Tightly packed families of sets

by

N. H. Williams (Brisbane)

Abstract. Let \(m, n, p, q \) be infinite cardinals with \(m \geq n \geq p \) and \(m \geq q \). Necessary and sufficient conditions are given for the existence of a family \(A \) of \(m \) sets each of cardinality \(n \) with \(|A_1 \cap A_2| < p \) for each pair \(A_1, A_2 \) from \(A \), such that each subset of \(\bigcup A \) of power \(q \) has an intersection of cardinality at least \(p \) with \(m \) different members of the family \(A \).

This paper is devoted to a proof of the following theorem. (The notation is explained below.) The Generalized Continuum Hypothesis is assumed throughout.

Theorem 6.1. Let \(m, n, p, q \) be infinite cardinals with \(m \geq n \geq p \) and \(m \geq q \). The conditions

1. \(n < q \)
2. either \(m = q \) or else \(m = q^+ \) and \(p' = q' \)

are necessary and sufficient for the existence of a family \(A \) of \(m \) sets each of cardinality \(n \) with \(|A_1 \cap A_2| < p \) for each pair \(A_1, A_2 \) from \(A \), such that

\[
S \in \bigcup A \Rightarrow \text{card}(A \times A; |A \cap S| \geq p) = m
\]

Notation. Cardinal numbers are identified with the initial ordinals. Small Greek letters always denote ordinal numbers, and small Roman letters cardinal numbers. The cardinality of a set \(X \) is denoted either by \(\text{card}X \) or \(|X| \), and \([X]^r \) is the set of subsets of \(X \) of cardinality \(r \). The symbols \([X]^{<r}, [X]^{\geq r} \) have the obvious meanings. For any cardinal \(r \), by \(r^+ \) is denoted the least cardinal larger than \(r \) and by \(r' \) the cofinality cardinal of \(r \), that is, the least cardinal \(s \) for which \(r \) can be written as the sum of \(s \) cardinals all less than \(r \). When \(r' = r \) then \(r \) is said to be regular, and otherwise singular.

Definition 6.2. A family of sets \(A \) is called an \((m, n, p) \)-family if \(|A| = m \), \(|A| = n \) for each \(A \) in \(A \), and \(|A_1 \cap A_2| < p \) for each pair \(A_1, A_2 \) from \(A \). We define \((n, p) \)-family and \((m, \geq n, p) \)-family analogously.
We shall make use of the following results of Tarski [1, Théorème 5].

Proposition 0.3. Let \(A \) be an \((m, p, g, p', q')\)-family, where \(m > q > p' \). Then \(m = |A| + |A^*| \) unless perhaps \(n = p \) and \(p' = |A| \), in which case \(m = |A| \).

Proposition 0.4. Let \(g > q' = p > p' \) and \(q > p' \). Given \(X \) with \(|X| = q \) there is an \((q, p, p', q')\)-family \(B \) with \(\cup B \subseteq X \).

§ 1. Theorem 0.1. Necessity

The condition (1) is easily seen to be necessary if \(S \) is to hold, for if \(m > n \) then by choosing for \(S \) a subset of some \(A \), then only possible for \(A \), is \(|A \cap S| \geq p \) true (by the condition \(|A \cap A^*| \leq p \)).

On the other hand, suppose there is \(S \) with \(|S| = q \) for which \(\text{card}(A \in A; \ |A \cap S| \geq p) = m \). Then the family \(B = \{A \in A; \ |A \cap S| \geq p\} \) is an \((m, p, p', q')\)-family with \(|\cup B| \leq |S| = q \), and so if \(m > q \) we must have \(m = q^* \) and by Proposition 0.3 also \(p = q' \).

Thus the condition (2) is necessary for \(S \).

§ 2. Theorem 0.1. Sufficiency

We now suppose conditions (1) and (2) to hold and deduce (3). Note that from (1) it follows that \(m > n \). Consider first the case \(m = g \).

Theorem 2.1. Let \(m > n > p \). Then there is an \((m, n, p)\)-family \(A \) such that

\[
S \in \{A \mid \text{card}(A \in A; \ |A \cap S| \geq p) = m \}.
\]

Proof. Suppose that \(m \) is regular. Using Zorn's Lemma, let \(A \) be a maximal \((\leq m^*, n, p)\)-family of subsets of \(m \). Then by Proposition 0.3, in fact \(|A| \leq m \). And we have

\[
S \in \{A \mid \text{card}(A \in A; \ |A \cap S| \geq p) \geq |S| \}.
\]

For suppose on the contrary that there is \(S \) with \(S \in \{A \mid \text{card}(A \in A; \ |A \cap S| \geq p) = m \} \) for which \(\text{card}(A \in A; \ |A \cap S| \geq p) \geq |S| \). Then \(\text{card}(A \in A; \ |A \cap S| \geq p) \geq |S| \).

But if \(X \) is chosen so \(X \subseteq S \cup \{A \in A; \ |A \cap S| \geq p\} \) with \(|X| = n \), then \(A \cup X \) is an \((\leq m^*, n, p)\)-family contradicting the maximality of \(A \). From (3) it follows that (4) holds for \(A \).

Now suppose that \(m \) is singular. Choose regular cardinals \(m^*_n \) for \(\sigma < \kappa \) so that \(m^*_n < m^*_n < m^*_n < \ldots < m \) and \(m = \sum \{m^*_n; \sigma < \kappa \} \).

For each \(\sigma < \kappa \) take an \((m^*_n, n, p)\)-family \(A^*_\sigma \) with the property (0), and further ensure that the sets \(\cup A^*_\sigma \) are pairwise disjoint. Put \(A = \cup \{A^*_\sigma; \sigma < \kappa\} \), so \(A \) is an \((m, n, p)\)-family.

Take \(S \) in \(\{A \mid \text{card}(A \in A; \ |A \cap S| \geq p) \leq |S| \} \). For \(\sigma < \kappa \) put \(S^*_\sigma = S \cap \cup A^*_\sigma \). Then \(\cup \{S^*_\sigma; |S^*_\sigma| \geq n\} = m \). By the property (0) for \(A^*_\sigma \), if \(|S^*_\sigma| > n \) then \(\text{card}(A \in A; \ |A \cap S^*_\sigma| \geq p) > \sum |S^*_\sigma| > |S^*_\sigma| = m \). Hence \(\text{card}(A \in A; \ |A \cap S| \geq p) = \sum |S^*_\sigma| > |S^*_\sigma| = m \). Thus (i) holds for \(A \). This completes the proof.

Consider next the case \(m > q \). Here \(m = q^* \) and \(p' = q' \). Since \(q > m > n > p' = q' \), in fact \(q \) is singular.

Lemma 2.2. Let \(q > g = p' \) and \(q > n > p \). Given \(X \) with \(|X| = q \) and \(a = \{g, q, n, p\} \)-family \(D \) there is a \((g^*, q, p, D)\)-family \(B \) with \(\cup B \subseteq X \) such that \(|B \cap D| < p \) for \(B \in B \).

Proof. Take a family \(S \) as given by Proposition 0.4. Note that \(|\cup \{B \mid |B \cap D| < p \} = q \). And so we may omit from \(S \) any set \(B \) for which \(B \in D \) and still retain a \((g^*, q, p, D)\)-family.

Lemma 2.3. Given \(Z \) with \(|Z| = q^* \) and a family \(S = \{S_i; n < q^* \} \) where always \(S_i \in \{Z_i; n < q^* \} \), then there is a \((q^*, q^*, 1)\)-family \(C = \{C_i; n < q^* \} \)

\[
\text{such that } \mu \leq n = C_i \cap S_i = \emptyset.
\]

Proof. Write \(Z = \cup \{Z_i; n < q^* \} \) where the \(Z_i \) are pairwise disjoint with \(|Z_i| = q^* \). Put \(C_i = Z_i \cup \{C_i; n < q^* \} \).

Theorem 2.4. Let \(q > g = p' \) and \(q > n > p \). Then there is a \((g^*, n, p)\)-family \(A \) such that

\[
S \in \{A \mid \text{card}(A \in A; \ |A \cap S| \geq p) = q^* \}.
\]

Proof. Let \(S = \{S^*_n; n < q^* \} \) and take a \((q^*, q^*, 1)\)-family \(C = \{C_i; n < q^* \} \) as given by Lemma 2.3 for \(S \). Choose \(\{q^*, n, p\} \)-families \(C_i = \{C_i; n < q^* \} \) such that \(\cup C_i \subseteq C_i \).

Construct by transfinite induction \((q^*, n, p)\)-families \(A_\xi \) for \(\mu < q^* \) such that

\[
A_\xi = \text{for some } \nu < \mu, \text{ or else } \cup A_\xi \subseteq S_\nu \cup C_\nu,
\]

and

\[
A_\xi, A_\lambda \in \cup \{A_\xi; n < q^* \} \Rightarrow |A_\xi \cap A_\lambda| < p \text{ if } A_\xi \neq A_\lambda.
\]

As follows. Take \(\xi \) with \(\xi < q^* \) and suppose the \(A_\xi \), for \(n < \xi \) have already been satisfactorily defined. If there is \(\nu < \xi \) for which

\[
\text{card}(A \in A; \ |A \cap S_\nu| \geq p) = q^*;
\]

put \(A_\xi = A_\nu \) for such a \(\nu \). (Then (8) and (9) hold when \(\mu = \xi \).) Otherwise, put \(D_\nu = \{A \in A; \ x < \xi, \ |A \cap S_\nu| \geq p\} \), so \(|D_\nu| = q^* \). Let \(S_\xi = \{S_\mu; \ x < \xi\} \). Then \(|\cup S_\xi| \subseteq C_\xi \subseteq C_\lambda \), for which \(|B \cap D| < p \) when \(B \in B \). (As provided for by Lemma 2.2.) Put \(A_\xi = B_\xi \cup C_\xi \) and finally \(A_\xi = \{A_\xi; n < q^* \} \). Then \(\cup A_\xi \subseteq S_\xi \cup C_\xi \) and (8) holds with \(\mu = \xi \). Since \(\cup C_\xi \subseteq S_\xi \) and \(S_\xi \cap C_\xi = \emptyset \), when \(A_\xi \neq B_\lambda \), we have \(A_\xi \cap A_\lambda = (B_\xi \cap B_\lambda) \cup (C_\xi \cap C_\lambda) \) so that \(|A_\xi \cap A_\lambda| < p \). Thus \(A_\xi \) is a \((q^*, n, p)\)-family. Also, by (6), if \(n < \xi \) then \(C_\xi \cap (S_\nu \cup C_\nu) = \emptyset \). So if \(A \in A_\xi \) for some \(n < \xi \), then \(A \cap C_\xi = \emptyset \). Thus \(A \cup A_\xi \)

5 — Fundamenta Mathematica Issue XC
A note on Lusin's condition (N)

by

James Foran (Milwaukee, Wis.)

Abstract. A function is said to satisfy condition (N') provided the image of closed sets of measure 0 is of measure 0. In this paper it is shown that for several classes of functions (N') implies Lusin's condition (N). The Baire functions (in a general setting) are one such class. Using the continuum hypothesis, a real valued function is constructed which satisfies (N') but does not satisfy Lusin's condition (N).

A function \(f : X \to Y \), where \(X \) and \(Y \) are measure spaces, is said to satisfy condition (N) if the image under \(f \) of each set of measure 0 in \(X \) is of measure 0 in \(Y \). Condition (N) arises quite naturally in the study of integrals. (See, e.g., [1], p. 224ff.) A function \(f : X \to Y \) will be said to satisfy condition (N') if \(X \) is a topological space and the image under \(f \) of compact sets of measure 0 is of measure 0. The purpose of this note is to show that for several classes of functions condition (N') implies condition (N); that is, the compact sets of measure 0 are a determining class for condition (N).

Although greater generality is attainable, the spaces \(X \) and \(Y \) will always be \(\sigma \)-compact metric spaces. The following notation and definitions will be used:

1) \(B(f; A) \) will denote the graph of \(f \) on the set \(A \), i.e., if \(f : X \to Y \), \(B(f; A) = \{(x, y) \in X \times Y | x \in A, y = f(x)\} \).

2) \(m(E) \) will denote the measure of \(E \) when it is clear which measure this is.

3) \(n-m(E) \) will denote \textit{Hausdorff} \(n \)-measure. Briefly, a set \(B \) has \(n \)-measure less than or equal to \(b \) if for any given \(\varepsilon > 0 \) there is a cover \(U \) of \(B \) with each set \(I \in U \) having diameter less than \(\varepsilon \) and \(\sum (\text{diam}(I))^n < b + \varepsilon \).

4) \(\text{proj}_{Y} \) will denote the projection map from \(X \times Y \) to \(Y \); similarly, \(\text{proj}_{X} \) denotes the projection map from \(X \times Y \) to \(X \).

5) A measure space \(X \) is of \(\sigma \)-finite measure if \(X \) is the countable union of sets of finite measure.