y to P^{n+1} . We have the commutative diagram

in which i, j are inclusions.

Applying the functor H^n to the above diagram, we obtain

$$(p_1^{*n})^{-1}q_1^{*n} = i^{*n}(p^{*n})^{-1}q^{*n}$$

but i^{*n} is the zero homomorphism and hence $(p_1^{*n})^{-1}q_1^{*n}=0$. This gives $\deg(p_1,q_1)=0$ and we obtain a contradiction.

242

(4.5) THEOREM. Let $\varphi: K^{n+1} \to R^{n+1}$ be an n-admissible map such that $\varphi(S^n) \subset K^{n+1}$. Then φ has a fixed point.

Proof. For the proof we may assume, without loss of generality, that $x \notin \varphi(x)$ for each $x \in S^n$.

Let $(p,q) \subset \varphi$ be a selected pair of φ of the form

$$K^{n+1} \stackrel{p}{\leftarrow} V \stackrel{q}{\rightarrow} R^{n+1}$$
.

Define a continuous single-valued map $f: Y \to \mathbb{R}^{n+1}$ by putting f(y) = p(y) - q(y) for each $y \in Y$.

From the above assumption we infer that $f(y) \in P^{n+1}$ for each $y \in p^{-1}(S^n)$.

Let $\psi: K^{n+1} \to R^{n+1}$ be a map given by

$$\psi(x) = f(p^{-1}(x)) \quad \text{for each } x \in K^{n+1}.$$

The map ψ is *n*-admissible, since the pair (p,f) is a selected pair of ψ . It is easy to see that $\psi(S^n) \subset P^{n+1}$. We assert that

(i) $\text{Deg}(\psi, 0) \neq \{0\}.$

To prove (i) we define the following maps:

$$g: p^{-1}(S^n) \to P^{n+1}, \quad g(y) = p(y) \quad \text{for each } y \in p^{-1}(S^n),$$

 $h: p^{-1}(S^n) \times I \to P^{n+1}, \quad h(y, t) = p(y) - tq(y).$

Observe that h is well defined. For t = 0 or t = 1 we know that $(p(y) - tq(y)) \in P^{n+1}$ for each $u \in p^{-1}(S^n)$.

Assume that there exist a number 0 < t < 1 and a point $y \in p^{-1}(S^n)$ such that p(y) - tq(y) = 0. Then we have

$$1 = ||p(y)|| = t||q(y)|| \le t < 1$$

and we obtain a contradiction (since $q(y) \in K^{n+1}$ for each $y \in p^{-1}(S^n)$).

Let (p_1, f_1) be the associate pair for the selected pair $(p, f) \subset \psi$ (compare the definition of degree for maps from K^{n+1} to R^{n+1}).

Since h is a homotopy joining f_1 and g and p_1^{*n} is an isomorphism, we have

$$(p_1^{*n})^{-1}f_1^{*n} = (p_1^{*n})^{-1}g^{*n}$$

but $(p_1^{*n})^{-1}g^{*n} \neq 0$ and therefore $\deg(p_1, f_1) \neq 0$.

Finally, we infer that ψ satisfies all the assumptions of Lemma (4.4). This implies that there exists a point $x \in K^{n+1}$ such that $0 \in \psi(x)$. Then $x \in \varphi(x)$ and the proof of (4.5) is completed.

As an immediate consequence of (4.5) we obtain the following

(4.6) COROLLARY (Brouwer's Theorem). Every n-admissible map, in particular every admissible map, of the ball K^{n+1} into itself has a fixed point.

5. Theorem on antipodes for *n*-admissible maps. In this section we generalize the classical Borsuk-Ulam Theorem from the case of single-valued maps to *n*-admissible maps.

(5.1) THEOREM. Let $\varphi \colon S^n \to P^{n+1}$ be an n-admissible map. If for every $x \in S^n$ there exists an n-subspace of R^{n+1} strictly separating $\varphi(x)$ and $\varphi(-x)$, then $0 \notin \text{Deg}(\varphi)$.

Proof. Let (p,q) be a selected pair of φ of the form

$$S^n \stackrel{p}{\leftarrow} V \stackrel{q}{\rightarrow} P^{n+1}$$

Define the map $\psi \colon S^n \to P^{n+1}$ given by

$$\psi(x) = q(p^{-1}(x))$$
 for each $x \in S^n$.

It is easy to see that ψ is a compact multi-valued map satisfying the assumptions of (5.1). This implies that for every $y \in S^n$ the following set is open:

$$Uy = \{x \in S^n; \ (y, z) > 0 \text{ for each } z \in \psi(x) \text{ and } (y, z) < 0$$
for each $z \in \psi(-x)$.

where (y,z) denote the inner product in \mathbb{R}^{n+1} . From the assumption we deduce that for every $x \in S^n$ there is $y \in S^n$ such that (y,z) > 0 for all $z \in \psi(x)$ and (y,z) < 0 for all $z \in \psi(-x)$. Therefore the family $\{Uy\}_{y \in S^n}$ is an open covering of S^n . Since S^n is compact, there exists a finite subcover $\{Uy_i\}_{i=1,\dots,m}$. Let $\{g_i\}_{i=1,\dots,m}$ be a subordinated partition of unity.

Consider $g: S^n \to P^{n+1}$ defined by $g(x) = \sum_i (g_i(x) - g_i(-x)) y_i$. Observe that if $z \in \psi(x)$ then:

- (i) $(y_i, z) > 0$ for some i = 1, ..., m,
- (ii) $(y_i, z) < 0$ implies $g_i(x) = 0$,
- (iii) $(y_i, z) > 0$ implies $g_i(-x) = 0$.

Conditions (i)-(iii) imply that g is a well-defined map (i.e., $g(S^n) \subset P^{n+1}$).

The map g is odd, and thus $\deg(g) \neq 0$. (Compare the theorem on antipodes for single-valued maps.)

Define the map $\widetilde{g}: Y \to P^{n+1}$ given as the composition of p and $g(\widetilde{g} = g \cdot p)$, and the map $h: Y \times I \to P^{n+1}$ given by h(y, t) = tg(y) + + (1-t)g(y) for each $y \in Y$ and $t \in I$.

We know that, for t = 0 or t = 1 and for each $y \in Y$, $h(y,t) \neq 0$. Assume that h(y,t) = 0 for some $y \in Y$ and 0 < t < 1. Then we have $-(1-t)g(y) = t\widetilde{y}(y)$.

Taking the inner product of both sides of the above equality with q(y), we obtain

$$-(1-t)(q(y), q(y)) = t(\widetilde{g}(y), q(y)).$$

We have -(1-t)(q(y), q(y)) < 0, but (i)-(iii), for z = q(y), and the definition of \widetilde{g} implies that t(g(y), q(y)) > 0, and thus we obtain a contradiction. Since h is a homotopy joining q and \widetilde{g} and p^{*n} is an isomorphism, we obtain

$$(p^{*n})^{-1}q^{*n} = (p^{*n})^{-1}\widetilde{g}^{*n}$$

and hence we have

$$(p^{*n})^{-1}q^{*n} = (p^{*n})^{-1}p^{*n}q^{*n} = q^{*n} \neq 0.$$

This implies that $deg(p,q) \neq 0$ and the proof of (5.1) is completed.

Theorems (5.1) and (4.4) give

- (5.2) COROLLARY. Suppose that $\varphi \colon K^{n+1} \to R^{n+1}$ is an n-admissible map and for each $x \in S^n$ there is an n-subspace of R^{n+1} strictly separating $\varphi(x)$ and $\varphi(-x)$. Then $0 \in \varphi(x)$ for some $x \in K^{n+1}$.
- 6. Theorem on antipodes for admissible maps. In this section we denote by M a compact space which has the cohomology of the unit n-sphere S^n in R^{n+1} .

A continuous multi-valued map $\Phi: M \to M$ is called an *involution* if the condition $(x, y) \in \Gamma_{\Phi}$, for every $(x, y) \in M \times M$, implies that $(y, x) \in \Gamma_{\Phi}$.

In our subsequent consideration an essential use will be made of the following:

(6.1) Let $g: M \to M$ be a single-valued involution and let $f: M \to S^n$ be a single-valued continuous map such that $f(x) \neq fg(x)$ for each $x \in M$. Then the induced homomorphism $f^{*n}: H^n(S^n) \to H^n(M)$ is a non-zero homomorphism.

Theorem (6.1) clearly follows from Corollary 4, p. 299 in [1].

We prove, for admissible maps, the following general version of the Theorem on antipodes.

(6.2) THEOREM. Let $\Phi: M \to M$ be an acyclic involution and let $\varphi: M \to P^{n+1}$ be an admissible map such that following condition is satisfied:

every radius with origin at the zero point of \mathbb{R}^{n+1} has an empty intersection with the set $\varphi(x)$ or $\varphi(\Phi(x))$ for each $x \in M$.

Then $0 \notin \text{Deg}\varphi$.

Proof. Let (p,q) be a selected pair of φ of the form

$$M \stackrel{p}{\leftarrow} Y \stackrel{q}{\rightarrow} P^{n+1}$$
.

We prove that $deg(p, q) \neq 0$.

Define the set X by putting

$$X = \{(x, x', y, y'); x \in M, x' \in \Phi(x), y \in p^{-1}(x), y' \in p^{-1}(x')\}$$

$$\subset M \times M \times Y \times Y.$$

Since p as a Victoris map is proper, M is compact and Φ is continuous, we infer that X is a compact set.

Consider the diagram

in which

$$s(x, x', y, y') = x$$
, $f(x, x', y, y') = \frac{q(y)}{\|q(y)\|}$, $\pi(x, x', y, y') = y$ for each $(x, x', y, y') \in X$

and

$$r(z) = \frac{z}{||z||}$$
 for each $z \in P^{n+1}$.

It is easy to see that the above diagram commutes. The map s has the following decomposition:

$$(x, x', y, y') \rightarrow (x, x', y) \rightarrow (x, x') \rightarrow x$$
.

Since the maps given in the decomposition of s are determined by the Vietoris maps p and p_{φ} , respectively, we infer that s is a Vietoris map (comp. 1.7). This implies that X has the cohomology of n-sphere S^n . Define the single-valued involution $g\colon X\to X$ by putting g(x,x',y,y')=(x',x,y',y). We prove that $f(x,x',y,y')\neq f(g(x,x',y,y'))$. Indeed, we have

$$f(x, x', y, y') = \frac{q(y)}{\|q(y)\|}$$
 and $f(g(x, x', y, y')) = \frac{q(y')}{\|q(y')\|}$.

Since $q(p^{-1}(x)) \subset q(x)$ for each $x \in M$, from the assumption we deduce that

$$\frac{q(y')}{\|q(y')\|} \neq \frac{q(y)}{\|q(y)\|}.$$

Therefore from (6.1) we find that f^{*n} : $H^n(S^n) \to H^n(X)$ is a non-zero homomorphism. Since p^* , s^* , r^* are isomorphisms, from the commutativity of the above diagram we have

$$(p^{*n})^{-1}q^{*n} = (s^{*n})^{-1}f^{*n}(r^{*n})^{-1} \neq 0$$
,

and $deg(p,q) \neq 0$. The proof of (6.2) is completed.

We now draw a few consequences from the main theorem.

(6.3) COROLLARY. Let $\Phi: M \to M$ be an acyclic involution and let $\varphi: M \to S^n$ be an admissible map which satisfies the following condition:

$$\varphi(x) \cap \varphi(y) = \emptyset$$
, for each $x \in M^{\epsilon}$ and for each $y \in \Phi(x)$.

Then $0 \notin \text{Deg}\varphi$.

(6.4) COROLLARY. Let $\Phi: M \to M$ and $\varphi: M \to S^n$ are as in (6.3). Then $\varphi(M) = S^n$.

Proof. Let (p,q) be a selected pair of φ . From (6.3) we have $\deg(p,q) \neq 0$. Assume that there exists a point $u_0 \in S^n \backslash qp^{-1}(M)$. Consider the commutative diagram

$$M \leftarrow p \\ \downarrow^{i_0} \\ \downarrow^{i_0} \\ \downarrow^{j_0} \\ \downarrow^{j_0$$

in which $f(y) = -u_0$ for all $y \in Y$,

$$h(y,t) = rac{tq(y) + (t-1)u_0}{\|tq(y) + (t-1)u_0\|}, \quad ext{for each } y \in Y ext{ and } t \in I.$$

We have $q(y) \neq u_0$ for each $y \in Y$. This implies that the map h is well defined. Since f is a constant map, we have $f^{*n} = 0$. The commutativity of the above diagram implies that

$$(p^{*n})^{-1}q^{*n} = (p^{*n})^{-1}f^{*n} = 0$$

and $\deg(p,q)=0$. This contradicts the fact that $\deg(p,q)\neq 0$, and the proof of (6.4) is completed.

(6.5) COROLLARY. Let $\Phi: M \to M$ be an acyclic involution and let $\varphi: M \to R^n$ be an admissible map. Then there exists a point $(x, y) \in \Gamma_{\varphi}$ such that $\varphi(x) \cap \varphi(y) \neq \emptyset$.

Proof. We may regard the map φ as the map from M to S^n . Then (6.5) simply follows from (6.4).

Assume that $M = S^n$ and $\Phi = -\mathrm{id}_{S^n}$; then from (6.5) we obtain (6.6) COROLLARY. For every admissible map $\varphi \colon S^n \to R^n$ there is a point $x \in S^n$ such that $\varphi(x) \cap \varphi(-x) \neq \emptyset$.

Note that Corollary (6.6) is a generalization, to multi-valued maps, of the classical Borsuk-Ulam Theorem.

7. Theorem on the invariance of domain. In this section we show that the Brouwer Invariance of Domain Theorem may be generalized to s-admissible maps.

For a subset A of R^{n+1} we denote by IntA the union of all open sets in R^{n+1} which are contained in A. For a point $a_0 \, \epsilon \, R^{n+1}$ and a positive real number r we denote by $B(a_0, r)$ the open ball in R^{n+1} with centre a_0 and radius r.

Let A be a compact subset of \mathbb{R}^{n+1} , $a_0 \in A$ and U an open neighbourhood of a_0 in \mathbb{R}^{n+1} ; then by $j \colon A \setminus U \to A$ we denote the inclusion map. We note the following fact:

(7.1) Let A be a compact subset of R^{n+1} and $a_0 \in A$. The point $a_0 \in \operatorname{Int} A$, if and only if there exists a positive number r_0 such that for every $0 < r < r_0$ the homomorphism $j^{*n} \colon H^n(A) \to H^n(A \setminus B(a_0, r))$ induced by $j \colon A \setminus B(a_0, r) \to A$ is not an epimorphism.

The above fact is well known; for example see ([2] p. 394). Next, we prove the following two lemmas:

- (7.2) LEMMA. Let A be a compact subset of R^{n+1} and let a_0 be a point of A. The point $a_0 \in \text{Int } A$ if and only if there exists an s-admissible map $\varphi \colon K^{n+1} \to A$ such that
 - (i) $\varphi(S^n) \subset A \setminus \{a_0\},$
 - (ii) $0 \notin \operatorname{Deg}(\varphi, a_0)$.

Proof. We observe that if $a_0 \in \operatorname{Int} A$, then there exists a single-valued, continuous map $f \colon K^{n+1} \to A$ such that $f(S^n) \subset A \setminus \{a_0\}$ and $\deg(f|_{S^n}) \neq 0$. Conversely, assume that there exists an s-admissible map $\varphi \colon K^{n+1} \to A$ such that $\varphi(S^n) \subset A \setminus \{a_0\}$ and $0 \notin \operatorname{Deg}(\varphi, a_0)$. We prove that $a_0 \in \operatorname{Int} A$.

Let $(p,q) = \varphi$ be a selected pair of φ of the form

$$K^{n+1} \stackrel{p}{\leftarrow} Y \stackrel{q}{\rightarrow} A$$
.

Define a map $p_1: p^{-1}(S^n) \to S^n$ and $q_1: p^{-1}(S^n) \to A \setminus \{a_0\}$ by putting $p_1(y) = p(y), q_1(y) = q(y)$ for each $y \in p^{-1}(S^n)$. The set $q_1 p^{-1}(S^n)$ is compact.

Let $r_0 = \operatorname{dist}(a_0, q_1(p^{-1}(S^n)))$. Then r_0 is a positive real number. Consider the open ball $B(a_0, r)$ for $0 < r < r_0$ and the inclusion map $j \colon A \backslash B(a_0, r) \to A$; we assert that j^{*n} is not an epimorphism.

^{4 -} Fundamenta Mathematicae, T. XC

Indeed, we have the commutative diagram

in which i_1, i_2, i_3 are inclusions, $\widetilde{q}_1, \overline{q}_1$ are given $\overline{q}_1(y) = \widetilde{q}_1(y) = q_1(y)$ for each $y \in p^{-1}(S^n)$. From the assumption we have $(p_1^{*n})^{-1}\widetilde{q}_1^{*n} \neq 0$.

This implies that $(p_1^{*n})^{-1}\overline{q}_1^{*n}i_3^{*n}\neq 0$ and hence $\overline{q}_1^{*n}\neq 0$. Assume that j^{*n} is an enimorphism. Then we obtain

$$i_1^{*n}(p^{*n})^{-1}q^{*n} = (p_1^{*n})^{-1}\overline{q}_1^{*n}j^{*n} \neq 0$$
,

which is a contradiction. Since j^{*n} is not an epimorphism, from (7.1) we obtain $a_0 \in \text{Int } A$, and the proof of (7.2) is completed.

An s-admissible map $\varphi \colon X \to Z$ is called an ε -map if the condition $\varphi(x) \cap \varphi(x') \neq \emptyset$ implies $d(x, x') < \varepsilon$ for each $x, x' \in X$.

- (7.3) LEMMA. Let $\varphi: K^{n+1} \to R^{n+1}$ be a 1-map. Then
- (i) $\varphi(S^n) \subset \mathbb{R}^{n+1} \setminus \{z_0\}$ for each $z_0 \in \varphi(0)$.
- (ii) $0 \notin \text{Deg}(\varphi, z_0)$.

248

Proof. Let $z_0 \in \varphi(0)$; we prove that $z_0 \notin \varphi(S^n)$. Assume that $z_0 \in \varphi(x)$ for some $x \in S^n$. Then we have $\varphi(0) \cap \varphi(x) \neq \emptyset$ and from the assumption we deduce that ||x|| < 1, which is a contradiction.

Now we prove (ii). Let $(p,q) = \varphi$ be a selected pair of φ of the form

$$K^{n+1} \stackrel{p}{\leftarrow} Y \rightarrow R^{n+1}$$

Let $y_0 \in p^{-1}(0)$ be a point such that $q(y_0) = z$. Define the maps $p_1: p^{-1}(S^n) \to S^n$, $q_1: p^{-1}(S^n) \to R^{n+1} \setminus \{z_0\}$ by putting $p_1(y) = p(y)$, $q_1(y) = q(y)$ for each $y \in p^{-1}(S^n)$. For the proof it is sufficient to show that $\deg(p_1, q_1) \neq 0$.

Define the following sets:

$$\begin{split} X &= \{(x,x') \in K^{n+1} \times K^{n+1}; \, ||x-x'|| = 1\} \;, \\ M &= \{(x,x',y,y') \colon \; (x,x') \in X, \, y \in p^{-1}(x), \, y' \in p^{-1}(x')\} \;, \\ Z &= \{(x,x',y,y') \colon \; (x,x',y,y') \in M, \, x' = 0\} \;. \end{split}$$

It is easy to see that X, M, Z are compact sets.

Consider the diagram

in which

$$\begin{split} i(y) &= \left(p_1(y)\,,\,0\,,\,y\,,\,y_0\right), \quad h(x,\,0\,,\,y\,,\,y') = x\,\,, \\ j(x,\,0\,,\,y\,,\,y') &= (x,\,0\,,\,y\,,\,y')\,, \quad t(x,\,x',\,y\,,\,y') = (x,\,x')\,\,, \\ s(x,\,0\,,\,y\,,\,y') &= (x,\,0)\,\,, \quad l(z) = z - z_0\,\,, \\ f(x,\,x',\,y\,,\,y') &= q(y) - q(y')\,\,. \end{split}$$

Since φ is an 1-map, we have $f(x, x', y, y') \neq 0$. It is evident, that the above diagram commutes.

As in the proof of Theorem (6.2), we deduce that h^* , s^* , t^* are isomorphisms. Hence the commutativity of the above diagram implies that j^* and i^* are isomorphisms. This implies that M has the cohomology of S^n .

Define the involution $g\colon M\to M$ by putting g(x,x',y,y')=(x',x,y',y). Then $f(g(x,x',y,y))\neq f(x,x',y,y')$. Applying Theorem (6.2) to the maps f,g, we obtain $f^{*n}\neq 0$. From the commutativity of the above diagram we have $g_1^{*n}l^{*n}\neq 0$. Finally, we obtain $g_1^{*n}\neq 0$, and this implies that $\deg(p_1,q_1)\neq 0$. The proof of (7.3) is completed.

(7.4) Remark. It is evident that Lemma (7.2) remains true for any closed ball in R^{n+1} with radius ε and for any ε -map, where ε is a positive real number.

Now we prove two theorems of the type of the Brouwer Invariance of Domain Theorem for s-admissible maps.

(7.5) THEOREM. Let $\varepsilon > 0$ be a positive real number. If $\varphi \colon R^{n+1} \to R^{n+1}$ is an ε -map, then $\varphi(R^{n+1})$ is an open subset of R^{n+1} .

Proof. Let $y \in \varphi(R^{n+1})$. We prove that $y \in \operatorname{Int}\varphi(R^{n+1})$. Assume that $y \in \varphi(x)$ for some $x \in R^{n+1}$. Let K_s^{n+1} be a closed ball in R^{n+1} with the centre at x and radius ε .

Since φ is an s-admissible map, we deduce that $\varphi(K_s^{n+1})$ is compact set. We have $y \in \varphi(K_s^{n+1})$. Let ψ be the restriction of φ to the ball K_s^{n+1} . Then ψ is an ε -map and hence we have $\psi(S_s^n) \subset R^{n+1} \setminus \{y\}$, where S_s^n denotes the boundary of K_s^{n+1} . Therefore Lemma (7.3) (comp. Remark (7.4)) implies that $0 \notin \operatorname{Deg}(\psi, y)$ and from (7.2) we obtain $y \in \operatorname{Int} \varphi(R^{n+1})$. The proof of (7.5) is completed.

(7.6) THEOREM. Let U be an open subset of R^{n+1} and $\varphi \colon U \to R^{n+1}$ an s-admissible map. Assume further that for every point $x_1, x_2 \in U$ the condition $x_1 \neq x_2$ implies $\varphi(x_1) \cap \varphi(x_2) = \emptyset$. Then $\varphi(U)$ is an open subset of R^{n+1} .

Proof. From the assumption we infer that φ is an ε -map for each $\varepsilon > 0$. Let $y \in \varphi(U)$. We prove that $y \in \operatorname{Int}\varphi(U)$. Assume that $y \in \varphi(x)$ for some $x \in U$. Since U is open, there exists an $\varepsilon > 0$ that the set K_ε^{n+1} is contained in U, where K_ε^{n+1} is a closed ball with centre at x and radius ε . Let ψ be the restriction of φ to the set K_ε^{n+1} . Since ψ is an ε -map, we have $y \notin \psi(S_\varepsilon^n)$, where S_ε^n is the boundary of K_ε^{n+1} . Applying Lemma (7.3) and (7.2) as in the proof of (7.5), we obtain $y \in \operatorname{Int}\varphi(U)$. The proof of (7.6) is completed.

Remark. Theorem (7.6) is not true for admissible maps. For example, let $\varphi: (-1,1) \to R$ be the map given by

$$arphi(t) = egin{cases} t & ext{for} & t
eq 0 \ \{0, 2\} & ext{for} & t = 0 \ . \end{cases}$$

Then φ is an admissible map and the following condition is satisfied: if $t_1 \neq t_2$, then $\varphi(t_1) \cap \varphi(t_2) = \emptyset$ but $\varphi(-1,1)$ is not an open set in R. Observe (comp. (3.6)) that for every selected pair $(p,q) \subset \varphi$ we have $2 \notin qp^{-1}(-1,1)$.

It is easy to see that Theorem (7.5) is not true for admissible maps, either.

References

- M. W. Davies, A note on Borsuk's antipodal-point theorem, Quart. J. Math. 7 (1956), pp. 293-300.
- [2] S. Eilenberg and N. Steenrod, Fundations of Algebraic Topology, Princeton 1952 (in Russian).
- [3] L. Górniewicz, On non-acyclic multi-valued mappings of subsets of Euclidean spaces, Bull. Acad. Polon. Sci. 5 (1972), pp. 379-385.
- [4] Remarks on the Lefschetz fixed point theorem, Bull. Acad. Polon. Sci. 11 (1973), pp. 993-999.
- [5] A. Granas and J. W. Jaworowski, Some theorems on multi-valued mappings of subset of the Euclidean space, Bull. Acad. Polon. Sci. 5 (1959), pp. 277-283.

- [6] J. W. Jaworowski, Theorem on antipodes for multi-valued mappings and a fixed point theorem, Bull. Acad. Polon. Sci. 4 (1956), pp. 187-192.
- [7] Some consequences of the Victoris mapping theorem, Fund. Math. 45 (1958), pp. 261-272.
- [8] E. G. Skljarenko, On a theorem of Victoris and Begle, DAN SSSR 149 (1963), pp. 264-267.

Accepté par la Rédaction le 1, 4, 1974