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Function spaces with intervals as domain spacés

R. A. McCoy (Blacksburg, Va.)

Abstract. An example is given of a psendo-complete, separable metrie space ¥ such
that the space of continuons functions from the elosed unit interval into Y is of first
ategory, where the topology on the function space may be taken to he any of the
following: supremuwmn metrie, compact-open, pointwise convergence. Then conditions
are given which guarantee that a function space with an interval as domain space and
with compact-open topology be pseudo-complete, and hence of second eategory.

A well-known. theorem in topology and analysis says that the supre-
mum metric on a function space is complete whenever the metric on the
range space is complete (the converse is also true). In this paper we take
a particular space — the closed unit interval I — and consider the general
question a8 to what “complete-type” properties can one obtain on a func-
tion, space with domain space I when the property of completeness on
the range space is relaxed. An example is given showing that even if the
range space is a pseudo-complete, separable metric space, with no further
conditions the function space with domain space I may be of firgt cate-
gory — faxr from complete. However, we then give certain conditions on
the range space (which do not imply completeness) insuring that the fune-
tion space with I as domain space be pseudo-complete, and hence of
second category. '

1. Basic defipitions. A subset of the topological space X i8 of first
eategory in X provided that it can be written as the countable union of
nowhere dense subsets of X (i.e., subsets of X whose closures have no
interior points). Tt o subset of A iy not of first category in X, then it is
of second category in X. A space iy of first category (second calegory, respec-
tively) if it iy of first category (second category, respectively) in itself.
A space having the property that every open subspace is of second category
is called o Baire space.

The Baire Category Theorem says that every complete metric space
is a Baire space. In some cases one needs to have a complete space only
to use such a theorem ag the Baire Category Theorem, so that a natural
question is whether one may weaken the completeness property on the
range space and still retain some generalization of completeness, such as
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Baire space, on the function space. A property which is very close to
completeness is that of pseudo-completenecss. A space is pseudo-complete
provided that it is a quasi-regular space having a sequence {if,} of pseudo-

o
bases such that if P, « 7, and P, ., C P, for cach n, then (M} Py + &, where
n=1

quasi-regular and pseudo-base are defined as follows. A space iy guasi-
regulay if every nonempty open sebt containg the celosuve of some nonewphy
open set; and a collection of nonempty open sebs is o psendo-base for w space
if each nonempty open set containg some member of this collection, Bvery
pseudo-complete space is known to be a Baire space. Also it was shown
in [1] that a metrizable space is pseudo-complete if and only it it containg
a dense topologically complete subspace.

We shall be concerned with three different commonly used topelogies
on function spaces — the supremum mefric topology (topology of uniform
convergence), the compact-open topology, and the topology of pointwise
convergence. If X and ¥ are topological spaces, the set of continuous
functions from X into ¥ will be denoted by (X, Y). In the case that
(¥, d) is & bounded metric space, o metric d, called the supremum metric,
an be defined on O(X, Y) by d(f, g) = sup{d(f(z), g(@))] v ¢ X} Weo
shall use the notation Cu(X, ¥) for thiy metrie space. Also (X, Y) with
the compact-open topology will be denoted by Cp(A7, 1), where the com-
pact-open. topology is the topology on C(X, ¥) generated by the subbage
of all sets <K, U) = {fe C(X,Y)| f(I)C U}, where K iy compact in XX
and U is open in. Y. In the case that X iy compact and (Y, d) is a bounded
metrie space, it is a standard theorem that Cu(X, ¥) and (X, V) are
identical spaces. Finally, the topology of pointwise convergence on ¢ (X, V)
is defined the same as the compact-open topology exeept that pointy are
used instead of compact sets. This space will be denoted by €, (X, ¥),

and can be considered as a subspace of [[Y, with the produet topology,
xeXN
where cach Y is a copy of Y.

Throughout this paper, ¥ will he assumed to huve metrie d whenever
the space Cu(A,Y) is discussed, otherwise ¥ need not he a metrizablo
space unless explicitly stated. In certain cases, the domain spaee X will
be taken to be the closed interval from 0 to L with the usual topology;
this space will be denoted by I. The term J will e nged to denote an
arbitrary interval. Also N will denote the set of natural numboers.

2. A first category function space with pseudo-complete range space. Thoe
fivsh theorem gives a condition on a subspace of w funetion space implying
that it be of first category, and will be used to establish Theorems 2.9
and 2.5.

TurorEM 2.1. Let F' be a subspace of either (X, Y), (4(X, 1, or

Tunction spaces with intervals as domain spaces 191

(X, X) such that for some e X, {f(2)| feF} = Yu, where each Xy is
n=1

closed and nowhere dense in ¥, and for every positive integer n, for every
fel with f(@) € Yu, and for every neighborhood W of f in I, there ewists
a geW such that ¢(x) ¢ Xu. Then F is of first category.

Proof. For each neN, let Iy = {f ¢ F'] f(x) € Tn).

To geo that each B, is closed in I, lot f ¢ INFy». Now let V be a neigh-
horhood of f(») contained in ¥YN\Y,. In the case that I is a subspace of
G X, X), such a neighborhood can be taken to be the e-nieghborhood:
about f(@) for some & > 0, Then let W be the e-neighborhood about f in F.
In the cage that I is a subspace of C(X, ¥) or Oy(X, Y), define W to
be {a}, V) ~ I In any case, if g € W, then g(#) ¢ ¥\Ya, so that g e FNF'y .
Therefore W is a neighborhood of f contained in FN\F, so that Fy is closed.
Now by the hypotheses, each I, has no interior point, so is nowhere denge..

o

Since ¥ = \J By, then I is of first category.
[EEN

THROREM 2.2. There caists a pseudo-complete, separable metric space
(Y, d) such that Cp(I, X), Ou(I, X), and Cy(I, X) are all of first category.

Proof. Lot I,, be the dyadic rationals in T, and let I, be the irrationals
in I. Define ¥ to be the set (I, xI) v (I, x I,), and let it have the metric a
which is inherited from the usual metric on the plane. Notice that ¥ is
pseudo-complete sinee I, x I, is a topologically complete dense subspace -
of V. We shall only consider the cage of Ox(K, Y) since the proof for the
case of O (I, Y) is similar and since 0y, ¥) and Cx(I, ¥) are identical
(because I iy compact). .

If Ip={r,| ne N}, define I, = {f| m f(I) = {r,}} and let F'= U F,.

n=1
Also for each n, define ¥, = {ra} x I, which is closed and nowhere dense
in Y. We wish to establish that I and {¥,} satisty the hypotheses of Theo-
rem 2.1. Lot n e N, let f e Ty, and let W be a neighborhood of fin . We
may suppose that We= Ky, Vir oo n (B Vind ~F where K, ..., Kn
are compact in I and Vi, ..,V are open in Y. Leb

¢ == min{d(f(K), TNV t=1,..,m},

which is positive sinee each K, is compact. Now there exists an m ¢ N such
that max{0,1—s} < rm <1. Define a: Y—Y by a(s?t)= (rms, t). Leb
g = a o f, which by construction of « i8 in INFy. Also. since a Moves each
point less that &, g ¢ W. Therefore by Theorem 2.1, I is of flrst: category.

Pinally we wish to establish that Ox(f, YT, call it 7y, is nowhers
dense in Cx(I, ¥). Because continuous functions preserve cozmectedness,
F, consists only of the constant maps from I into I, % Ip. Now suppose
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that fe Cx(I, ¥) with f not a constant map. Then 7 f(I) = [a, b] for
some 0<a<bh<L Leb &= (b—a)/2, let 4,1, ¢I such that mf(t)=a
and m,f(t,) = b, and let V; and V, be e-neighborhoods in ¥ about (1)
and f(t), respectively. Then it W= ({t;}, Vi> ~ ({t}, VoD, fe W. By the
choice of &, W C Cx(I, Y)\Fyp, so that F,C {fe Ou(I, T)| fis a coﬁ.stzmt
map}. (This lagt containment is actually an equality.) To sce that F, has
no interior point, let feFp and let W= Ky, Vi> A .o A (I, Vi bo
a neighborhood of f. Since f is a constant map, say that constant is (8, 1),
there exists ¢ >0 such that the e-neighborhood of (8, 1) is coutained in
Vin..nVnu. Choose an neN gsuch that [Pn—s| < ke, and let
¢ =max{0,t—}e} and b=min{l,t--4e}. Define ge Cu(l, X) by
9(p) = (ru, (b—a) P-+a). Tt can be seen, that g e W and ¢ is not o (".omtwn'b
map. Therefore W ~[Cw(I, YNFp] # O, so that ¥y is nowhere dense.
Since COx(I, Y)=F u Fp, it follows that O(I, Y) is of first category.

THEOREM 2.3. If X is compact and (Y, d) has an open topologically
complete subspace, then Cy(X, ¥) has an open topologically (:r)ﬁzy)leife sub-
space, and hence is of second category.

Proof. Liet Z be an open topologically complete subspace of Ye
Consider C4(X, Z) as a subspace, call it 0, of Cy X, Y). Liet o be a complete
bounded metric on Z. Then since X is compact, C(X, Z) has the same
topology as Cy(X, Z). Since (Z, o) is complete, then C,(X, Z) is complete.
Therefore (5 is topologically complete. Now let feCy,, so that f(X) cz.
Let 2 be the distance between f(X) and Y\Z. Then the z-:-neighboﬂmod
of fin O4(X, ¥) is contained in Oy, 80 that €y iy open in Cu(X, T).

THEOREM 2.4, If X is compact and Y has an open completely metriz-
able subspace, then Ox(X, Y) has an open completely metrizable :9167)&'])6!(?6
and hence is of second category. o

Proof. This is similar to the proof of Theorem 2.3.

We might add that the analog to Theorem 2.4 for Op(X, ) instead
of O)(X, Y) is false since Op(I, B') is not motrizable [3], where I is the
set of real numbers with the usual topology. o |

THEOREM 2.5. There exists a separable metric space (Y, d) which has
a dense, open, arewise connected, topologically complete subspace such that
Cull, 3_[), Cu(l, X), and Cu(I,Y) are all not Baire .v;na&es. (However
Cull, Y) and OW(I,Y) are of second category by Theorems 2.3 and 2.4:)?

Proof. We shall modity the example in Theorem 2.2 and shall use
the T:erminology defined in that proof. Also, as in Theorem 2.2, wo H]l;b]i
consider only the case for Ox(I, ¥). Define ¥ to be the st (Ip% 71>\ fo‘}')‘ o
v (_Ip XIpxI) v (IxIx{1}), and let it have the metric d which Lm in-
herited fron} the usual metric on Buclidean 3-space. The desired don%o
open, arcwise connected, topologically complete subspace of ¥ vis;
IpX Ipx IN{O}) U (Ix Ix {ah.
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Lot Z = T, ) I {0}, and let F={feCu(I, X)] f(I)CZ and f is
not & eonstant map}. By using Theorem 2.1, as wag done in the proof
of Theorem 2.2, it can be seen. that F is of first category. Also F can be
ghown, to he open in C(I, ¥) in a way very similar to the way in which Ty
was shown to be nowhere denge in the proof of Theorem 2.1. Therefore
Ci(l, Y) is mot a Baire space. ‘

"he underlying reason that Ox(I, ¥) is not a Baire space in Theo-
rom 2.5 ig that Y 18 not loeally conneeted. This can be seen from Theo-
rem 4.1, which will bo proved in Section 4. However, we shall fivst need
to discusy the topie of when a continuous function from a closed sub-
space of an interval J into some space has a continuous extension to all of J.

3. Absolute extensors of finite-dimensional metric spaces. Let ¥ be
a gpace and lob x be a class of gpaces. Then Y is called an absolute extensor
for y provided that for any closed subspace A of any X ¢ %, every continu-
ous funetion, f: A— ¥ has a continuous extension to all of X. To the case
that x == {X}, we shall say that ¥ is an absolute extensor for X.

The concept of n-connectedness will appear in the next couple of
theorems. TE o is a nonnegative integer, a space X is called n-connected
provided that for overy integer k with 0 <<k<n, every continuous
function from. the &-sphere, 8% (lying in Huclidean (k--1)-space, Fr+
into ¥ has & continuous extension to all of B*, Also Y is called locally
n-connected it for every integer % with 0 <<k < n, for every y e ¥, and
for every neighborhood U of y in ¥, there exists a neighborhood V of ¥
contained in ¥ such that every continnous function from 8% into V extends
to a continuous function from E*! into U. Finally, the abbreviation
dm.¥ will be used to denote the covering dimension of X.

The following two theorems can be deduced from results of ‘Dugundji
in, 2]

Tumorest 8.1, Let n be a positive integer, let X be o metric space, and
let y be any class of melric spaces such that:

1) for every X ey, dimX < n, and o

2 there exists X e yx such that X contains @ copy of B embedded in at.

Then Y is an absolute ewtensor of y if and only if ¥ ds (n—1)-con-
nected and locally (n-1)-connee

A wpaco is pathwise connoctod if it iy 0-connected, ;mfl .it is locally
pathwise connected it it s locally 0-connected. It is not de1":1011113 to see
that a conneeted, locally pathwise conneeted space is pathwise connect’ed.
Now ay a corollary to Theorem 3.1, we get the following result which
will he used in the next section.

YOROLLARY 8.8. Let J be an interval and let X be a metric space. Then
Y is an absolute extensor of J if and only if Y is connected and locally path-

wise connecled.
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One half of this corollary ean be generalized as follows.

THEOREM 3.4. Let X be a Hausdorff space containing some nonde-
generate path. Then if Y is a first countable absolule extensor of X, ¥ must
be pathwise conmected and locally pathwise connected.

Proof. Let g: I—X be a nondegenerate path in X. Since X is a Haus-
dorff space, g(I) is arcwise connected, so that there exists an embedding
h: I—-X. Clearly ¥ must be pathwise connected. Now suppose that ¥ is
not locally pathwise connected. Then there exist y,e ¥ and neighbor-
hood V of y, in ¥ such that for every neighborhood W of v, contained
in V, there exists w ¢ W such that there is no path from w to y, whose
image lies entively within V. Let {Bs| i« N} be a countable local base
at yo with B, C B; for every ¢eN and B, CV. Then for every ie N )
let y; « By such that there is no path from y; to y, whose image lies entirely

in V. Let K = {0} w {1
3

ieN}, which is closed in I and hence compact.
Therefore (K) is compact and thus. closed in X. Define the continuous
function f: h(E)— Y by f[}(0)]= 4, and for every 1 e, let f []L(Q]';ﬂ = 1,
and fﬁ(ﬁ%)] = ¢i. Now suppose F: X— ¥ is a continuous extensgion
of f. Then for each 7 ¢ N, Fh([%—%_ﬁl—, 2%]) is the image of a path from y;

to ¥y, so there exists ¢ such that

i1 << 5—;—7: and Fh(t) ¢ V. But
{t:] i e N} converges to 0, while {Fh ()] ©e N} cannot converge to v,
= Fh(0). Hence Fh is not contintous — which is a contradiction., There-
fore f has no continnous extension to Y, so that ¥ would not be an ab-
solute extensor of 7. Thus ¥ must be locally pathwise connected after all,

The first countability hypothesis in Theorem 3.4 cannot be omilted,
as the following example shows. Let X be the real line with disereto
topology except that the meighborhoods of 0 are precisely all subsots
of X' with countable complements. Let ¥ = (XX D)X % {0}) with the
quotient topology. Now Y is neither first countable nor locally pathwise
connected at the point (0, 1). To see that ¥ is an absolute extensor of I,
let K be a closed subspace of I and let J: K=Y be continnous. Set X,
= {r ¢« X| there exists 0 << 1 with (#,1) e f(E)}. 1t X, were uncount-
able, then {f~Y({z}x (0,1])] z « X\{0}} would be an uncountable disjoint

collection of monempty open subsets of K — which contradicts the fact

that K is separable. Therefore X, is countable, so that X, as a subspace
of X has the discrete topology. Let Y, = (Ko % I)[(Xy % {0}), which is
then a subspace of ¥ containing f(X). Now Y, is & connected, locally

icm
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pathwise connected, metrizable space, so that ¥, is an absolute extensor
of I by Corollary 3.3.

4. Pseando-complete function spaces with intervals as domaﬁn spaces.
Throughout thiy section the domain space of most of the fune_tmn spaces
will De an. arbitrary interval J. Whenever Z is a subspace of ¥, we shall
congider Ux(J, %) as a subspace of Cu(J, ¥).

Trrorum 4.1, et ¥ be a locally connected space which contains o dense,
locally pathwise connecled, metrizable subspace Z w«i"th the woperty 'l.hrat
V ~ % is connected whenever V is connecled and open in ¥Y. Then Cu(J, Z)
48 dense in Op(J, X). . .

“Proof. Tiet fe O, Y) and let W= (I, V) .. ~ Ky Vi) be
a bagic open set containing f, where Ky, ..., Kn ate compzict ind; Vi, .oy Vm
are open in Y; and each <Ki, Vi) = {g e Cx(J, Y)| g(E:) CVi}. In order
to complete the proof, we need to find a g ¢ W such that g(J) C Z.

Tiet Yy be the component of Y containing f(J), and 1(?17 Zr=Ys~Z,
which is o nonempty connected open subspace of Z and is hence locally
pathwise connected. For each 1<k < m, let_ 8(k, 1), ..., S(k, p(%)) be
all possible sets of precisely & distinet positive integers le'ss than or equal
to m such that () {Ka| neS(k, 1)} # @ for every 1< 4 << p(k), if such
sets exist. TE for some 1 << & < m, no such sets exist, let p (k) = 0. Liet m, be
the largest positive integer less than or equal to m 5}10]1 theyt ‘p(mo) > 0.
Now for each L < & < me and 1< i< p(k), there exists a finite numb'er
of components V(k,4,1), .., V{k, 1, g(k, @)) of N {Vun Y“ﬂ n e.S(Ic, i)}
sach that f[N {Ial neS(k, ICV(kyd,1) . V(l?, %, g(k, i)). Eor
each 1<<j< q(k,4), let Z(k,4,]§) = Z; ~nV(Ek,4,7]), .whlch isl eonn(?ciied
and open in Zy. Also let K (&, 4, ) = [N {En| n e S(k, i)}]1 ~ f (V(k, 4,51,
which can be seen to be a compact subset of J. For each 1:< k<< My,
let K (k)= \UJ {En, 5, b<n<m, 1< _'p('n),.and 1<) < g(n, )}

Now for each 1 <4< p(m,) and 1<<j << ¢(my, ), thex.'e exists a con-
tinnous funotion g (mg, @, §): I —Z (my, 1, §)- I)effne the contl.nn‘ous ft.mc‘mon
glmy): K (me)—Zy by g{mg)(?) == g(mo,fi,j)(.t) if teK(mo,q,,‘?). WlthAth]i
intent of defining g(1): K (1)—Z by in.ducmon‘, we suppose that for eac
1< k= n, where n < my, a continuous function

g (my—T-F1): I (my— T L) Zs

hag been, detined go thatb g (my— k41K (me— k-1, 4, mc Z.(mo—- k-1, 4, ) 3
for every 1<4<p(my—Rk-+1) and 1< j.< q{me— 7c+.1, 1). Then define
g(mg—n): K (my—mn)—Zy as follows. First 161.} _1< i < p(my—n) a.réd
1< j < q(mg—n,i). Suppose that K(me—m, 1, ?).n K (my—n+1) = 0.
Then there exigts a continuous function g(muh— Ny %y §): =2 (My—ny 4, J).
On the other hand suppose that I (me—n, £, ) N K (m(,:— n-+1) # G. ’]:’h(;m
by Corollary 8.3, there exists & eontinuous flme‘?lon g(me—m, 4, j):

6 — Fundamenta Mathematicae XC
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J ——>Z (mg—mn,4, j.) which is an extension of g (my—n--1)| K(ino=nyiygy n K(mo—n s -
Define the continuous function. g (my—n): I (my~n)—Z; ‘by’ (/(mo_o_. ;:)ZZ>
= g{me—n-4-1)(1) if t ¢ I (my—n-+1) and g(me—n)(t) = g(my—mn, 1, J) () if

te I (my—m, 4, INIC (my—n--1) .

Then by finite induction, the continuous function ¢(
: ! ; tho conf 8 dwnetion ¢(1): K (L)—%, iy
defined so that g(1)[K (X,4,i0CZ(1,4,5) tor every sz i< ;n(,ll)j;fl,nd

1<j<q(1,4). But for each 1<k < m,

Hp= UK (L, 4,§)] 1< < g1, i)

for some 14 p(1). Also for this 4, U {Z (1,4, )| 1< j<< g(1 0} C Vi
Therefore, for each 1< %< m, ¢(1)(Ix) C Vy. Y -
Fma_]ly, sinee K(1) = {J {I] 1< k<< m}, it is a closed subset of J
Also Z; is egnnected and locally pathwise conneeted, so that by Corol-
Iary_ 3.3 again, ¢(1) has a continuous cxbension ¢: J—Zy, which is tho
desired element of Tv. A ‘
COROLLARY.4.2. Let X be a locally connected space which containg a dense
completely ‘memzable.sqcbspace Z (s0 that Y is pseudo-complete) with the
property that V.~ Z ds conmected whenever V' is conmected and open in Y.
Then COx(J ,Z)‘ is @ dense completely metrisable subspace of (Y,:(=7 Y) so
that Ox(J , ) ds pseudo-complete. . S
tQOILOLLARY 4.3. Let (Y, d)' be a locally connedted metrie space which
:;m ains 0rb c?ense, locally pathwise conmected subspace 4 with the property
hat Vo~ A 8 comwcte.d whenever V is conmected and open in X, Then for
evgwg‘commuous Jumction f: T—-Y and every & >0, there exists « continuous
Junction ¢: T—2 such that a(f (), g(@) < e for every wel.
N thorollary'el-ﬂ follows from Theorem 4.1 since Z will be locally con-
zzhe s and since a locally connected, complete metrie space iy locally
?aet Esi col?nee.ted. Also.Oorollary 4.3 follows from Theorem 4.1 and ‘th‘e
e th‘alf w.tc.an the domain spaco compact, as iy 1, the supremum metrie
V\(; unction space generates the compact-open. topology
=Y , N . 1 . e
o [ sawt from lnl;lfaorem 2.5 that the loeal connectodness condition,
om can;lo “b-e omitted from Theorem 4.1 or ity corollaxies, sinee the
the‘ glfb:;eltyotﬂthte ;pmj; Y constructed in the proof of Theorem 2.5 has
] 'ty that V ~ Z iy connect; ‘ v Vi connoctod and op
the I Z nnocted whenever V iy eonnectoed and open
gorollary 4.2 hag the following partial convergo,
HEOREM 4.4. Let Y be a localls i 1 \
. cally pathwise connected metric ¢ The
if Ou(J, X) is Dpseudo-complete, so is Y. v e Hen
Proof. Let ¢ be an arbity
: rary element of J, and lot p,: J, . :
be the projection of Cx(J, ¥) on{o 1:;311(;“{1: 'OL '% fm{‘l e Oif(th ¥l
of ) etermined. by 4. What is, for each
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feCuld, X), pdf) = f(t). Tt is clear that p, is a continuous surjection.
In order to see that p; is also open, let B = (I, Vi> ... ~ (Kau, Vu) be
a nonempty basic open subset of Cp(J, ¥). Xf ¢ is contained in some IC;,
leb V= () {Vi t e Ks}. On the other hand, if t ¢ Ky v ... 0 Iy, let V= Y.
Now let f « B, and define Vy to be the component of ¥ which containg f(¢).
Let 4 be any element of Vy. We can find a, b eJ, with ¢ <t<<b, such
that the interval [, V] intersects only those I, which contain ¢ and
fla, b)) CVy. Detine g: {a, b, 3—Vy; by g(a)=f(a), g(b)==7f(b), and
g(1) == y. Now ¢ has o continuons extension ¢: [«, b]—Vy. Define f: J— Y
by fl@) = g@) it wela, ], and flz)= f(x) if »eJ\Ja,d]. It is cagy to
gee that feB and puf) = 9. Therefore py(B) = U {Vy| feB and Vy is
the component of V' containing f(#)}, which is open in ¥. Hence p; is
a continuous open funetion from the pseudo-complete space Op(J, Y
onto the metric gpace Y. Then by a theorem in [1], ¥ must be pseudo-
complete.

If X is a rimcompact (has a base having members with compact
boundaries) Iausdortt space, then yX will denote the Freudenthal com-
pactification of XX. Most of the properties of yX used in proving the follow-
ing theorem can be found for example in [4].

Trrorem 4.5, If X 48 a connecled, locally pathwise connected, rim-
compact metric space, then Cu(d, X) is dense in Ci(J, yX).

Proof. To begin with, yX has the following two properties: (1) for
every ¢ « yX and neighborhood V of y in X, there exists an open sub- -
set W of yX such that y e WCV and BAW C X, and (2) V ~ X is con-
nected whenever ¥ is connected and open in yX and BdV C X. Also
since X is connected and locally connected, yX will be locally connected.
Therefore we simply need to modify the proof of Theorem 4.1 to prove
the following: if ¥ is a locally connected space which contains a dense,
connected, locally pathwise connected, metrizable subspace Z with the
two properties (1) for every y ¢ ¥ and neighborhood V of y in Y, there
exigty an open subset W of ¥ such that y e WCV and BAW CZ, and
(2) V ~ Z i3 conmected whenever ¥V is connected and open in ¥ and
BAV C Z; then Ox(J, Z) is denge in Op(d, Y).

This modification is done as follows. First, since Z is connected,
take Zy== % and Yy= ¥. Also for each 1 < & < m, since f(&x) is & com-
pact subset of ¥ contained in Vi, there exists an open subset Wi of ¥
such that f(Kx) C WrCVs and BdWy;CZ. Now in constructing the
V(k,,4) in the modification of the proof of Theorem 4.1 for each 1<k
< my and 1< j < p(k), take the V(k,d,1), ..., V(k, 1, ¢(%, ¢)) to be com-
ponents of () {Wa| ne8(k,4)} such that

FIN (Kl m e 8%, OCTV (b, 0,1) © v v V(ky 4, gk, 9)
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Bach V (%, 4, j) is connected and BAV (%, ¢, j) C Z. Therefore each Z (%, 4, §)
=Z nV(k,1,j) is connected and open in Z. The rest of the proof now
needs no further modification.

-COROLLARY 4.6. If X is a Peano space, then Ow(J, X) is dense in
Or(J , pX). .

We might note that if X is a Peano space, (i.e., a connected, locally
-connected, locally compact metric space), then yX is metrizable, say
with metrie d. Then in this case, the above corollary assures us that for
-each continuous function f: I-—yX and for each ¢ > 0, there exists a con-
tinnous function g: I—X such that d(f(t), g(t)) <& for every tel.
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